钪硅酸盐白光LED荧光粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(LEDs)具有效率高、寿命长、无污染等优点,有望在将来取代白炽灯和荧光灯成为新一代的照明光源。目前,商业化的白光LED主要是由高性能的InGaN蓝光LED芯片和具有石榴石结构的Y3Al5O12:Ce3+(YAG:Ce3+)黄色荧光粉组成。YAG:Ce3+具有较高的光转换效率,但是其发射光谱中缺少红光成分,导致合成白光LED的显色指数偏低(Ra<80)。为了解决这一问题,获得高显色性的白光LED,人们提出用绿色和红色荧光粉的组合来替代单一的YAG:Ce3+黄色荧光粉。这种方案可以有效提高白光LED的红光发射成分,但是,不同荧光粉之间存在的再吸收问题会造成发光效率的损失。另外,不同荧光粉之间还存在老化特性和温度特性不一致的问题,会导致白光LED的色彩特性随使用时间和温度的变化而变化。因此,单一基质高显色性白光LED荧光粉成为人们研究的热点。
     Ca3Sc2Si3O12(CSS):Ce3+荧光粉由于具有较高的发光效率和良好的热稳定性引起了人们的重视,其发射光谱是峰值位于505nm的绿光发射带。为了获得单一基质高显色性的白光LED荧光粉,我们通过氮化和共掺杂的方法对CSS:Ce3+荧光粉进行了改造。最终,将此绿色荧光粉改造成了基于蓝光激发的单一基质白光LED用荧光粉,与蓝光LED芯片组合,获得了显色性较高的白光。主要的研究内容及结果如下:
     (1)对绿色CSS:Ce3+荧光粉进行氮化,可以在保留原有绿光Ce3+发射中心(记为Ce3+(I))的同时,形成N3-部分配位的红光Ce3+发射中心(记为Ce3+(II))。Ce3+(I)的发射光谱是峰值位于505nm的绿光发射带,Ce3+(II)的发射光谱是峰值位于610nm的红光发射带。通过改变合成原料中CeO2和Si3N4的含量,我们制备了两个系列的样品(CSS:0.06Ce3+, yN3-和CSS:xCe3+,0.6N3-),并且研究了这些样品的漫反射谱和发射光谱随x、y值变化的规律。在样品CSS:0.06Ce3+, yN3-中,由于电荷补偿作用,N3-含量的增加可以提高CSS中总的Ce3+离子浓度,尤其是Ce3+(II)离子的浓度。在样品CSS:xCe3+,0.6N3-中,当掺杂Ce3+离子的摩尔浓度低于0.008时,Ce3+(I)优先形成,Ce3+(II)几乎不形成。只有当Ce3+离子掺杂浓度大于0.008时,Ce3+(II)才开始形成。通过Ce3+(I)→Ce3+(II)能量传递,我们在样品CSS:Ce3+, N3-中实现了蓝光激发下红绿比可调的系列光谱,使得CSS:Ce3+, N3-荧光粉成为单一基质高显色性的白光LED用荧光粉。将我们制得的单一基质CSS:0.15Ce3+,0.6N3-荧光粉与蓝光LED芯片(λ=450nm)组合,获得显色指数为92、相关色温为6345K、色坐标为(0.31,0.30)的白光。
     (2)在Ce3+和Pr3+共掺的CSS中,我们研究了Ce3+→Pr3+能量传递对样品发光特性的影响,Ce3+和Pr3+掺入CSS基质时均取代Ca2+的位置。通过Ce3+→Pr3+能量传递,我们在样品的光谱中实现了Pr3+离子位于610nm的红光发射,此发射源于Pr3+离子的1D2-3H4跃迁辐射。随着Pr3+浓度的增加,Ce3+→Pr3+能量传递效率的提高,Pr3+离子位于610nm的红光发射逐渐增强。但是,由于Pr3+与Ca2+之间的电荷失配,导致CSS中Pr3+的实际浓度偏低,为了探索提高CSS中Pr3+浓度的方法,我们引入Mg2+取代基质中的Sc3+来补偿Pr3+与Ca2+之间的电荷失配。结果表明Mg2+的添加不仅能提高CSS中Ce3+的浓度使其发射光谱显著红移,而且能提高CSS中Pr3+的浓度使其发射明显增强。将我们制得的单一基质CSS:0.05Ce3+,0.01Pr3+,0.3Mg2+荧光粉与蓝光LED芯片(λ=450nm)组合,获得显色指数为80、相关色温为8715K、色坐标为(0.28,0.32)的白光。为了获得更高显色性的白光,需要进一步提高此荧光粉的红光发射成分。
     (3)Mn2+离子掺入CSS晶格时不仅能占据Ca2+离子的位置,产生一个峰值位于574nm的黄光发射带(记为Mn2+(I));而且能占据Sc3+离子的位置,产生一个峰值位于680nm的红光发射带(记为Mn2+(II))。通过Ce3+→Mn2+(Mn2+(I)和Mn2+(II)), Ce3+→Pr3+和Mn2+(I)→Pr3+能量传递,我们在Ce3+、Pr3+和Mn2+共掺的CSS中实现了可调的全光谱发射。随着Mn2+含量的增加,样品光谱中Mn2+(I)和Mn2+(II)发射带逐渐增强的同时,位于610nm的Pr3+离子红光发射也逐渐增强。原因是由于电荷补偿的作用,Mn2+(II)取代Sc3+促进了Pr3+取代Ca2+,提高了CSS中Pr3+离子的实际浓度。另外,我们还研究了Mg2+离子的掺入对样品CSS:Ce3+,Pr3+, Mn2+发光特性的影响。结果表明:随着Mg2+名义含量的增加,样品中Ce3+、Pr3+和Mn2+(I)的浓度逐渐增加,Mn2+(II)的浓度逐渐减少,导致相应光谱中Ce3+发射谱的红移,Mn2+(I)、Pr3+发射的增强和Mn2+(II)发射的减弱。将我们制得的单一基质CSS:0.08Ce3+,0.01Pr3+,0.3Mn2+,0.2Mg2+荧光粉与蓝光LED芯片(λ=450nm)封装,获得了显色指数为90、相关色温为4980K、色坐标为(0.34,0.31)的白光。
