磷掺杂p型ZnO薄膜的制备及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种II-VI族直接带隙半导体,其室温下的带隙宽度为3.37eV,激子束缚能高达60meV。ZnO有与GaN相近的带隙,但其激子束缚能要远远高于GaN。因此,它被认为是继GaN之后制备紫外发光二极管(LEDs)和紫外激光器(LDs)等光电器件最有前途的材料。目前基于GaN材料的LEDs和LDs已经成功制备且已商业化生产,然而,ZnO基发光器件仍然未能取得突破性进展。这主要是由于ZnO遭受着掺杂非对称性难题,即它很容易被掺杂成n型,但是其p型掺杂却非常难以实现。缺乏可重复、稳定的p型ZnO已经成为阻碍ZnO应用于光电器件的瓶颈。在最近十几年,人们对ZnO的研究主要集中在ZnO的p型制备上,而很多基本的物理问题并没有得到很好的解决。比如:掺杂ZnO p型导电的不稳定,掺杂ZnO的p型导电机制,未掺杂ZnO n型导电的来源等物理问题。因此,在将来,ZnO的p型掺杂能否解决主要取决于人们对这些物理问题的理解。
     本论文针对目前ZnO存在的部分物理问题,开展了以下工作:
     (1)利用射频磁控溅射,采用高纯Ar作为溅射气体,在500oC的石英衬底上制备了磷掺杂ZnO薄膜。Hall测量显示原生磷掺杂ZnO薄膜为n型导电,其电子浓度高达1.19×10~(20)cm~(-3)。对原生薄膜在600―900oC真空10-4Pa条件下退火15分钟,发现经600-700oC退火,样品仍然呈现n型导电,但是电子浓度随退火温度升高逐渐减小;当退火温度升到800oC时,样品具有最好的p型导电性能,其空穴浓度、电阻率和霍尔迁移率分别为3.81×10~(16)cm~(-3),64.2cm和2.82cm~2V~(-1)s~(-1);进一步升高温度到900oC,样品仍保持p型导电,但空穴浓度开始降低。对X射线衍射(XRD)、光致发光(PL)光谱和X光电子能谱(XPS)测量结果的分析表明:原生磷掺杂ZnO具有高电子浓度n型导电是由于掺入的磷原子替代Zn位(PZn),形成了大量的PZn施主。随着退火温度的升高,PZn施主数量逐渐减少,而VZn受主数量随着退火温度从600oC升高到800oC单调增加,超过800oC开始减少,这导致样品中PZn-2VZn受主复合体的数量按照与VZn同样的变化规律变化。因此,经600―700oC退火样品,电子浓度不断降低,但由于PZn施主仍然处于支配地位,故它们仍呈现n型导电。而800oC退火样品中PZn-2VZn复合受主的数量达到最大,且处于主导地位,所以样品转变为p型导电。进一步升高温度,PZn-2VZn复合受主数量开始急剧减少,所以900oC退火样品空穴浓度降低。由此可见,磷掺杂ZnO薄膜p型导电可归因于PZn-2VZn复合受主的贡献,其导电性随退火温度的变化主要取决于PZn施主与PZn-2VZn复合受主数量随退火温度的变化。
     (2)利用射频磁控溅射,采用高纯Ar和O2作为溅射气体,在500oC石英衬底上制备了磷掺杂ZnO和磷掺杂MgZnO薄膜。对原生薄膜在800oC真空10-4Pa条件下退火30分钟,Hall测量显示退火磷掺杂ZnO展现弱的p型导电,而磷掺杂MgZnO薄膜具有比磷掺杂ZnO薄膜更好的p型导电性能,其空穴浓度、电阻率和霍尔迁移率分别为1.75×1017cm~(-3),21.1cm,1.52cm~2V~(-1)s~(-1)。通过对XRD、PL和XPS结果的分析表明:Mg掺入能够增加VZn的浓度,不仅使PZn施主向PZn-2VZn复合受主转变,减小了掺杂带来的施主补偿效应,而且可以补偿薄膜中存在的本征施主,降低背景电子浓度,从而导致磷掺杂MgZnO薄膜具有更好的p型导电。为了验证试验结果,我们通过第一性原理计算了nMgZn-VZn复合体的形成能随Mg含量变化的关系。计算结果表明,无论在富氧还是富锌条件下,nMgZn-VZn复合体的形成能都随着Mg含量的增加单调减小,意味着Mg的掺入的确有利于VZn的形成,且VZn更容易在高Mg含量下形成,很好地支持了实验上的结果。实验和理论都表明:Mg掺入能够减小磷掺杂ZnO中存在的自补偿效应,使磷掺杂ZnO薄膜具有更好的p型导电性能。
     (3)利用射频磁控溅射,采用高纯Ar作为溅射气体,在500oC的石英衬底上制备了未掺杂ZnO薄膜。 Hall测量显示原生未掺杂ZnO薄膜呈现n型导电,其电阻率、迁移率和载流子浓度分别为97.9cm,1.03cm~2V~(-1)s~(-1)和6.23×1016cm~(-3)。X光电子能谱(XPS)和俄歇电子能谱(AES)指出原生未掺杂ZnO薄膜是极其富锌的,其中存在大量的Zni施主。在原生ZnO薄膜的83K低温光致发光光谱中,观察到一个峰位大约在2.980eV强紫光发射峰和峰位大约在3.317eV非常弱的紫外发光峰。通过分析,该强紫光发射峰被归因于电子从Zni施主到价带的跃迁;Zni施主是样品n型导电的起源,其施主能级大约位于导带底下方400meV处。
ZnO, with a wide band gap of3.37eV and a large exciton binding energy of60meV at room temperature, is an II-VI direct band gap semiconductor. ZnO has almostthe same band gap with GaN, but its exciton binding energy is far larger than that ofGaN. Therefore, ZnO has been taken as a promising material to fabricate ultraviolet(UV) light emitting diodes (LEDs) and ultraviolet laser diodes (LDs). At present,LEDs and LDs based on GaN have been successfully fabricated and commercialized,however, the optoelectronic application of ZnO has not been broken though. This isdue to that ZnO suffers notoriously the doping asymmetry problem, that is, it can beeasily doped n-type but not p-type. The lack of stable, reproducible p-type ZnO hasseriously hindered the application of ZnO in optoelectronic devices. In recent years,the research effort has been primarily focused on the fabrication of p-type ZnO, butmany fundamental physical problems such as the instability of p-type conductivity,the p-type conduction mechanism and the origin of n-type conductivity of undopedZnO have not been successfully solved. Therefore, in the future, p-type doping ofZnO will rely on an understanding of these fundamental problems.
