ZnO纳米结构及其器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接宽带隙半导体材料,室温下禁带宽度为3.37eV,激子束缚能为60meV,可以实现高温或是室温下的具有很高效率的激子受激发光过程,因此在波长较短的光电器件中有着潜在的应用价值,是制备半导体激光器(LDs)、紫外光发光二极管(LEDs)等器件的理想材料。由于ZnO的(002)晶面的表面自由能最低,因而具有沿着(002)的方向取向性生长特性,所以一维的ZnO纳米结构比较容易成功制备。ZnO在光电、铁电、热电等很多领域有着潜在的应用价值,尤其在低维材料中,由于量子约束效应,ZnO具有更加优异的光电特性。因此,纳米结构的ZnO在纳米光电子器件和纳米电子器件方面有巨大的应用价值。本论文首先研究ZnO材料的制备方法及对结构与性能的测试分析,然后重点研究一维ZnO纳米结构在电阻开关存储器和气体探测器方面的应用,具体分为以下几个部分:
     1. ZnO材料的制备和表征。利用气相输运法制备了一维ZnO纳米结构,并重点研究了其光学性质。选择定向性好的ZnO纳米棒为研究对象,其在10K温度下测试的PL谱线几乎没有缺陷发射峰,说明ZnO纳米棒具有很好的晶体质量。随着温度的增加,带隙发射峰出现红移的现象。随着温度的进一步升高,D~0X发射峰的强度逐渐降低而自由激子发射峰的强度增加并逐步站主导地位。在氧气氛围下退火可以调高ZnO薄膜的晶体质量和光学性质,在700℃的得到晶体质量最好。
     2.阻性存储研究。首先制备Au/ZnO NWNs/ITO (MIM)结构,其中ITO薄膜同时作为生长ZnO的衬底和MIM结构的一个电极,厚度为100nm的Au电极是用模板通过热蒸发的方式沉积在ZnO纳米材料上的。I-V测试表明,MIM结构呈现双极性电阻开关特性,具有较大的R_(on)/R_(off)比,并具有良好的稳定性和可重复性。阻性开关导电机制是由ZnO纳米结构表面氧空穴导电通道的形成和断裂过程实现的。
     3.气体探测器研究。制备了基于Pd纳米颗粒附着的定向ZnO纳米棒阵列(Pd/ZnO),作为阳极材料进行了场电离实验。结果表明相对于基于光滑的ZnO纳米棒阵列的气体探测器,基于Pd/ZnO的探测器具有更小的击穿电压,并有很好的稳定性和重复性。对惰性气体也具有探测功能和指纹特性。
Zinc oxide, as a semiconductor with a direct wide band gap of3.37eV andexciton energy of60meV, favors the excitonic emission even at high temperature.Therefore, the ZnO has the great potential for the production of optoelectronic devices,such as light-emitting diodes and laser diodes. Because of the lower surface freeenergy of the (002) plane, ZnO usually is grown along the c-axis orientation. As aresult, one-dimensional ZnO nanostructures are more successfully to be synthesized,such as nanowires, nanobelts, nanotubes, nanoring etc. ZnO is a material whichexhibits piezoelectric and optoelectronic multiple properties. Especially for thelow-dimensional ZnO nanostructures, many useful effects can be detected due to thequantum confinements. Therefore, ZnO nanostructures have the promising potentialsin fabricating nano-optoelectronics and nano-electronics devices etc. The main workof this dissertation is based on the applications of ZnO nanostructures in the field ofresistive-switching random access memory and gas sensors devices. The dissentationis formed by the following aspects:
     1. The ZnO nanostructures and films were successfully synthesized by reactivevapor deposition method and radio frequency magnetron sputtering system,respectively. The low temperature (10K) PL spectra of the ZnO nanorods reveal thatthe nanorods have high quality as indicated by the negligible deep level emission. Thetemperature dependent PL spectra shows that the positions of the near band-edgeemission peaks show a redshift with increasing temperature and the intensity of D~0Xdecreases with increasing temperature, whereas the free exciton becomes stronger andfinally becomes the dominated. The post annealing in oxygen ambient can improvethe crystalline quality and optical property of the ZnO films and presents the bestquality at the annealing temperature of700℃.