White light emitting diodes (LEDs) are considered to be a promising candidatefor the future lighting system because of their higher efficiency, longer lifetime, andlack of requirement for pollutants compared with the conventional light sources suchas incandescent lamps or fluorescent lamps. Until now, the most widely usedcommercial white LEDs are fabricated by combining high performance blue-emittingInGaN chip with Y3Al5O12:Ce3+(YAG:Ce3+) yellow emitting aluminate garnetphosphor. YAG:Ce3+has a high converting efficiency, but the deficient red emittingcomponent leads to the color rendering index (CRI) of the white LEDs below80. Toresolve this problem, the method of mixing green and red phosphors instead ofYAG:Ce3+phosphor has been proposed. Unfortunately, the phosphor mixture givesfluorescence reabsorption that result in loss of luminous efficiency. In addition,non-uniformity of luminescent properties for different phosphors will result intime-dependent shift of the color point. Therefore, to achieve single phase phosphorwith full color emission is expected.
     The green-emitting Ca3Sc2Si3O12(CSS):Ce3+phosphor has attracted muchattention due to its higher luminous efficiency and excellent thermal stability.CSS:Ce3+phosphor exhibits a green-emitting band with a peak at505nm. In order toachieve single phase phosphor with full color emission, we have modified thisphosphor by employing approaches of nitriding and codoping. The main studies andresults are listed as follow:
     (1) We performed N3-incorporation into CSS:Ce3+and then achievedred-emitting Ce3+centers (peaked at610nm) that have N3-in their local coordination.Diffuse reflectance and photoluminescence spectra for O2-fully coordinated green emitting Ce3+and N3-partially coordinated red Ce3+in CSS:Ce3+, N3-are studied as afunction of CeO2and Si3N4contents in the raw material. Our results indicate that thepresence of N3-can enhance the Ce3+solubility in CSS by Ce3+-N3-substitution forCa2+-O2-. At low Ce3+concentration, the green Ce3+forms preferentially while the redCe3+hardly forms even if N3-content in the raw material is sufficient. There exists athreshold green Ce3+concentration (0.008) for generating red Ce3+. Only beyond thethreshold, the red Ce3+can form. We obtained color tunable luminescence withenhanced red/green intensity ratios through energy transfer from the green Ce3+to redCe3+as only the green Ce3+is excited by blue light. A white LED with CRI of92,CCT of6345K and chromaticity coordinates of (0.31,0.30) is obtained by combiningour single CSS:0.15Ce3+,0.6N3-phosphor with a blue-emitting InGaN LED chip (450nm).