     Aiming at the sectional fundamental problems in current ZnO, the major workand results are listed as follow:
     (1) Using radio frequency magnetron sputtering technique, in pure argonsputtering ambient, phosphorus-doped ZnO (PZO) thin films were fabricated onquartz substrates at a substrate temperature of500oC. Hall measurement shows that the as-grown PZO thin film exhibits good n-type conductivity with an electronconcentration up to1.19×10~(20)cm~(-3). The as-grown PZO thin films were rapidlyannealed at different temperatures in the range of600–900oC in steps of100oC under10-4Pa for15min. As annealed in the temperature range from600oC to700oC, thePZO film still shows n-type conduction, but the electron concentration monotonicallydecreases. When the PZO film is annealed at800oC, it exhibits best p-typeconductivity with a hole concentration of3.81×1016cm~(-3), a resistivity of64.2cmand a mobility of2.82cm~2V~(-1)s~(-1). To further increase annealing temperature to900oC,the sample still keeps p-type conductivity but its hole concentration decreases. Byanalyzing the XRD, XPS and PL results, the high electron concentration in as-grownn-type PZO film is due to that phosphorus atoms substitute Zn sites and form largenumbers of PZndonors. It is found that PZndonors gradually decrease with increasingannealing temperature, but the amount of VZnacceptor increases with increasingannealing temperature from600oC to800oC and then decrease above800oC, whichleads to that the change of the amount of PZn-2VZncomplex with the annealingtemperature is the same as the VZn. Therefore, as annealed in the temperature rangefrom600oC to700oC, the electron concentration monotonically decreases, and thesamples still show n-type conductivity due to that the PZndonors still dominate in the600oC and700oC-annealed samples. For the800oC-annealed PZO film, thePZn-2VZncomplex reaches to maximum and dominates in it, hence it converts top-type conductivity. To further increase the annealing temperature, the amount of thePZn-2VZncomplex rapidly decreases, and hence the hole concentration of the900oC-annealed sample decreases. Obviously, the PZn-2VZncomplex acceptors contributep-type conductivity of PZO film, and the conversion of conductivity is due to thechange of the amount of the PZnand PZn-2VZnwith annealing temperature.
     (2) Using radio frequency magnetron sputtering technique, in argon and oxygensputtering ambient, phosphorus-doped ZnO and MgZnO thin films were fabricated onquartz substrates at a substrate temperature of500oC. The as-grownphosphorus-doped ZnO and MgZnO thin films were rapidly annealed at800oC under10-4Pa for30min. Hall measurement show that the phosphorus-doped ZnO thin film is weak p-type, but the phosphorus-doped MgZnO thin film exhibits better p-typeconductivity with a hole concentration of1.75×10~(17)cm~(-3), a resistivity of21.1cmand a mobility of1.52cm~2V~(-1)s~(-1). By analyzing the XRD, XPS and PL results, it issuggested that incorporation of Mg in ZnO can increase the concentration of VZn,which not only make part of PZndonors convert to PZn-2VZncomplex and reduces thecompensation effect from PZndonor but also can compensation the native donors anddecrease the background electron concentration, leading to better p-type conductivityof the phosphorus-doped MgZnO film. To further confirm the experimental results,we calculate, based on the first-principles calculations, the formation energy ofnMgZn-VZncomplex with Mg content under the metal-rich and O-rich limit.Theoretical calculations suggest that, regardless of O-rich or Zn-rich conditions, theformation energy of nMgZn-VZncomplex decreases with the increasing Mg content,indicating that incorporation of Mg favors the formation of VZnand the formation ofVZnis favored at the higher Mg content, well supporting the experimental results. It issuggested from experiment and theoretical calculations that incorporation of Mg inZnO can reduce the self-compensation effect from PZn, which make thephosphorus-doped ZnO exhibit better p-type conductivity.