     2. Resistive-switching random access memory (RRAM) devices based onrandomly oriented nanowire networks (ZnO NWNs) was fabricated and researched.The Au/ZnO NWNs/ITO (MIM) structure was successfully fabricated, in which the
     ITO was played as both the substrate for growing ZnO and the bottom electrode forthe RRAM structure. The Au top electrode was deposited by thermal evaporationmethod using a metal shadow mask. I-V curves of the MIM structure results revealthe reproducible bipolar resistive property with a high R_(on)/R_(off)ratio (~10~4). Theswitching mechanism is confirmed in terms of the formation and rupture ofconductive filaments, with oxygen vacancies localized on the ZnO NWNs surfaceinvolved in.
     3. Physical type gas sensors operated by field ionization based on Pdnanoparticle-capped ZnO (Pd/ZnO) nanorods was fabricated and researched. Theresults show that the Pd/ZnO nanorod-based sensors, compared with the bare ZnOnanorod, have lower breakdown voltage for the detected gases with good sensitivityand selectivity. This precise breakdownvoltage is a fingerprinting property forindividual gas.
引文
[1] Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Ko, and T. Yao. Stimulated emission and opticalgain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers. Appl.Phys. Lett.,2001,78:1469.
    [2]刘恩科,朱秉升,罗晋生.半导体物理学.北京:国防工业出版社,1997:367-368.
    [3] J. R. Jenny, D. P. Malta, M. R. Calus, S. G. Müller, A. R. Powell, V. F. Tsvetkov, H. D.Hobgood, R. C. Glass, C. H. Jr. Development of Large Diameter High-Purity Semi-Insulating4H-SiC Wafers for Microwave Devices. Mater. Sci. Forum,2004,457:35-40.
    [4] S. J. Pearton, D. P. Norton,Y.W.Heo. Recent advances in processing of ZnO. J. Vac. Sci.Technol. B,2004,22(3):932-948.
    [5]戴丽萍.单源化学气相沉积制备ZnO薄膜及光电性质研究.成都:电子科技大学,2008:3.
    [6] K. Sakurai, M. Kanehirom, K. Nakahara, T. Tanabe, S. Fujita, S. Fujita. Effects of oxygenplasma condition on MBE growth of ZnO. J. Cryst. Growth,2000,209:522.
    [7] S. Zhu, C. H. Su,S. L. Lehoczky, M. T. Harris, M. J. Callahan, P. Mccarty, M. A. George.Polarity effects of substrate surface in homoepitaxial ZnO film growth. J. Cryst. Growth,2000,219:361.
    [8] R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoeischer, T. C. Collins, G.Cantwell, W. C. Harsch. Photoluminescence measurements from the two polar faces of ZnO.J. Appl. Phys.,2000,88:3454.
    [9] J. D.Albrecht, P. P. Ruden, W. R. Lambech, S. Limpiunong, K. F. Brenan. High field electrontransport property of the bulk ZnO. J. Appl. Phys.,1991,86:6864.
    [10] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W.C. Harsch. Electrical properties of bulk ZnO. Solid State Commun.1998,105:399.
    [11] J. Nause, and B. Nemeth. Pressurized melt growth of ZnO boules. Semicond. Sci. Technol.,2005,20:45.
    [12] K. Maeda, M. Sato, I. Niikura, and T. Fukuda. Growth of2inch ZnO bulk single crystal bythe hydrothermal method. Semicond. Sci. Technol.,2005,20: S49.
    [13] E. M. Kaidashev, M. Lorez, H. V. Wenkstern, etal. High electron mobility of epitaxial ZnOthin film on c-plane sapphire grown by pulsed laser deposition. Appl. Phys. Lett.,2003,82:3901.
    [14] H. Kato, K. Miyamoto, M. Sano, and T. Yao. Polarity control of ZnO on sapphire byvarying the MgO buffer layer thickness. Appl. Phys. Lett.,2004,84:4562.
    [15] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, and H. Takasu.Improvement of Electrical Properties in ZnO Thin Films Grown by Radical Source (RS) MBE.Phys. Status Solidi A,2000,180:287.
    [16] T. Edahiro, N. Fujimura, and T. Ito. Formation of two-dimensional electron gas and themagnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys.,2003,93:7673.
    [17] K. Miyamoto, M. Sano, H. Kato, and T. Yao. Homoepitaxial growth of high-qualityZn-polar ZnO film by plasma assisted MBE. Jpn. J. Appl. Phys.,2002,241:1203.