     (2) In the Ce3+and Pr3+co-activated CSS, Ce3+and Pr3+both occupy the Ca2+sites. We have investigated the effect of Ce3+-Pr3+energy transfer on the luminescenceproperties. The luminescence spectra exhibit a red emission around610nm originatedfrom1D2→3H4transition of Pr3+through the energy transfer from Ce3+to Pr3+. Thered emission of Pr3+gradually enhances with the increase of energy transfer efficiencythat is caused by the increasing concentration of Pr3+in CSS. The amount of Pr3+incorporated into the phosphor is very limited due to the charge mismatch betweenPr3+and Ca2+. In order to explore the approach for enhancing the Pr3+concentration inCSS, we have tentatively added Mg2+in Sc3+site to compensate the residual positivecharge caused by the substitution of Pr3+for Ca2+in CSS. Our results indicate that theaddition of Mg2+can not only increase Ce3+concentration in CSS to make emissionspectra move toward longer wavelength, but also promote Pr3+incorporation into CSSlattices to enhance the Pr3+emission. Finally, A white LED with CRI of80, CCT of8715K and chromaticity coordinates of (0.28,0.32) was fabricated by combining thesingle CSS:0.05Ce3+,0.01Pr3+,0.3Mg2+phosphor with a blue-emitting InGaN LED(450nm) chip. However, this white LED needs more red emission component to beexcellent lighting source. In order to improve the performance of this white LED,further exploration to enhance the red emission of this phosphor is necessary.
     (3) The introduced Mn2+in CSS lattices can occupy not only Ca2+site to generatea yellow emission band around574nm (named Mn2+(I)) but also Sc3+site to generatea red emission band around680nm (named Mn2+(II)). Through the efficientCe3+→Mn2+(Mn2+(I) and Mn2+(II)), Ce3+→Pr3+and Mn2+(I)→Pr3+energy transfer, we have realized color tunable luminescence in the Ce3+, Pr3+and Mn2+co-activatedCSS. With the enhancement of Mn2+(Mn2+(I) and Mn2+(II)) emissions caused byincreasing Mn2+nominal content, the red emission (around610nm) of Pr3+alsoenhances. The reason may be that the formation of Mn2+(II) that substitutes for Sc3+can enhance the concentration of Pr3+in Ca2+site due to charge compensation effect.In addition, the emission of our present phosphor is also adjusted by addition of Mg2+,due to the Mg2+incorporated into Sc3+site can influence the concentrations of Ce3+,Pr3+and Mn2+(Mn2+(I) and Mn2+(II)) in our phosphor. Finally, A white LED withCRI of90, CCT of4980K and chromaticity coordinates of (0.34,0.31) is obtained bycombining the single CSS:0.08Ce3+,0.01Pr3+,0.3Mn2+,0.2Mg2+phosphor with ablue-emitting InGaN LED chip.
引文
[1] A. Zukaurkas, M. S. Shur, R. Gaska. Introduction to Solid State Lighting [M].New York: John Wiley&Sons, Inc.,2002.1-10
    [2]朱小清,林瀚.照明技术手册[M].第2版.北京:机械工业出版社,2004.1-7
    [3](日)照明学会编.照明手册[M].第2版.李农,杨燕译.北京:科学出版社,2005.1-17
    [4] S. Nakamura, G. Fasol. The Blue Laser Diode [M]. Berlin: Springer,1996
    [5] E. F. Schubert. Light Emitting Diode [M]. Cambridge: Cambridge UniversityPress,2003
    [6]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.24-34
    [7] F. K. Yam, Z. Hassan. Innovative advances in LED technology [J].Microelectronics Journal,2005,36:129-137
    [8]王磊.能量传递调控的高显色白光LED用YAG:Ce3+/R (R=Pr3+, Cr3+)荧光粉的研究[D]:[博士学位论文].北京:中科院研究生院,2011
    [9]刘永福.全光谱高显色性钪硅酸盐LED荧光粉的研究[D]:[博士学位论文].北京:中科院研究生院,2012
    [10]于金影.适用于近紫外激发Eu2+,Mn2+共掺杂Sr2-xCaxP2O7(x=0-2)及Sr2Mg3P4O15晶体结构和发光性质的研究[D]:[博士学位论文].北京:中科院研究生院,2012
    [11]王晓明,郭伟玲,高国,沈光地.LED—新一代照明光源[J].现代显示,2005(7):15-19