     (3) Using radio frequency magnetron sputtering technique, in pure argonsputtering ambient, undoped ZnO thin film was fabricated on quartz substrate at asubstrate temperature of500oC. Hall measurement show that the as-grown undopedZnO thin film exhibits n-type conductivity with a electron concentration of6.23×1016cm~(-3), a resistivity of97.9cm and a mobility of1.03cm~2V~(-1)s~(-1). XPS and AES showthat the as-grown undoped ZnO thin film is extremely Zn-rich circumstance and largenumbers of Zniexist in sample. A dominant violet emission at2.980eV and a weakultraviolet emission at3.317eV are observed in its83K low-temperature PLspectrum. By analysis of Hall, PL, XPS and AES measurement results, it is suggestedthat the2.980eV emission band originates from the transition of electrons from Znidonor level to valence band and that the Znihas an ionization energy of about400meV below conduction band minimum (CBM) and is responsible for the n-typeconductivity of ZnO.
引文
[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai1,Superbright green InGaN single-quantum-well-structure light-emitting diodes[J].Jpn. J. Appl. Phys.,1995,34: L1332.
    [2] D. C. Look, B. Claflin, p-type doping and devices based on ZnO[J]. Phys. Stat.Sol.(B),2004,241:624.
    [3] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y.Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnOmicrocrystallite thin films[J]. Appl. Phys. Lett.,1998,72:3270-3272.
    [4] S. L. King, J. G. E. Gardenlers, I. W. Boyd, Pulsed-laser deposited ZnO for deviceapplication[J]. Appl. Surf. Sci, l996,96-98:811-818.
    [5]宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报,2004,33:81-87.
    [6] A. R. Hutson, Electronic properties of ZnO[J]. Journal of Physics and Chemistryof Solids,1959,8:467-472.
    [7] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt,Correlation between photoluminescence and oxygen vacancies in ZnOphosphors[J]. Appl. Phys. Lett.,1996,68(3):403-405.
    [8] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt,Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J.Appl. Phys.,1996,79:7983-7990.
    [9] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto,Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett.,1997,70(17):2230-2232.
    [10] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y.Segawa, Ultraviolet spontaneous and stimulated emission from ZnOmicrocrystallite thin films at room temperature[J]. Solid State Commun.,1997,103:459-463.
    [11] R. F. Service, Will UV laser beat the blues?[J]. Science,1997,276:895.
    [12] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, R. P. H. Chang,Ultraviolet lasing in resonators formed by scattering in semiconductorpolycrystalline films[J]. Appl. Phys. Lett.,1998,73:3656-3658.
    [13] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, RandomLaser Action in Semiconductor Power[J]. Phys. Rev. Lett,1999,82:2278-2281.
    [14] H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, P. Kumar, Photon statistics of random laserswith resonant feedback[J]. Phys. Rev. Lett,2001,86:4524-4527.
    [15] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F.Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeatedtemperature modulation epitaxy for p-type doping and light-emitting diode basedon ZnO [J]. Nat. Mater,2005,4:42-45.
    [16] S. J. Jiao, Z. Z. Zhang, M. Y. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X.Zhao, X. W. Fan, Z. K. Tang, ZnO p-n junction light-emitting diodes fabricatedon sapphire substrates[J]. Appl. Phys. Lett.,2006,88:031911-031913.
    [17] C. H. Park, S. B. Zhang, S. H. Wei, Origin of the impurity perspective p-typedoping difficulty in ZnO[J]. Phys. Rev. B,2002,66:073202-073204.
    [18] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao, Dopantsource choice for formation of p-type ZnO: Li acceptor[J]. Appl. Phys. Lett.,2006,88:062107.
    [19] Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, S. Limpijumnong,Identification of acceptor states in Li-doped p-type ZnO thin films[J]. Appl. Phys.Lett.,2006,89:042106.
    [20] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J. Y. Huang, L.Wang, J. Yuan, B. H. Zhao, X. H. Li, Control of p-and n-type conductivities inLi-doped ZnO thin films[J]. Appl. Phys. Lett.,2006,89:112113.
    [21] L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, B. H. Zhao, Fabrication ofp-Type ZnO Thin Films via DC Reactive Magnetron Sputtering by Using Na asthe Dopant Source[J]. J. Electron. Mater.,2007,36:498.
    [22] S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H.Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunctionlight-emitting diodes[J]. Solid State Commun.,2008,148:25.
    [23] S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann, Probing the WaveFunction of Shallow Li and Na Donors in ZnO Nanoparticles [J]. Phys. Rev. lett.,2004,92:047603.
    [24] E. C. Lee, K. J. Chang, Possible p-type doping with group-I elements in ZnO[J].Phys. Rev. B,2004,70:115210.
    [25] S. S. Lin, H. P. He, Y. F. Lu, Z. Z. Ye, Mechanism of Na-doped p-type ZnO films:Suppressing Na interstitials by codoping with H and Na of appropriateconcentrations[J]. J. Appl. Phys.,2009,106:093508.
    [26] C. G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels insemiconductors, insulators and solutions[J]. Nature (London),2003,423:626.
    [27] A. Janotti, C. G. Van de Walle, Hydrogen multicentre bonds[J]. Nature Mater.,2007,6:44.
    [28] Y. F. Yan, M. M. Al-Jassim, Su-Huai Wei, Doping of ZnO by group-IBelements[J]. Appl. Phys. Lett.,2006,89:181912.
    [29] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee,Structural, electrical, and optical properties of p-type ZnO thin films with Agdopant[J]. Appl. Phys. Lett.,2006,88:202108.