    [18] A. Ohmoto and A. Tsukazaki. Pulsed laser deposition of thin films and superlattices basedon ZnO. Semicond. Sci. Technol.,2005,20:1.
    [19] ü. zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S. J. Cho,and H. Morko. A comprehensive review of ZnO materials and devices. J. Appl. Phys.,2005,98:041301.
    [20] A. B. Djurisic, and Y. H. Leung. Optical Properties of ZnO Nanostructures. Small,2006,2:944-961.
    [21] B. Lin, Z. Fu, Y. Jia. Green luminescent center in undoped zinc oxide films deposited onsilicon substrates. Appl. Phys. Lett.,2001,79:943.
    [22] S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr., M. R. Davolos. Luminescent properties andlattice defects correlation on zinc oxide. Internet Symp. Food Allergens Intern. J. Inorg. Mat.2001,3:749.
    [23] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan. The electronic structure and spectralproperties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. B,2003,199:286.
    [24] C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan. Surfaceplasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles.Appl. Phys. Lett.,2010,96:071107.
    [25]沈学础.半导体光谱和光学性质,科学出版社,2002.
    [26] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen A.Hoffmann, M. Stra burg, M. Dworzak, U. Haboeck, A. V. Rodina. Bound exciton anddonor–acceptor pair recombinations in ZnO. Phys. Stat. so1.(b),2004,241:231.
    [27] H. Alves, D. Pfisterer, A. Zeuner, T. Riemann. Optical investigations on excitons bound toimpurities and dislocations in ZnO. Opt. Mater.,2003,23:33.
    [28]孙利杰. ZnO薄膜的掺杂和光电性质研究.合肥:中国科学技术大学,2010.
    [29]何菊生,张萌,肖祁陵.半导体外延层晶格失配度的计算.南昌:南昌大学材料科学与工程学院,2006,1006-0464:01-0063-05.
    [30] Y. F. Chen, H. J. Ko, S. K. Hong, T. Yao. Layer-by-layer growth of ZnO epilayer onAl2O3(0001) by using a MgO buffer layer. Appl. Phys. Lett.,2000,76:559.
    [31] R. A. Asmar, G. Ferblantier, P. G. Borrut, F. Mailly, A. Fouaran, Effect of annealing onthe electrical and optical properties of electron beam evaporated ZnO thin film. ThinSolid Films,2005,473:49-53.
    [32] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park. Realization of p-type ZnOthin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett.,2003,83:63.
    [33] S. Tuzemen, S. Dogan, A. Ates, M. Yildirim, G. Xiong, J. Wilkinson. Convertibility ofconductivity type in reactively sputtered ZnO thin films. Phys. Stat. Sol.(a),2003,195:165.
    [34] Z. W. Pan, Z. L. Wang, Z. R. Dai. Nanobelts of the semiconducting oxides. Science.2001,291(5510):1947-1949.
    [35] X. H. Han,G. Z. Wang,J. S. Jie,W. C. Choy,Y. Luo, T. I. Yuk,J. G. Hou. Controllablesynthesis and optical properties of novel ZnO cone arrays via vapor transport at lowtemperature. J. Phys. Chem. B,2005,109(7):2733-2738.
    [36] A. M. Morales,C. M. Lieber. A Laser Ablation Method for the Synthesis of CrystallineSemiconductor Nanowires. Science,1998,279(5348):208-211.
    [37] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. G.He, and H. J. Choi. Controlled growth of ZnO nanowires and their optical properties, Adv.Funct. Mater.,2002,12(5):323-331.
    [38] Y. Y. Wu, P. D. Yang, Germanium nanowire growth via simple vapor transport, Chem.Mater.,2000,12:605-607.
    [39] X. D. Wang, J. H. Song, C. J. Summers, J. H. Ryou, P. Li, R. D. Dupuis, Z. L.Wang.Density-controlled growth of ZnO nanowire sharing a common contact. J. Phys. Chem. B.,2006,110:7720-7724.
    [40] D. K. Bowen, B. K. Tanner. High Resolution X-ray Diffractometry and Topography.London:Bristol,PA Taylor&Francis Routledge,1998.
    [41] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi. Metalorganic vapor-phase epitaxialgrowth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett.,2002,80:4232.
    [42] S. U. Yuldashev, G. N. Panin, and T. W. Kang. Electrical and optical properties of ZnO thinfilms grown on Si substrates. J. Appl. Phys.,2006,100:013704.