    [12]孙晓园.近紫外芯片白光LED用掺Eu2+的硅酸盐荧光粉的制备发光性质研究[D]:[博士学位论文].北京:中科院研究生院,2008
    [13]郝振东.近紫外基白光LED用Ca2P2O7:Eu2+, Mn2+及CaSc2O4:Eu3+荧光粉发光特性的研究[D]:[博士学位论文].北京:中科院研究生院,2009
    [14]王美媛.Eu2+激活氮氧化物荧光粉的发光及其长余辉性质的研究[D]:[博士学位论文].北京:中科院研究生院,2010
    [15] N. Narendran, N. Maliyagoda, L. Deng, et al. Characterizing LEDs for generalillumination applications: Mixed-color and phosphor-based white sources [J].SPIE-Int. Soc. Opt. Eng.,2001,4445:137-147
    [16] S. Muthu, F. Schuurmans, M. Pashley, et al. Red, green, and blue LEDs for whitelight illumination [J]. IEEE J. Selected Topics in Quantum Electronics,2002,8(2):333-338
    [17] D. Xiao, K. Kim, S. Bedair, et al. Design of white light-emitting diodes usingInGaN/AlInGaN quantum-well structures [J]. Appl. Phys. Lett.,2004,84:672-674
    [18] M. Yamada, Y. Narukawa, T. Mukai. Phosphor free high-luminous-efficiencywhite light-emitting diodes composed of InGaN multi-quantum well [J]. Jpn. J. Appl.Phys.,2002,41: L246-L248
    [19]肖志国.半导体照明发光材料及应用[M].北京:化学工业出版社,2008.33-34
    [20]胡兴军,江怀.半导体照明的开发与应用[J].光源与照明,2005,2:16-19
    [21]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004.323-325
    [22] J. K. Park, C. H. Kim, S. H. Park, et al. Application of strontium silicate yellowphosphor for white light-emitting diodes [J]. Appl. Phys. Lett.,2004,84(10):1647-1649
    [23] J. K. Park, K. J. Choi, J. H. Yeon, et al. Embodiment of the warmwhite-light-emitting diodes by using a Ba2+codoped Sr3SiO5:Eu phosphor [J]. Appl.Phys. Lett.,2006,88(4):043511(1-3)
    [24] N. Hirosaki, R. J. Xie, K. Kimoto, et al. Characterization and properties ofgreen-emitting β-SiAlON:Eu2+powder phosphors for white light-emitting diodes [J].Appl. Phys. Lett.,2005,86:211905-211907
    [25] R. J. Xie, N. Hirosaki, K. Sakuma, et al. Eu2+-doped Ca--SiAlON: A yellowphosphor for white light-emitting diodes [J]. Appl. Phys. Lett.,2004,84:5404-5406
    [26] R. J. Xie, N. Hirosaki, M. Mitomo, et al. Highly efficient white-light-emittingdiodes fabricated with short-wavelength yellow oxynitride phosphors [J]. Appl. Phys.Lett.,2006,88:101104(1-3)
    [27] J. S. Kim, P. E. Jeon, J. C. Choi. Warm-white-light emitting diode utilizing asingle-phase full-color Ba3MgSi2O8:Eu2+, Mn2+phosphor [J]. Appl. Phys. Lett.,2004,84(15):2931-2933
    [28] J. S. Kim, P. E. Jeon, Y. H. Park, et al. White-light generation throughultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett.,2004,85:3696-3698
    [29] W. J. Yang, T. M. Chen. White-light generation and energy transfer inSrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys.Lett.,2006,88:101903(1-3)
    [30][X. Y. Sun, J. H. Zhang, X. Zhang, S. Z. Lu, X. J. Wang. A white light phosphorsuitable for near ultraviolet excitation [J]. J. Lumin.,2007,122:955–957
    [31]孙晓园,张家骅,张霞,蒋大鹏,王笑军.新一代白光LED照明用一种适于近紫外光激发的单一白光荧光粉[J].发光学报,2005,26:404-406
    [32] H. S. Jang, D. Y. Jeon. Yellow-emitting Sr3SiO5:Ce3+, Li+phosphor forwhite-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys. Lett.,2007,90:041906(1-3)
    [33] N. Lakshminarasimhan, U. V. Varadaraju. White-light Generation inSr2SiO4:Eu2+, Ce3+under Near-UV Excitation [J]. J. Electrochem. Soc.,2005,152(9):H152-H156
    [34]陈大华.现代光源基础[M].上海:学林出版社,1987.1-24
    [35] Z. D. Hao, J. H. Zhang, X. Zhang, et al. White light emitting diode by using-Ca2P2O7:Eu2+, Mn2+phosphor [J]. Appl. Phys. Lett.,2007,90:261113(1-3)
    [36] Z. D. Hao, J. H. Zhang, X. Zhang, et al. Phase dependent photoluminescence andenergy transfer in Ca2P2O7:Eu2+, Mn2+phosphors for white LEDs [J]. J. Lumin.,2008,128:941-944