    [30] C. Persson, Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-TypeNitrogen Doping of ZnO-like Alloys[J]. Phys. Rev. Lett.,2006,97:146403.
    [31] H. L. Pan, B. Yao, T. Yang, Y. Xu, B. Y. Zhang, W. W. Liu, D. Z. Shen, Electricalproperties and stability of p-type ZnO film enhanced by alloying with S andheavy doping of Cu[J]. Appl. Phys. Lett.,2010,97:142101.
    [32] A. Kobayashi, O. F. Sankey, J. D. Dow, Deep energy levels of defects in thewurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO [J]. Phys. Rev. B,1983,28:946-948
    [33] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Growthof p-type zinc oxide films by chemical vapor deposition [J]. Jpn. J. Appl. Phys,1997,36: L1453-L1455.
    [34] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G.Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecularbeam epitaxy[J]. Appl. Phys. Lett.,2002,81:1830.
    [35] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X.Zhao, X. W. Fan, Z. K. TANG, ZnO p-n junction light-emitting diodes fabricatedon sapphire substrates [J]. Appl. Phys. Lett,2006,88:031911-0319113.
    [36] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He,S. B. Zhang, ZnO light-emitting diode grown by plasma-assisted metal organicchemical vapor deposition [J]. Appl. Phys. Lett,2006,88:173506-173508.
    [37] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D.Zhang, Y. Hang, C. L. Zhang, Blue-yellow ZnO homostructural light-emittingdiode realized by metalorganic chemical vapor deposition technique [J]. Appl.Phys. Lett,2006,88:092101-092103.
    [38] G. T. Du, W. F. Liu, J. M. Bing, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, T.P. Yang, Room temperature defect related electroluminescence from ZnOhomojunctions grown by ultrasonic spray pyrolysis [J]. Appl. Phys. Lett,2006,89:052113-052115.
    [39] N. H. Nickel and M. A. Gluba, Defects in Compound Semiconductors Caused byMolecular Nitrogen[J]. Phys. Rev. Lett.,2009,103:145501.
    [40] T. Aoki, Y. Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laserdoping[J]. Appl. Phys. Lett,2000,76:3257.
    [41] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Realization ofp-type ZnO thin films via phosphorus doping and thermal activation of thedopant[J]. App. Phys. Lett.,2003,83:63.
    [42] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, UVElectroluminescence Emission from ZnO Light-Emitting Diodes Grown byHigh-Temperature Radiofrequency Sputtering[J]. Adv. Mater.,2006,18:2720.
    [43] H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Y. L. Wang, and F. Ren,Phosphorus doped ZnO light emitting diodes fabricated via pulsed laserdeposition[J]. Appl. Phys. Lett.,2008,92:112108.
    [44] A. Allenic, W. Guo, Y. B. Chen, M. B. Katz, G. Y. Zhao, Y. Che, Z. D. Hu, B.Liu, S. B. Zhang, and X. Q. Pan, Amphoteric Phosphorus Doping for Stablep-Type ZnO[J]. Adv. Mater.,2007,19:3333.
    [45] Y. R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnOgrown by hybrid beam deposition[J]. Appl. Phys. Lett.,2003,83:87.
    [46] D. C. Look and B. Claflin, P-type doping and devices based on ZnO[J]. Phys.Status Solidi B,2004,241:624.
    [47] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, Behavior of rapid thermalannealed ZnO:P films grown by pulsed laser deposition[J]. J. Appl. Phys.,2007,102:104904.
    [48] W. J. Lee, J. Kang, and K. J. Chang, Defect properties and p-type dopingefficiency in phosphorus-doped ZnO[J]. Phys. Rev. B,2006,73:024117.
    [49] P. Li, S. H. Deng, and J. Huang, First-principles studies on the dominant acceptorand the activation mechanism of phosphorus-doped ZnO[J]. Appl. Phys. Lett.,2011,99:111902.
    [50] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Doping byLarge-Size-Mismatched Impurities: The Microscopic Origin of Arsenic orAntimony-Doped p-Type Zinc Oxide[J]. Phys. Rev. Lett.,2004,92:155504.
    [51] D. C. Look, G. M. Renlund, R. H. Burgener, J. R. Szelove, As-doped p-type ZnOproduced by evaporation/sputtering process,85(2004)5269-5271.
    [52] Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, B. J.Kim, Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Appl.Phys. Lett,2007,90:131115-131117.
    [53] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, W. P. Beyermann,High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Appl. Phys.Lett,87(2005)152101.
    [54] S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu, Sb-dopedp-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes[J]. Appl.Phys. Lett,2008,92:152103.
    [55] T. Yamamoto, Codoping for the fabrication of p-type ZnO [J]. Thin Solid Films,2002,420-421:100-106;
    [56] J. G. Lu, Z. Z. Ye, G. F. Zhu, Y. J. Zeng, B. H. Zhao, L. P. Zhu, p-typeconduction In N-Al co-doped ZnO thin films [J]. Appl. Phys. Lett,2004,85:15-17.
    [57] H. Wang, et al. Preparation of p-type Zn0films with (N, Ga) co-doping byMOVPE [J]. Materials Chemistry and Physics,2008,107:244-247.
    [58] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, Q. L. Liang,Low-resistivity, stable p-type ZnO thin films realized using a Li–N dual-acceptordoping method [J]. Appl. Phys. Lett,2006,88:222114-222116.