    [43] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao. p-type ZnO films bymonodoping of nitrogen and ZnO-based p–n homojunctions. Appl. Phys. Lett.,2004,85:4070.
    [44] D. C. Reynolds, D. C. Look, etal. Neutral donor bound exciton complexes in the ZnOcrystals. Phys. Rev. B,1998,57:12151.
    [45] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl.Phys. Lett.81,1830(2002).
    [46] K. Tamur, T. Makino,A. Tsukazak, M. Sumiya, S. Fuke, T. Furumoch, M. Lippmaa, C.H.Chia, Y. Segawa, H. Koinuma, M. Kawasaki. Donor–acceptor pair luminescence innitrogen-doped ZnO films grown on lattice-matched ScAlMgO4(0001) substrate. SolidState Commun.,2003,127:265.
    [47] K. L. Teo, J. S. Colton, etal. An analysis of temperature dependent photoluminescence lineshapes in InGaN. Appl. Phys. Lett.,1998,73:1697.
    [48] W. W. Liu, B. Yao, Y. F. Li, B. H. Li, C. J. Zheng, B. Y. Zhang, C. X. Shan, Z. Z. Zhang, J.Y. Zhang, D. Z. Shen. Annealing temperature dependent electrical and optical properties ofZnO and MgZnO films in hydrogen ambient. Appl. Surf. Sci.,2009,255:6745–6749.
    [49] D.S. Jiang, H. Jung, K. Ploog. Temperature dependence of photoluminescence from GaAssingle and multiple quantum‐w ell heterostructures grown by molecular-beam epitaxy. J.Appl. Phys.,1988,64:1371.
    [50] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart.Temperature quenching of photoluminescence intensities in undoped and doped GaN. J.Appl. Phys.,1999,86:3721.
    [51] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B.Orlinskii, J. Schmidt, P. G. Baranov. Hydrogen: a relevant shallow donor in zinc oxide. Phys.Rev. Lett.,2002,88:045504.
    [52] Y. M. Lu, C. X. Wu, Z. P. Wei, Z. Z. Zhang, D. X. Zhao, J. Y. Zhang, Y. C. Liu, D. Z. Shen,X. W. Fan. Characterization of ZnO/Mg0.12Zn0.88O heterostructures grown byplasma-assisted MBE. J. Cryst. Growth,2005,278:299-304.
    [53] S. S. Kurbanov, K. T. Igamberdiev, and T. W. Kang. The UV-laser induced heating effecton photoluminescence from ZnO nanocrystals deposited on different substrates. J. Phys. D:Appl. Phys.,2010,43:115401.
    [54] C. H. Chia, Y. J. Lai, W. L. Hsu, T. C. Han, J. W. Chiou, Y. M. Hu, Y. C. Lin, W. C. Fan,and W. C. Chou. Biexciton emission from sol-gel ZnMgO nanopowders. Appl. Phys. Lett.,2010,96:191902.
    [55] H. Souma, T. Goto, T. Ohta, and M. Ueta. Formation and radiative recombination of freeexcitonic molecule in CuCl by ruby laser excitation. J. Phys. Soc. Jpn.,1970,29:697.
    [56] S. S. Kurbanov, T. W. Kang. Spectral behavior of the emission around3.31eV (A-line)from ZnO nanocrystals. J. Lumin.,2010,130:767–770.
    [57] H. Wang, Ch. Xie, D. Zeng. Controlled growth of ZnO by adding H2O. J. Cryst. Growth,2005,277:372.
    [58] X. Q. Wei, Z. G. Zhang, M. Liu, C. S. Chen, G. Sun, C. S. Xue, H. Z. Zhuang, B. Y. Man.Annealing effect on the microstructure and photoluminescence of ZnO thin films. Mater.Chem. Phys.,2007,101:285.
    [59] M. Liu, X. Q. Wei, Z. G. Zhang, G. Sun, C. S. Chen, C. S. Xue, H. Z. Zhuang, B. Y. Man.Effect of temperature on pulsed laser deposition of ZnO films M. Liu. Appl. Surf. Sci.,2006,252:4321-4326.
    [60] Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu, Y. Y. Wang. Influence of post-annealingtreatment on the structure properties of ZnO films. Appl. Surf. Sci.,2005,241:303.
    [61] S.Y. Chu, W. Water, J.T. Liaw. Influence of postdeposition annealing on the properties ofZnO films prepared by RF magnetron sputtering. J. Eur. Ceram. Soc.,2003,23:1593.