    [37] Z. D. Hao, J. H. Zhang, X. Zhang, et al. Luminescence and Energy Transfer inEu2+and Mn2+Co-doped Ca2P2O7for White Light-Emitting Diodes [J]. J.Electrochem. Soc.,2008,155(8): H606-H610
    [38] K. Bando, K. Sakano, Y. Noguchi, et al. Development of High-bright andPure-white LED Lamps [J]. Light&Vis. Env.,1998,22:2-5
    [39] Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, ea al. Luminescence properties ofred-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors [J]. Alloys.Compd.,2006,417:273-279
    [40] K. Uheda, N. Hirosaki, Y. Yamamoto,et al. Luminescence Properties of a RedPhosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes [J]. Electrochem.Solid-State Lett.,2006,9(4):H22-H25
    [41] A. A. Setlur, W. J. Heward, Y. Gao, et al. Crystal Chemistry and Luminescence ofCe3+-Doped Lu2CaMg2(Si,Ge)3O12and Its Use in LED Based Lighting [J]. Chem.Mater.,2006,18:3314-3322
    [42]张希艳,陆利平,柏朝晖等.稀土发光材料[M].北京:国防工业出版社,2005.2-11
    [43]李建宇.稀土发光材料及其应用[M].化学工业出版社,2003.1-16
    [44]聂兆刚.镨在六角碱土铝酸盐中的量子剪裁和真空紫外光谱[D]:[博士学位论文].北京:中科院研究生院,2007
    [45]洪广言.稀土发光材料:基础与应用[M].北京:科学出版社,2011.57-72
    [46]苏锵,稀土化学[M].郑州:河南科学技术出版社,1993.267
    [47]张洪杰,洪广言,李得谦,牛春吉,倪嘉瓒,我国稀土化学的进展[J].化学通报,2001,6:325-329
    [48] G. Blasse, B. C. Grabmaier. Luminescent Materials [M]. Springer, Berlin,1994.chap.1
    [49] G. Gauglitz, T. V. Dinh. Handbook of Spectroscopy [M]. Wiley-Vch BerlagGmbh&KGaA, Weinhibeim ISBN3-527-29782-0, Sec. II
    [50]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003.152-153
    [51] G. Blasse, B. C. Grabmaier. Luminescent Materials [M]. Springer, Berlin,1994.chap.5
    [52] T. F rster. Experimentelle und theoretische Untersuchung deszwischenmolekularen übergangs von Elektronen-anregungsenergie [J]. Z.Naturforschung,1949,4a,321
    [53] D. L. Dexte. A theory of sensitized luminescence in solids [J]. J. Chem. Phys.,1953,21:836-850
    [54] S. Shionoya, W. M. Yen, William. Phosphor Handbook [M]. New York: CRCPress,2000.109-112
    [55] T. Miyakawa, D. L. Dexter. Phonon Sidebands, Multiphonon Relaxation ofExcited States and Phonon-Assisted Energy Transfer between Ions in Solids [J]. Phys.Rev. B,1970,1:2961-2969
    [56] T. Holstein, S. K. Lyo, R. Orbach. Phonon-assisted energy transport ininhomogeneously broadened systems [J]. Phys. Rev. Lett.,1976,36:891-894
    [57] W. M. Yen, P. M. Selzer. Laser Spectroscopy of Solids (T. Holstein, S. K. Lyo, R.Orbach. Excitation Transfer in Disordered Systems)[M]. Berlin: Springer,1986,49:39-82
    [58] S. D. Xia, P. A. Tanner. Theory of one-phonon-assisted energy transfer betweenrare-earth ions in crystals [J]. Phys. Rev. B.,2002,66:214305(1-17)
    [59]黄世华.离子中心的发光动力学[M]:第一版.北京:科学出版社,2002.第四章
    [60] W. M. Yen, P. M. Selzer. Laser Spectroscopy of Solids (D. L. Huber. Dynamicsof incoherent transfer)[M]. Berlin: Springer,1986,49:83-111
    [61] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. I. transition probability calculation [J]. J. Phys. Soc. Jpn.,1973,34:1318-1326
    [62] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. II. comparison with experiment [J]. J. Phys. Soc. Jpn.,1973,34:1327-1333
    [63] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. III. dominant transfer mechanism [J]. J. Phys. Soc. Jpn.,1973,34:1334-1337
    [64] M. Inokuti, F. Hirayama. Influence of energy transfer by the exchangeMechanism on donor luminescence [J]. J. Chem. Phys.,1965,43:1978-1989