    [59] B. Y. Zhang, B. Yao, Y. F. Li, Z. Z. Zhang, B. H. Li, C. X. Shan, D. X. Zhao, D.Z. Shen, Investigation on the formation mechanism of p-type Li–N dual-dopedZnO[J]. Appl. Phys. Lett,2010,97:222101.
    [60] T. H. Vlasenflin, M. Tanaka, p-type conduction in ZnO dual-acceptor-doped withnitrogen and phosphorus [J]. Solid State Communications,2007,142:292-294.
    [61] H. Kim, A. Cepler, M. S. Osofsky, R. C. Y. Auyeung, A. PIQUé, Fabrication ofZr–N codoped p-type ZnO thin films by pulsed laser deposition [J]. Appl. Phys.Lett,2007,90:203508.
    [62] X. Y. Chen, Z. Z. Zhang, B. Yao, M. M. Jiang, S. P. Wang, B. H. Li, C. X. Shan,L. Liu, D. X. Zhao, D. Z. Shen, Effect of compressive stress on stability ofN-doped p-type ZnO[J]. Appl. Phys. Lett,2011,99:091908.
    [63] S. S. Lin, Robust low resistivity p-type ZnO:Na films after ultravioletillumination: The elimination of grain boundaries[J]. Appl. Phys. Lett,2012,101:122109.
    [1]丛秋滋,多晶二维X射线衍射[M].北京:科学出版社,1997.
    [2]陈治明,王建农,半导体器件的材料物理学基础[M].北京:科学出版社,2001.
    [3]刘恩科,朱秉升,罗晋升,半导体物理[M].北京:国防工业出版社,2007.
    [4]韩喜江,固体材料常用表征方法[M].哈尔滨:哈尔滨工业大学出版社,2011.
    [5]杜希文,元续波,材料分析方法[M].天津:天津大学出版社,2006.
    [1] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Realization ofp-type ZnO thin films via phosphorus doping and thermal activation of thedopant[J]. App. Phys. Lett.,2003,83:63.
    [2] V. Vaithianathan, B. T. Lee, and S. S. Kim, Pulsed-laser-deposited p-type ZnOfilms with phosphorus doping[J]. J. Appl. Phys.,2005,98:043519.
    [3] F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu, Characteristics of aphosphorus-doped p-type ZnO film by MBE[J]. Mater. Res. Soc. Symp. Proc.,2006,892: FF18-09.
    [4] D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D.C. Look, and Y. S. Park, Study of the photoluminescence of phosphorus-dopedp-type ZnO thin films grown by radio-frequency magnetron sputtering[J]. Appl.Phys. Lett.,2005,86:151917.
    [5] F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L Liu, Donor and acceptorcompetitions in phosphorus-doped ZnO[J]. Appl. Phys. Lett.,2006,88:152116.
    [6] A. Allenic, W. Guo, Y. B. Chen, M. B. Katz, G. Y. Zhao, Y. Che, Z. D. Hu, B.Liu, S. B. Zhang, and X. Q. Pan, Amphoteric Phosphorus Doping for Stablep-Type ZnO[J]. Adv. Mater.,2007,19:3333.
    [7] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, UVElectroluminescence Emission from ZnO Light-Emitting Diodes Grown byHigh-Temperature Radiofrequency Sputtering[J]. Adv. Mater.,2006,18:2720.
    [8] H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Y. L. Wang, and F. Ren,Phosphorus doped ZnO light emitting diodes fabricated via pulsed laserdeposition[J]. Appl. Phys. Lett.,2008,92:112108.
    [9] M. S. Oh, D. K. Hwang, Y. S. Choi, J. W. Kang, S. J. Park, C. S. Hwang, and K. I.Cho, Microstructural properties of phosphorus-doped p-type ZnO grown byradio-frequency magnetron sputtering[J]. Appl. Phys. Lett.,2008,93:111905.
    [10] D. K. Hwang, M. S. Oh, J. H. Lim, C. G. Kang, and S. J. Park, Effect ofannealing temperature and ambient gas on phosphorus doped p-type ZnO[J].Appl. Phys. Lett.,2007,90:021106.
    [11] W. J. Lee, J. Kang, and K. J. Chang, Defect properties and p-type dopingefficiency in phosphorus-doped ZnO[J]. Phys. Rev. B,2006,73:024117.
    [12] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, Behavior of rapid thermalannealed ZnO:P films grown by pulsed laser deposition[J]. J. Appl. Phys.,2007,102:104904.
    [13] A. Allenic, W. Guo, Y. B. Chen, Y. Che, Z. D. Hu, B. Liu, and X. Q. Pan,Microstructure and electrical properties of p-type phosphorus-doped ZnOfilms[J]. J. Phys. D: Appl. Phys.,2008,41:025103.
    [14] PDF card No.80-0075.
    [15] H. F. Liu and S. J. Chua, Doping behavior of phosphorus in ZnO thin films:Effects of doping concentration and postgrowth thermal annealing[J]. Appl. Phys.Lett.,2010,96:091902.
    [16] F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Evidence of the ZnVacancy Acting as the Dominant Acceptor in n-Type ZnO[J]. Phys. Rev. Lett.,2003,91:20.
    [17] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K.Nordlund, Evidence for Native-Defect Donors in n-Type ZnO[J]. Phys. Rev.Lett.,2005,95:225502.