    [62] L.Y. Lin, D.E. Kim. Effect of annealing temperature on the tribological behavior of ZnOfilms prepared by sol-gel method.Thin Solid Films,2009,517:1690.
    [63] H.W. Kim, N.H. Kim. Annealing effect for structural morphology of ZnO film on SiO2substrates. Mater. Sci. Semicond. Process.2004,7:1.
    [64] D. T. Phan, G.S. Chung. The effect of post-annealing on surface acoustic wave devicesbased on ZnO thin films prepared by magnetron sputtering. Appl. Surf. Sci.,2011,257:4339.
    [65] J. A. Hutchby, G. I. Bourianoff, V. V. Zhirnov, and J. E. Brewer. Extending the road beyondCMOS. IEEE Circuits Devices Mag.,2002,18:28.
    [66] S. Raoux. Phase Change Materials.Annu. Rev. Mater. Res.,2009,39:25.
    [67] S. Lee, J. H. Jeong, and B. K. Cheong. Overview of the Current Status of TechnicalDevelopment for a Highly Scalable, High-Speed, Non-Volatile Phase-Change Memory. J.Semicond. Technol. Sci.,2008,8:1.
    [68] A. Chung, J. Deen, J. S. Lee, and M. Meyyappan. Nanoscale memory devices.Nanotechnology,2010,21:412001.
    [69] J. F. Scott.Applications of Modern Ferroelectrics. Science,2007,315:954.
    [70] http://www.ramtron.com.
    [71] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt,N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S.Streiffer. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl.Phys.,2006,100:051606.
    [72] W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, K. Lewis, C.Arndt, L. Yu, H. Viehmann, R. Scheuerlein, L. K. Wang, P. Trouilloud, S. Parkin, W.Gallagher, G. Muller. Memories of tomorrow. IEEE Circuits Devices Mag.,2002,18:17.
    [73] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber. CarbonNanotube-Based Nonvolatile Random Access Memory for Molecular Computing. Sci.,2000,289:94.
    [74] W. Lu, C. M. Lieber. Nanoelectronic from the bottom up. Nature mater.,2007,6:841-850.
    [75] J. C.Ellenbogen, J. C. Love. Architectures for molecular electronic computers. I. Logicstructures and an adder designed from molecular electronic diodes. J C Proc. IEEE,2000,88:386.
    [76] Chua, L. O. Memristor. The missing circuit element. IEEE Trans Circuit Theory,1971,18:507–519.
    [77] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams. The missing memristor found.Nat.,2008,453:80-83.
    [78] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S.Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T.Moon, B. I. Ryu. Multi layer cross point binary oxide resistive memory for post nand storageapplication. Tech. Dig. IEDM,2005:750-753.
    [79] R. Waser, M. Aono. Nanoionic based resistive switching Memory. Nat. Mater.,2007,6:833-840.
    [80] A. Sawa. Resistive switching in the transition metal oxide. Mater. today,2008,11:28-36.
    [81] H. Pagnia, N. Sotnk. Stable switching in electroformed metal insulator metal device. Phys.Status Solidi,1988,108:11.
    [82] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park,B. Lee, S. W. Han, M. Y. Kim, and C. S. Hwang. Atomic structure of conductingnanofilaments in the TiO2resistive switching memories. Nat. Nanotechnol.,2010,5:148-153.
    [83] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka. Bias polarity dependentdata retention of resistive random access memory consisting of binary transition metal oxide.Appl. Phys. Lett.,2006,89:103509.
    [84] K. M. Kim, B. J. Choi, C. S. Hwang. Localized switching mechanism in resistive switchingof atomic-layer-deposited TiO2thin films. Appl. Phys. Lett.,2006,89:103509.
    [85] K. Szot, W. Speier, G. Bihlmayer, and R. Waser. Switching the electrical resistances of theindividual dislocation in the single-crystalline SrTiO3. Nat. Mater.,2006,5:312-320.
    [86] S. H. Kim, Y. K. Choi. Resistive switching of aluminum oxide for flexible memory. Appl.Phys. Lett.,2008,92:223508.
    [87] F. A. Chudnovskii, L. L. Odynets, A. L. Pergament, G. B. Stefanovich. Electroforming andswitching in oxides of transition metals: the role of metal-insulator transition in theswitching mechanism. J. Solid State Chem.,1996,122,95–99.