    [65] А. И. Бурштейн. Концетрционное тушение некогерентных вожзбуждений врастворах.УФН [J].1984,143:553-600
    [66] M. Yokota, O. Tanimoto. Effect of diffusion on energy transfer by resonance [J].J. Phys. Soc. Jpn.,1967,22:779-784
    [67] А. И. Бурштейн. Прыжковый механизм передачи энергии [J]. ЖЭТФ,1972,62:1695-1701
    [68] B. V. Mill, E. L. Belokoneva, M. A. Simonov, N. V. Belov. Refine crystalstructures of the scandium garnets Ca3Sc2Si3O12, Ca3Sc2Ge3O12and Cd3Sc2Ge3O12[J].J. Struct. Chem.1977,18:321-323
    [69] S. Geller. Crystal chemistry of the garnets [J]. Z. Kristallogr.,1967,125:1-47
    [70] D. T. Palumbo, J. J. Brown. Electronic States of Mn2+-Activated Phosphors. I.Green-Emitting Phosphors [J]. J. Electrochem. Soc.,1970,117:1184-1188
    [71] D. T. Palumbo, J. J. Brown. Electronic States of Mn2+-Activated Phosphors. II.Orange-to-Red Emitting Phosphors [J]. J. Electrochem. Soc.,1971,118:1159-1164
    [72] K. Narita. Energy Spectrum of Mn++ion in Calcium Fluorophosphate I.[J]. J.Phys. Soc. Jpn.,1961,16:99-105
    [73] A. L. N. Stevels. Red Mn2+-luminescence in hexagonal aluminates [J]. J. Lumin.,1979,20(2):99-109
    [74]肖志国.半导体照明发光材料及应用[M].北京:化学工业出版社,2008.5-18
    [75]黄世华.激光光谱学原理和方法[M].长春:吉林大学出版社,2001.第一章
    [76]张希艳,陆利平,柏朝晖等.稀土发光材料[M].北京:国防工业出版社,2005.29-30
    [77]吕伟.基于能量传递机制白光LED用Ca8Zn(SiO4)4Cl2:Eu2+,Mn2+及BaMg2Al6Si9O30:Eu2+, Tb3+, Mn2+荧光材料的研究[D]:[博士学位论文].北京:中科院研究生院,2012
    [78]张中太.无机光致发光材料及应用[M].北京:化学工业出版社2005.186–192.
    [79]洪广言.稀土发光材料:基础与应用[M].北京:科学出版社,2011.509-515
    [80] Y. Shimomura. T. Honma. M. Shigeiwa. T. Alai. K. Okamoto, N. Kijima.Photoluminescence and Crystal Structure of Green-Emitting Ca3Sc2Si3O12:Ce3+Phosphor for White Light Emitting Diodes [J]. J. Electrochem. Soc.,2007,154:J35-J38
    [81] Y. Suzuki, M. Kakihana, Y. Shimomura, N. Kijima. Synthesis ofCa3Sc2Si3O12:Ce3+phosphor by hydrothermal Si alkoxide gelation [J]. J. Mater. Sci.,2008,43:2213-2216
    [82] Y. H. Liu, J. H. Hao, W. D. Zhuang, Y. S. Hu. Structural and luminescentproperties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12:Ce3+phosphorfor solid-state lighting [J]. J. Phys. D: Appl. Phys.,2009,42,245102
    [83] N. Enomoto, T. Sakai, M. Inada, Y. Tanaka, J. Hojo. Synthesis ofCa3Sc2Si3O12:Ce3+phosphor via newly developed emulsion route [J]. J. Ceram. Soc.Jpn.,2010,118(11):1067-1070
    [84]肖志国.半导体照明发光材料及应用[M].北京:化学工业出版社,2008.38
    [85] Y. Shimomura, T. Kurushima, M. Shigeiwa, N. Kijima. Redshift of GreenPhotoluminescence of Ca3Sc2Si3O12:Ce3+Phosphor by Charge CompensatoryAdditives [J]. J. Electrochem. Soc.,2008,155(2): J45-J49
    [86] N. P. Kumar, M. S. Kishore, R. G. Chandran, A. A. Setlur. Controlling Ce3+Emission Color in Silicate Garnet Phosphor [J]. Electrochem. Soc. Trans.,2008,16(30):57-64
    [87] M. S. Kishore, N. P. Kumar, R. G. Chandran, A. A. Setlur. Solid SolutionFormation and Ce3+Luminescence in Silicate Garnets [J]. Electrochem. Solid-StateLett.,2010,13: J77-J80
    [88] Y. H. Liu, W. D. Zhuang, Y. S. Hu, W. G. Gao. Improved photoluminescence ofgreen-emitting phosphor Ca3Sc2Si3O12:Ce3+for white light emitting diodes [J]. J. RareEarth,2010,28(2):181-184
    [89] Y. H. Liu, W. D. Zhuang, Y. S. Hu, W. G. Gao, J. H. Hao. Synthesis andluminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for whitelight-emitting diode and field-emission display applications [J]. J. Alloy. Compd.,2010,504:488-492
    [90] Y. B. Chen, M. L. Gong, K. W. Cheah. Effects of fluxes on the synthesis ofCa3Sc2Si3O12:Ce3+green phosphors for white light-emitting diodes [J]. Mater. Sci.Eng. B,2010,166:24-27