    [18] Y. W. Heo, S. J. Park, K. Lp, S. J. Pearton, and D. P. Norton, Transportproperties of phosphorus-doped ZnO thin films[J]. Appl. Phys. Lett.,2003,83:1128.
    [19] L. J. Wang and N. C. Giles, Temperature dependence of the free-excitontransition energy in zinc oxide by photoluminescence excitation spectroscopy[J].J. Appl. Phys.,2003,94:973.
    [20] P. Misra, T. K. Sharma, and L. M. Kukreja, Temperature dependentphotoluminescence processes in ZnO thin films grown on sapphire by pulsedlaser deposition[J]. Curr. Appl. Phys.,2009,9(1):179.
    [21] M. Ding, D. X. Zhao, B. Yao, B. H. Li, Z. Z. Zhang, and S. D. Zhen, The p-typeZnO film realized by a hydrothermal treatment method[J]. Appl. Phys. Lett.,2011,98:062102.
    [22] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U.Kaiser, C. E. Krill, R. Sauer, and K. Thonke, Acceptor-related luminescence at3.314eV in zinc oxide confined to crystallographic line defects[J]. Physica B,2007,401-402:362-365.
    [23] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U.Kaiser, C. E. Krill, K. Thonke, and R. Sauer, Stacking fault related3.31-eVluminescence at130-meV acceptors in zinc oxide[J]. Phys. Rev. B,2008,77:125215.
    [24] J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann, M. Lerch, U.Haboeck, A. Hoffmann, and C. Thomsen, Zn interstitial related donors inammonia-treated ZnO powders[J]. Phys. Rev. B,2007,76:195203.
    [25] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, and T. G.Khulordava, Optical and electrical properties of radical beam gettering epitaxygrown n-and p-type ZnO single crystals[J]. J. Cryst. Growth,1992,117:366.
    [26] A. N. Georgobiani, M. B. Kotlyarevskii, V. V. Kidalov, L. S. Lepnev, and I. V.Rogozin, Inorg. Mater.,2001,37:1287.
    [27] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Photoluminescence andcathodoluminescence studies of stoichiometric and oxygen-deficient ZnOfilms[J]. Appl. Phys. Lett.,2001,78:2285.
    [28] S. H. Jeong, B. S. Kim, and B. T. Lee, Photoluminescence dependence of ZnOfilms grown on Si(100) by radio-frequency magnetron sputtering on the growthambient[J]. Appl. Phys. Lett.,2003,82:2625.
    [29] Y. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T.Zhao, H. L. Pan, H. Zhu, and T. Wu, Fabrication and properties of B–N codopedp-type ZnO thin films[J]. J. Phys. D: Appl. Phys.,2009,42:065101.
    [30] A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O.Everitt, Excitonic fine structure and recombination dynamics in single-crystallineZnO[J]. Phys. Rev. B,2004,70:195207.
    [31] V. S. Yalishev, Y. S. Kim, X. L. Deng, B. H. Park, and S. U. Yuldashev, Studyof the photoluminescence emission line at3.33eV in ZnO films[J]. J. Appl.Phys.,2012,112:013528.
    [32] A. Allenic, X. Q. Pan, Y. Che, Z. D. Hu, and B. Liu, Violet luminescence inphosphorus-doped ZnO epitaxial films[J]. Appl. Phys. Lett.,2008,92:022107.
    [33] D. K. Hwang, M. S. Oh, Y. S. Choi, and S. J. Park, Effect of pressure on theproperties of phosphorus-doped p-type ZnO thin films grown by radiofrequency-magnetron sputtering[J]. Appl. Phys. Lett.,2008,92:161109.
    [34] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg:Handbook of X-ray Photoelectron Spectroscopy[M]. Perkin-Elmer, Eden Prairie,MN,1979.
    [35] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook ofX-Ray Photoelectron Spectroscopy[M]. Perkin-Elmer, Minnesota,1992.
    [1] A. Allenic, W. Guo, Y. B. Chen, M. B. Katz, G. Y. Zhao, Y. Che, Z. D. Hu, B.Liu, S. B. Zhang, and X. Q. Pan, Amphoteric Phosphorus Doping for Stablep-Type ZnO[J]. Adv. Mater.,2007,19:3333.
    [2] Y. R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnOgrown by hybrid beam deposition[J]. Appl. Phys. Lett.,2003,83:87.
    [3] D. C. Look and B. Claflin, P-type doping and devices based on ZnO[J]. Phys.Status Solidi B,2004,241:624.
    [4] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, Behavior of rapid thermalannealed ZnO:P films grown by pulsed laser deposition[J]. J. Appl. Phys.,2007,102:104904.
    [5] W. J. Lee, J. Kang, and K. J. Chang, Defect properties and p-type dopingefficiency in phosphorus-doped ZnO[J]. Phys. Rev. B,2006,73:024117.
    [6] P. Li, S. H. Deng, and J. Huang, First-principles studies on the dominant acceptorand the activation mechanism of phosphorus-doped ZnO[J]. Appl. Phys. Lett.,2011,99:111902.
    [7] S. C. Su, Y. M. Lu, Z. Z. Zhang, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X.Zhao, and X. W. Fan, Oxygen flux influence on the morphological, structuraland optical properties of Zn1xMgxO thin films grown by plasma-assistedmolecular beam epitaxy[J]. Appl. Surf. Sci.,2008,254:4886-4890.