    [88] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee. Electrical observations of filamentaryconductions for the resistive memories switching in the NiO films. Appl. Phys. Lett.,2006,88:202102.
    [89] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi. Resistive switching mechanisms ofTiO2thin film grown by ALD. J. Appl. Phys.,2005,98:033715.
    [90] J. G. Simmons, R. R. Verdber. New conduction and reversible memory phenomena in thethin insulating film. Proc. R. Soc. Lond.,1967,301:77.
    [91] L. P. Ma, S. M. Pyo, J. Y. Ouyang, Q. F. Xu, and Y. Yang. Nonvolatile electrical bistabilityof organic/metal-nanocluster/organic system. Appl. Phys. Lett.,2003,82:9.
    [92] T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono. Forming and switching mechanisms ofa cation-migration-based oxide resistive memory. Nanotechnol.,2010,21:425205.
    [93] Y. Hirose, H. Hirose. Polarity-dependent memory switching and behaviour ofAg dendrite inAg-photodoped amorphous As2S3films. J. Appl. Phys.,1976,47:2767–2772.
    [94] J. Y. Lee, E. M. Mostafa, W. Lee,J. B. Park, M. Jo, S. J. Jung, J. H. Shin, and H. S. Hwang.Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatilememory applications. Appl. Phys. Lett.,2010,97:172105.
    [95] H. J. Sim, H. J. Choi, D. S. Lee, M. Chang, D. H. Choi, Y. Son, E. H. Lee, W. J. Kim, Y. D.Park, I. K. Yoo, and H. S. Hwang. Excellent resistance switching characteristics ofPt/SrTiO3schottky junction for multi-bit nonvolatile memory application. Tech. Dig. IEDM,2005:758.
    [96] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura. Interface transport properties and resistanceswitching in perovskite-oxide heterojunctions. Proc. SPIE,2005,5932:59322.
    [97] N. Xu, L. F. Liu, X. Sun, X. Y. Liu, D. D. Han, Y. Wang, R. Q. Han, J. F. Kang, and B. Yu.Characteristics and mechanism of conduction/set processes in TiN/ZnO/Pt resistanceswitching random-access memories. Appl. Phys. Lett.,2008,92:232112.
    [98] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai. Unipolar resistiveswitching characteristic of ZnO thin film for nonvolatile memory application. Appl. Phys.Lett.,2008,92:022110.
    [99] S. H. Lee, H. J. Kim, J. J. Park, and K. J. Yong. Coexistence of unipolar and bipolarresistive switching characteristics in ZnO thin films. J. Appl. Phys.,2010,108:076101.
    [100] Y. Han, K. Cho, and S. S. Kim. Characteristics of multilevel bipolar resistive switching inAu/ZnO/ITO devices on glass. Microelectron. Eng.,2011,88:2608-2610.
    [101] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng. Fully room temperature fabricatednonvolatile resistive memory for ultrafast and high-density memory application. Nano. Lett.,2009,9:4.
    [102] Y. C. Yang, F. Pan, and F. Zeng. Bipolar resistance switching in the high-performanceCu/ZnO:Mn/Pt nonvolatile memories. New J. Phys.,2010,12:023008.
    [103] H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wua.Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versusinterfacial mechanisms. Appl. Phys. Lett.,2010,96:192113.
    [104] Y. C. Yang, F. Pan, F. Zeng, and M. Liu. Switching mechanism transition induced byannealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory. J. Appl. Phys.,2009,106:123705.
    [105] W. Y. Chang, C. A. Lin, J. H. He, and T. B. Wu. Resistive switching behaviors of ZnOnanorod layers. Appl. Phys. Lett.,2010,96:242109.
    [106] Z. L. Wang, and J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowirearrays. Sci.,2006,312:242.
    [107] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang. Piezoelectric fieldeffect transistor and nanoforce sensor based on a single ZnO nanowire. Nano. Lett.,2006,6:2768.
    [108] D. C. Look, and B. Claflin. P-type doping and devices based on ZnO. Phys. Status SolidiB,2004,241:624.
    [109] X. Liu, X. Wu, H. Cao, and R. P. H. Chang. Growth mechanisms and properties of ZnOnanorods synthesized by plasma enhanced CVD. J. Appl. Phys.,2004,95:3141.