    [91] Y. B. Chen, K. W. Cheah, M. L. Gong. Low thermal quenching andhigh-efficiency Ce3+, Tb3+-co-doped Ca3Sc2Si3O12green phosphor for whitelight-emitting diodes [J]. J. Lumin.,2011,131:1589-1593
    [92] Y. F. Liu, X. Zhang, Z.D. Hao, et al. Generation of broadband emission byincorporating N3-into Ca3Sc2Si3O12: Ce3+garnet for high rendering white LEDs [J]. J.Mater. Chem.,2011,21,6354-6358
    [93] J. Qiao, J. H. Zhang, X. Zhang, et al. Formation condition of red Ce3+inCa3Sc2Si3O12:Ce3+, N3as a full-color-emitting light-emitting diode phosphor [J]. Opt.Lett.,2013,38,884-886
    [94] S. Nakamura, T. Mukai, M. Senoh. Candela-class high-brightness InGaN/AlGaNdouble-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett.,1994,64:1687-1689
    [95] E. F. Schubert, J. K. Kim. Solid-state light sources getting smart [J]. Science,2005,308:1274-1278
    [96] T. Fiedler, T. Fries, F. Jermann, M. Zachau, F. Zwaschka. Luminous substanceand light source comprising such a luminous substance [P]. World Patent,2005,WO2005/061659A1
    [97] P. J. Schmidt, W. Mayr, J. Meyer, B. Schreinemacher. Illumination systemcomprising a radiation source and a luminescent material [P]. World Patent,2006,WO2006/095284A1
    [98] A. A. Setlur, W. J. Heward, M. E. Hannah, U. Happek. Incorporation of Si4+-N3-into Ce3+-Doped Garnets for Warm White LED Phosphors [J]. Chem. Mater.,2008,20:6277-6283
    [99] Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao. High Photoluminescence ofSi–N-co-doped BaAl12O19:Mn2+Green Phosphors [J]. Electrochem. Solid-State Lett.,2010,13(10): J119-J121
    [100] Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao. High Thermal Stability andPhotoluminescence of Si–N-Codoped BaMgAl10O17:Eu2+Phosphors [J]. J. Am.Ceram. Soc.,2010,93(6):1534-1536
    [101] Y. Q. Li, G. de With, H. T. Hintzen. Luminescence Properties of Eu2+-DopedMAl2xSixO4xNx(M=Ca, Sr, Ba) Conversion Phosphor for White LED Applications[J]. J. Electrochem. Soc.,2006,153(4): G278-G282
    [102] B. G. Yun, Y. Miyamoto, H. Yamamoto. Luminescence Properties of(Sr1uBau)Si2O2N2:Eu2+, Yellow or Orange Phosphors for White LEDs, Synthesizedwith (Sr1uBau)2SiO4:Eu2+as a Precursor [J]. J. Electrochem. Soc.,2007,154(10):J320-J325
    [103] K. S. Sohn, J. H. Kwak, Y. S. Jung, H. Yan, M. J. Reece. Luminescence ofSr2SiO4xN2x/3:Eu2+Phosphors Prepared by Spark Plasma Sintering [J]. J.Electrochem. Soc.,2008,155(2): J58-J61
    [104] Y. H. Liu, Z. Y. Mao, W. H. Yu, Q. F. Lu, D. J. Wang. Green-light-emittingphase in Ba3MgSi2O8:Eu2+, Mn2+full-color phosphor for white-light-emitting diodesvia addition of Si3N4[J]. J. Alloy. Compd.,2010,493:406–409
    [105] M. Y. Wang, J. H. Zhang, X. Zhang, Y. S. Luo, et al. Photoluminescentproperties of yellow emitting Ca1xEuxSi2O2N2+2/3phosphors for whitelight-emitting diodes [J]. J. Phys. D: Appl. Phys.,2008,41,205103
    [106]高慰.Ca3Sc2Si3012:Ce绿色荧光粉的合成及其发光性能研究:[硕士学位论文].北京:北京有色金属研究总院,2012
    [107] R. Mueller-Mach, G. O. Mueller, M.R. Krames, T. Trottier. High-PowerPhosphor-Converted Light-Emitting Diodes Based on III-Nitrides [J]. IEEE J. Select.Topics Qunt. Electron.,2002,8(2):339-345
    [108] H. S. Jang, W. Bin. Im, D. C. Lee, D. Y. Jeon, S. S. Kim. Enhancement of redspectral emission intensity of Y3Al5O12:Ce3+phosphor via Pr co-doping and Tbsubstitution for the application to white LEDs [J]. J. Lumin.,2007,126:371-377