    [8] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Doping byLarge-Size-Mismatched Impurities: The Microscopic Origin of Arsenic orAntimony-Doped p-Type Zinc Oxide[J]. Phys. Rev. Lett.,2004,92:155504.
    [9] H. F. Liu and S. J. Chua, Doping behavior of phosphorus in ZnO thin films:Effects of doping concentration and postgrowth thermal annealing[J]. Appl. Phys.Lett.,2010,96:091902.
    [10] D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim,D. C. Look, and Y. S. Park, Study of the photoluminescence ofphosphorus-doped p-type ZnO thin films grown by radio-frequency magnetronsputtering[J]. Appl. Phys. Lett.,86:151917.
    [11] D. K. Hwang, M. S. Oh, Y. S. Chi, and S. J. Park, Effect of pressure on theproperties of phosphorus-doped p-type ZnO thin films grown by radiofrequency-magnetron sputtering[J]. Appl. Phys. Lett.,2008,92:161109.
    [12] Y. F. Li, B. Yao, Y. M. Lu, Z. P. Wei, Y. Q. Gai, C. J. Zheng, Z. Z. Zhang, B. H.Li, D. Z. Shen, X. W. Fan, and Z. K. Tang, Realization of p-type conduction inundoped MgxZn1xO thin films by controlling Mg content[J]. Appl. Phys. Lett.,2007,91:232115.
    [13] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, A comparativeanalysis of deep level emission in ZnO layers deposited by various methods[J]. J.Appl. Phys.,2009,105:013502.
    [14] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, First-principles studyof native point defects in ZnO[J]. Phys. Rev. B,2000,61:15019.
    [15] A. Janotti and C. G. Van de Walle, Native point defects in ZnO[J]. Phys. Rev. B,2007,76:165202.
    [16] M. G. Wardle, J. P. Goss, and P. R. Briddon, Theory of Fe, Co, Ni, Cu, and theircomplexes with hydrogen in ZnO[J]. Phys. Rev. B,2005,72:155108.
    [17] C. Ton-That, L. Weston, and M. R. Phillips, Characteristics of point defects inthe green luminescence from Zn-and O-rich ZnO[J]. Phys. Rev. B,2012,86:115205.
    [18] T. Moe Borseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao and M.Willander, Identification of oxygen and zinc vacancy optical signals in ZnO[J].Appl. Phys. Lett.,2006,89:262112.
    [19] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D. Z.Shen, and X. W. Fan, Ultraviolet Electroluminescence from MgZnO-BasedHeterojunction Light-Emitting Diodes[J]. J. Phys. Chem. C,2009,113:2980–2982.
    [20] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, and S.Niki T. Tainaka, Y. Chiba, and H. Kanie, Strong excitonic transition ofZn1xMgxO alloy Diodes[J]. Appl. Phys. Lett.,2007,91:261907.
    [21] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J.Christen, A. Hoffmann, M. Strabburg, M. Dworzak, U. Haboeck, and A. V.Rodina, Bound exciton and donor–acceptor pair recombinations in ZnO[J]. Phys.Status Solidi b,2004,241:231.
    [22] K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M.Lippmaa, C. H. Chia, Y. Segwa, H. Koinuma, and M. Kawasaki, Donor–acceptorpair luminescence in nitrogen-doped ZnO films grown on lattice-matchedScAlMgO4(0001) substrates[J]. Solid State Commun.,2003,127:265.
    [23] S. H. Jeong, B. S. Kim, and B. T. Lee, Photoluminescence dependence of ZnOfilms grown on Si(100) by radio-frequency magnetron sputtering on the growthambient[J]. Appl. Phys. Lett.,2003,82:2625.
    [24] Y. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T.Zhao, H. L. Pan, H. Zhu, W. W. Liu, and T. Wu, Fabrication and properties ofB–N codoped p-type ZnO thin films[J]. J. Phys. D: Appl. Phys.,2009,42:065101.
    [25] Y. P. Wang, J. Q. Zhou, Q. Lu, L. L. Liu, X. Zhang, and X. J. Wu, Study ofStructural and Electrical Properties of Phosphorus-Doped p-Type ZnO ThinFilms[J]. J. J. of Appl. Phys.,2010,49:041103.
    [26] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook ofX-Ray Photoelectron Spectroscopy[M]. Perkin-Elmer, Minnesota,1992.
    [27] H. Yuan, B. Luo, S. A. Campbell, and W. L. Gladfelter, Atomic LayerDeposition of p-Type Phosphorus-Doped Zinc Oxide Films Using Diethylzinc,Ozone and Trimethylphosphite[J]. Electrochemical and Solid-state Letters,2011,14(5): H181-H183.
    [28] L. L. Gao, B. Yao, B. Liu, L. Liu, T. Yang, B. B. Liu, and D. Z. Shen, Effects ofMg concentration on solubility and chemical state of N in N-doped MgZnOalloy[J]. J. Chem. Phys.,2010,133:204501.
    [1] S. B. Zhang, S. H. Wei, A. Zunger, Intrinsic n-type versus p-type dopingasymmetry and the defect physics of ZnO[J]. Phys. Rev. B,2001,63:075205.
    [2] S. Lany, A. Zunger, Dopability, Intrinsic Conductivity, and Nonstoichiometry ofTransparent Conducting Oxides[J]. Phys. Rev. Lett.,2007,98:045501.