    [110] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, and S. Y. Chu. Electricalbistability in hybrid ZnO nanorod/polymethylmethacrylate heterostructures. Appl. Phys.Lett.,2010,97:212103.
    [111] E. Linn, R. Rosezin, C. Kügeler, and R. Waser. Complementary resistive switches forpassive nanocrossbar memories. Nat. Mater.,2010,9:403-406.
    [112] G. Sberveglieri. Recent developments in semiconducting thin-film gas sensors. Sens.Actuators B,1995,23:103.
    [113] N. Yamazoe. New approaches for improving semiconductor gas sensors. Sens. ActuatorsB,1991,5:7.
    [114] D. D. D. Ma, C. S. Lee, S. Y. Tong, F. C. K. Au,and S. T. Lee. Small-Diameter SiliconNanowire Surfaces. Sci.,2003:1874-1877.
    [115] Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, X. L. He and J. P. Li, C. L. Lin.Fabrication and ethanol sensing characteristics of ZnO nanowires gas sensors. Appl. Phys.Lett.,2004,84:18.
    [116] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou. In2O3nanowires aschemical sensors. Appl. Phys.Lett.,2003,82:1613.
    [117] Y. Zhang, A. Kolmakov, Y. Lilach, and M. Moskovits. Electronic Control of Chemistryand Catalysis at the Surface of an Individual Tin Oxide. J. Phys. Chem. B,2005,109:1923–1929.
    [118] S. Iijima. Helical microtubules of graphitic carbon. Nat.,1991,354:56.
    [119] G. Korotcenkov. The role of morphology and crystallographic structure of metal oxides inresponse of conductometric-type gas sensors. Mater. Sci. Eng. R,2008,61:1–39.
    [120] G. Korotcenkov. Metal oxides for solid-state gas sensors: What determines our choice?.Mater. Sci. Eng. B,2007,139(1):1–23.
    [121] D. Tsiulyanu, S. Marian, H. D. Liess, I. Eisele. Effect of annealing and temperature on theNO2sensing properties of tellurium based films. Sens. Actuators B Chem.,2004,100:380–386.
    [122] V. E. Henrich, and P.A. Cox. The Surface Science of Metal Oxides. University Press,Cambridge,1996.
    [123] D. Kohl. Function and applications of gas sensors. J. Phys. D: Appl. Phys.,2001,34:R125–R149.
    [124] Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, J. R.LaRoche. ZnO nanowire growth and devices. Mater. Sci. Eng. R,2004,47:1–47.
    [125] G. Korotcenkov, V. Brinzari, J. R. Stetter, I. Blinov, V. Blaja: The nature of processescontrolling the kinetics of indium oxide-based thin film gas sensor response. Sens. Actuators.B Chem.,2007,128:51–63.
    [126] M. J. Toohey. Electrodes for nanodot-based gas sensors. Sens. Actuators B Chem.,2005,105:232–250.
    [127] G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, J. Morante. Influence ofsurface Pd doping on gas sensing characteristics of SnO2thin films deposited by spraypirolysis. Thin Solid Films,2003,436(1):119–126.
    [128] M. Bowker, L.J. Bowker, R.A. Bennett, P. Stone, A. Ramirez-Cuesta. In consideration ofprecursor states, spillover and Boudart’s ‘collection zone’ and of their role in catalyticprocesses. J. Mol. Cat. A: Chem.,2000,163:221–232.
    [129] K. M. Donnell1, A. Fahy, L. Thomsen, D. J. Connor, and P. C. Dastoor. Field ionizationdetectors: a comparative model. Meas. Sci. Technol.,2011,22:015901.
    [130] V. R. Bhardwaj, P. P. Rajeev, P. B. Corkum, and D. M. Rayner. Strong field ionizationinside transparent solids. J. Phys. B: At. Mol. Opt. Phys.,2006,39: S397–S407.
    [131] R. B. Sadeghian, and M. Kahrizi. A Low Voltage Gas Ionization Sensor based on SparseGold Nanorods. IEEE Sensors,2007:648-651.
    [132] R. Banan-Sadeghian and M. Kahrizi. A novel miniature gas ionization sensor based onfreestanding gold nanowires. Sensors and Actuators: A Physical,2007,137:248–255.
    [133] R. Banan-Sadeghian and M. Kahrizi. A Low Pressure Gas Ionization Sensor UsingFreestanding Gold Nanowires. Proc. IEEE ISIE, Vigo, Spain,2007.