    [109] L. Wang, X. Zhang, Z. D Hao, et al. Enriching red emission of Y3Al5O12: Ce3+by codoping Pr3+and Cr3+for improving color rendering of White LEDs [J]. Opt.Express,2010,18(24):25177-25182
    [110] L. Wang, X. Zhang, Z. D Hao, et al. Interionic Energy Transfer inY3Al5O12:Ce3+, Pr3+, Cr3+Phosphor [J]. J. Electrochem. Soc.,2012,159(4): F68-F72
    [111] J. Qiao, J. H. Zhang, X. Zhang, et al. The energy transfer and effect of dopedMg2+in Ca3Sc2Si3O12:Ce3+, Pr3+phosphor for white LEDs [J]. Dalton Trans.,2014,43,4146-4150
    [112] K.V. Ivanovskikh, A.Meijerink, F.Piccinelli, et al. Optical spectroscopy ofCa3Sc2Si3O12, Ca3Y2Si3O12and Ca3Lu2Si3O12doped with Pr3+[J]. J. Lumin.,2010,130:893-901
    [113] K.V. Ivanovskikh, A.Meijerink, F.Piccinelli, et al. VUV Spectroscopy ofCa3Sc2Si3O12:Pr3+: Scintillator Optimization by Co-Doping with Mg2+[J]. J.Electrochem. Soc.,2012,1(5): R127-R130
    [114] R. Marin, G. Sponchia, P. Riello, et al. Photoluminescence properties of YAG:Ce3+,Pr3+phosphors synthesized via the Pechini method for white LEDs [J]. J.Nanopart. Res.,2012,14:886
    [115] R. Piramidowicz, K. awniczuk, M. Nakielsk, et al. UV emission properties ofhighly Pr3+-doped YAG epitaxial waveguides [J]. J. Lumin.,2008,128:708-711
    [116] Silvia Pinelli, Stefano Bigotta, Alessandra Toncelli, et al. Study of the visiblespectra of Ca3Sc2Ge3O12garnet crystals doped with Ce3+or Pr3+[J]. Opt. Mater.,2004,25:91-99
    [117] X. H. Xu, Y. H. Wang, X. Yu, Y. Q. Li, Y. Gong. Investigation of Ce-Mn EnergyTransfer in SrAl2O4:Ce3+, Mn2+[J]. J. Am. Ceram. Soc.,2011,94(1):160-163
    [118] C. H. Huang, T. W. Kuo, T. M. Chen. Novel Red-Emitting PhosphorCa9Y(PO4)7:Ce3+, Mn2+with Energy Transfer for Fluorescent Lamp Application [J].ACS Appl. Mater. Interfaces,2010,2(5):1395-1399
    [119] C. F. Guo, L. Luan, Y. Xu, F. Gao, L. F. Liang. White Light-GenerationPhosphor Ba2Ca(BO3)2:Ce3+, Mn2+for Light-Emitting Diodes [J]. J. Electrochem.Soc.,2008,155(11): J310-J314
    [120] C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, J.Lin. Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite throughcombing emissions and modulation of excitation: a novel strategy to white lightemission [J]. J. Mater. Chem.,2010,20:6674-6680
    [121] X. G. Zhang, M. L. Gong. Photoluminescence properties and energy-transfer ofthermal-stable Ce3+, Mn2+-codoped barium strontium lithium silicate red phosphors[J]. J. Alloy. Compd.,2011,509:2850-2855
    [122] U. G. Caldino. On the Ce-Mn clustering in CaF2in which the Ce3+→Mn2+energy transfer occurs [J]. J. Phys.: Condens. Matter,2003,15:3821-3830
    [123] S. Ye, X. M. Wang, X. P. Jing. Energy Transfer among Ce3+, Eu2+, and Mn2+inCaSiO3[J]. J. Electrochem. Soc.,2008,155(6): J143-J147
    [124] Y. Ding, L. B. Liang, M. Li, D. F. He, L. Xu, P. Wang, X. F. Yu. Efficientmanganese luminescence induced by Ce3+-Mn2+energy transfer in rare earth fluorideand phosphate nanocrystals [J]. Nanoscale Res. Lett.,2011,6:119(1-5)
    [125] Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, J. H. Zhang. Generatingyellow and red emissions by co-doping Mn2+to substitute for Ca2+and Sc3+sites inCa3Sc2Si3O12:Ce3+green emitting phosphor for white LED applications [J]. J. Mater.Chem.,2011,21:16379-16384
    [126] Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, J. H. Zhang. Tunablefull-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+phosphor via charge compensation andenergy transfer [J]. Chem. Commun.,2011,47:10677-10679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700