    [3] C. H. Patterson, Role of defects in ferromagnetism in Zn1xCoxO: A hybriddensity-functional study[J]. Phys. Rev. B,2006,74:144432.
    [4] A. Janotti, C. G. Van de Walle, Temperature dependence of Raman scattering inZnO[J]. Phys. Rev. B,2007,75:165202.
    [5] T. R. Paudel, W. R. L. Lambrecht, First-principles calculation of the O vacancy inZnO: A self-consistent gap-corrected approach[J]. Phys. Rev. B,2008,77:205202.
    [6] A. R. Hutson, Hall Effect Studies of Doped Zinc Oxide Single Crystals[J]. Phys.Rev.,1957,108:222.
    [7] D. C. Look, J. W. Hemsky, J. R. Sizelove, Residual Native Shallow Donor inZnO[J]. Phys. Rev. Lett.,1999,82:2552.
    [8] A. F. Kohan, G. Ceder, D. Morgan, Chris G. Van de Walle, First-principles studyof native point defects in ZnO[J]. Phys. Rev. B,2000,61:15019.
    [9] W. Mtangi, F. D. Auret, P. J. Janse van Rensburg, S. M. M. Coelho, M. J. Legodi,J. M. Nel, W. E. Meyer, A. Chawanda, A comparative study of the electricalproperties of Pd/ZnO Schottky contacts fabricated using electron beamdeposition and resistive/thermal evaporation techniques[J]. J. Appl. Phys.,2011,110:094504.
    [10] V. Quemener, L. Vines, E. V. Monakhov, B. G. Svensson, Evolution of deepelectronic states in ZnO during heat treatment in oxygen-and zinc-richambient[J]. Appl. Phys. Lett.,2012,100:112108.
    [11] D. G. Thomas, Interstitial zinc in zinc oxide[J]. J. Phys. Chem. Solids,1957,3:229.
    [12] H. B. Zeng, W. P. Cai, J. L. Hu, G. T. Duan, P. S. Liu, Y. Li, Violetphotoluminescence from shell layer of Zn/ZnO core-shell nanoparticles inducedby laser ablation[J]. Appl. Phys. Lett.,2006,88:171910.
    [13] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg,Handbook of X-ray Photoelectron Spectroscopy[M]. Perkin-Elmer, Eden Prairie,MN,1979.
    [14] S. S. Lin, Robust low resistivity p-type ZnO:Na films after ultravioletillumination: The elimination of grain boundaries[J]. Appl. Phys. Lett.,2012,101:122109.
    [15] F. Tuomisto, V. Ranki, K. Saarinen, D. C. Look, Evidence of the Zn VacancyActing as the Dominant Acceptor in n-Type ZnO[J]. Phys. Rev. Lett.,2003,91:205502.
    [16] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, K.Nordlund, Evidence for Native-Defect Donors in n-Type ZnO[J]. Phys. Rev.Lett.,2005,95:225502.
    [17] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U.Kaiser, C. E. Krill, R. Sauer, K. Thonke, Acceptor-related luminescence at3.314eV in zinc oxide confined to crystallographic line defects[J]. Physica B,2007,401-402:362-365.
    [18] M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U.Kaiser, C. E. Krill, K. Thonke, R. Sauer, Stacking fault related3.31-eVluminescence at130-meV acceptors in zinc oxide[J]. Phys. Rev. B,2008,77:125215.
    [19] C. G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels insemiconductors, insulators and solutions[J]. Nature (London),2003,423:626.
    [20] A. Janotti, C. G. Van de Walle, Hydrogen multicentre bonds[J]. Nature Mater.,2007,6:44.
    [21] M. Ding, D. X. Zhao, B. Yao, B. H. Li, Z. Z. Zhang, D. Z. Shen, The p-type ZnOfilm realized by a hydrothermal treatment method[J]. Appl. Phys. Lett.,2011,98:
    [22] D. C. Look, Electrical and optical properties of p-type ZnO[J]. Semicond. Sci.Technol.,2005,20: S55.
    [23] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Photoluminescence andcathodoluminescence studies of stoichiometric and oxygen-deficient ZnOfilms[J]. Appl. Phys. Lett.,2001,78:2285.
    [24] S. H. Jeong, B. S. Kim, B. T. Lee, Photoluminescence dependence of ZnO filmsgrown on Si(100) by radio-frequency magnetron sputtering on the growthambient[J]. Appl. Phys. Lett.,2003,82:2625.
    [25] Y. R. Sui, B. Yao, Z. Hua, G. Z. Xing, X. M. Huang, T. Yang, L. L. Gao, T. T.Zhao, H. L. Pan, H. Zhu, T. Wu, Fabrication and properties of B–N codopedp-type ZnO thin films[J]. J. Phys. D: Appl. Phys.,2009,42:065101.
    [26] T. A. Carlson, Photoelectron and Auger Spectroscopy[M]. Plenum Press,1975.
    [27] L. Wang, N. C. Giles, Temperature dependence of the free-exciton transitionenergy in zinc oxide by photoluminescence excitation spectroscopy[J]. J. Appl.Phys.,2003,94:973.
    [28] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi,Fermi-level band filling and band-gap renormalization in Ga-doped ZnO[J].Appl. Phys. Lett.,2005,86:19211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700