    [134] J. C. Hulteen and C. R. Martin. A general template-based method for the preparation ofnanomaterials. J. Mater. Chem.,1997,7:1075–1087.
    [135] H. J. Wang, C. W. Zou, B. Yang, H. B. Lu, C. X. Tian, H. J. Yang, M.Li, C. S. Liu, D. J.Fu, J. R. Liu. Electrodeposition of tubular-rod structure gold nanowires using nanoporousanodic alumina oxide as template. Electrochem. Commun.2009,11:2019-2022.
    [136] P. G. Slade, and E. D. Taylor. Electrical breakdown in atmospheric air between closelyspaced (0.2μm-40μm)electrical contacts. IEEE Trans. Compon. Packag. Technol.,2002,25:390-396.
    [137] P. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronicproperties of carbon nanotubes. Sci.,2000,287:1801–1804.
    [138] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai.Nanotube molecular wires as chemical sensors. Sci.,2000,287:622–625.
    [139] A. Modi, N. K. E. Lass, B. Q. Wei, P. M. Ajayan. Miniaturized gas ionization sensorsusing carbon nanotubes. Nat.,2003,424:171-174.
    [140] H. S. Sim, S. P. Lau, L.K. Ang, M. Tanemura, K. Yamaguchi. Multi-purpose ionizationgas sensing devices using carbon nanofibers on plastic substrates. Diamond Relat. Mater.,2008,17:1959-1962.
    [141] M. Baghgar, Y. Abdi, and E. Arzi. Fabrication of low-pressure field ionization gas sensorusing bent carbon nanotubes. J. Phys. D: Appl. Phys.,2009,42:135502.
    [142] G. H. Hui, L. I. Wu, M. Pan, Y. Q. Chen, T. Li, and X. B. Zhang. A novel gas-ionizationsensor based on aligned multi-walled carbon nanotubes. Meas. Sci. Technol.,2006,17:2799-2805.
    [143] Z. Y. Hou, H. Liu, X. Wei, J. H. Wu, W. M. Zhou, Y. F. Zhang, D. Xu, B. C. Cai.MEMS-based microelectrode system incorporating carbon nanotubes for ionization gassensing. Sens. Actuators, B,2007,127:637-648.
    [144] Z. Y. Hou, D. Xu, and B. C. Cai. Ionization gas sensing in a microelectrode system withcarbon nanotubes. Appl. Phys. Lett.,2006,89:213502.
    [145] S. J. Kim. Gas sensors based on Paschen’s law using carbon nanotubes as electron emitters.J. Phys. D: Appl. Phys.,2006,39:3026-3029.
    [146] X. Chen, Z. H. Guo, J, R. Huang, F. L. Meng, M. Y. Zhang, J. H. Liu. Fabrication of gasionization sensors using well-aligned MWCNT arrays grown in porous AAO templates.Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,313:355–358.
    [147] A. Nikfarjam, A. Izad, F. Razia, S. Z. Mortazavi. Fabrication of gas ionization sensorusing carbon nanotube arrays grown on porous silicon substrate. Sens. Actuators, A,2010,162:24-28.
    [148] B. Y. Yan, K. Y. Qian, Y. F. Zhang, D. Xu. Effects of argon plasma treating on surfacemorphology and gas ionization property of carbon nanotubes. Physica E,2005,28:88-92.
    [149] J. R. Huang, M. Q. Li, Z. Y. Huang, J. H. Liu. A novel conductive humidity sensor basedon field ionization from carbon nanotubes. Sens. Actuators, A,2007,133:467-471.
    [150] Z. Y. Hou, J. H. Wu, W. M. Zhou, X. Wei, D. Xu, Y. F. Zhang, and B. C. Cai. AMEMS-Based Ionization Gas Sensor Using Carbon Nanotubes. IEEE Transactions onelectron devices,2007,54:6.
    [151] L. Liao, H. B. Lu, M. Shuai, J. C. Li, Y. L. Liu, C. Liu, Z. X. Shen, and T. Yu. A novelgas sensor based on field ionization from ZnO nanowires: moderate working voltage andhigh stability. Nanotechnol.,2008,19:175501.
    [152] M. S. Wang, L. M. Peng, J. Y. Wang, and Q. Chen. Electron Field EmissionCharacteristics and Field Evaporation of a Single Carbon Nanotube. J. Phys. Chem. B,2005,109:110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700