二甲醚燃油喷射系统控制策略仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DME是甲醇系列衍生物之一,也是一碳化工的重要中间体,应用广泛。国内外实验研究表明,其燃烧尾气不需催化转化处理就可以达到欧洲Ⅲ级排放标准。所以,国内外专家一致认为,二甲醚的开发,不仅具有经济性、环保性,更具有战略性。但是二甲醚的弹性模量小,易压缩;常温常压下为气态等决定了它在柴油机上应用,需要选择一种适合该燃料应用的喷射系统,并对选用的喷射系统进行改造。
     电控单体泵结构简化,喷油量和喷油正时控制灵活,喷射压力高,定时波动较小,这些特点有利于二甲醚的应用。结合二甲醚燃烧特性及喷射系统开发项目,本文对二甲醚在电控单体泵上的应用提出了改进建议,并通过计算机仿真技术和油泵试验,讨论了其喷射特性,制定了电控单体泵燃用二甲醚的控制策略。
     本文首先介绍了二甲醚的物化特性和国内外将二甲醚作为代用燃料的研究现状,分析了国内外柴油机燃油喷射系统发展现状,通过对二甲醚性质特点的深入研究,将二甲醚燃油喷射系统进行模拟仿真,制定一套适合二甲醚燃油喷射系统的控制策略,并将控制策略运用到发动机中,实现对二甲醚发动机各工况的精确控制。为二甲醚代替柴油后,改善燃烧和排放的实现提供可行性,并为进一步的研究提供硬件基础。
     本文通过AMEsim4.30软件建立电控单体泵模型,然后根据制定的控制策略,得到不同工况下的仿真结果。仿真结果表明,在电控单体泵上应用二甲醚时,虽然降低针阀起喷压力,但二甲醚弹性模量小,易压缩,导致喷油器盛油腔内压力波动较大。泵端和嘴端最大压力随柱塞直径的增大而增大。对于主预喷射方式的控制策略,主喷射脉宽变化引起的压力波变化不大,但预喷射脉宽和主预喷射间隙所导致的两个压力波的叠加问题,是影响针阀运动变化的主要因素之一,需慎重考虑两波的相位关系。因此,要调整二甲醚电控单体泵供油系统的喷射性能可以从以上方面着手。
     此外,本文结合国内外对二甲醚的研究,搭建了机械泵的试验台架,根据试验数据进行了MAP图的初始化标定,结合该试验和仿真结论设计了电控单体泵油泵试验的内容和方法。
     最后,本文得出结论,根据仿真结果和试验结果的对比分析,适当的改变电控单体泵的关键结构参数和制定合理的燃用二甲醚的控制策略,可以满足二甲醚在电控单体泵上的现实使用。
DME is the one of the ramifications of methanol, it is also an important intermediate of carbon chemistry industry, and applying very widely. Experiments in domestic and abroad showed that its emission could easy to reach Europe III emission criterion without catalyzing disposal. Therefore, the experts in domestic and abroad believed that using DME not only was economization and protecting the natural environment, it also had strategic significance. However, the bulk modulus of elasticity is too small for DME, and it is gaseity in normal temperature and pressure Although there were some problems to be solved if we wanted to apply the DME on diesel engine. All the problems summed up were how to choose injection system, considering the merits of the DME as well as how to modulate construct parameters of the system to adapt to the fuel.
     At the same time, structure of EUP was simplified, and it was flexible to control the fuel injected and injection timing while fluctuation of timing was improved consequently. All these merits were helpful for the application of DME on diesel engine. Associating combustion characteristic and the project of devise injection system, this study combined simulation technical and pump test bench .Reforming advices and controlling strategies in general were also put forward on researching results.
     At first, the physical and chemical merits of DME were introduced and research actuality in domestic and abroad of DME as a substitute fuel. Then analyzing the development of diesel injection system in domestic and abroad. According to deeply research the characteristic of DME, and putting up simulation of DME injection system, we established a useful control strategy to ECU, and applying to the DME engine. It could make precise control of DME engine come true. It also supplied the possibility of improve combustion and emission after DME substitute diesel. Do the further researches, we could make hardware according to the simulation.
     Using the software of AMEsim4.30 to built electronic unit pump model, and established a useful control strategy in ECU, it was easy to get kinds of result of different working condition. The simulation results showed that applied DME to electronic unit pump injection system, and decreased needle open pressure were caused higher pressure wave in injection chamber, because the bulk modulus of elasticity is too small for DME and it was compressible. With the increased of plunger diameter, the maximum pump pressure and injection pressure were also increased. Changing main injection PWM wasn't caused pressure fluctuation. However, changing pre-injection PWM and interval PWM were make two pressure waves superpose, and it also caused needle move. We need considerate the phase problem of two pressure wave when they were superposed. Therefore, improving the injection capability need change the key parameters of DME injection system of electronic unit pump.
     Furthermore, according to the research of DME in domestic and abroad, we built an experiment rig and wrote down the experiment data of pump and injection chamber pressure wave. Then compared the experiment data with simulation result, we devised the way of pump experiment of EUP and carried out the initialize demarcation.
     At last, we drew a conclusion that improved some key parameters of electronic unit pump and established a useful control strategy in ECU, it made the possibility of DME applied to EUP come true.
引文
[1] 吴学成,杨中极.新型汽车代用燃料二甲醚[J].现代车用动力,(2005)2,32—33,41
    [2] 高建鹏.二甲醚—柴油混合燃料对高压油泵柱塞偶件磨损的实验研究[D].太原理工大学(2005)4
    [3] 张正芳.CNG/汽油两用燃料发动机排放性能试验研究[D].西华大学,2005
    [4] 潘小亮.柴油机燃用二甲醚的燃烧数值模拟[D].西华大学,2006
    [5] FleichT, Carthy C M , Arun B, et al A new clean diesel technology demonstration of ULEV emissions on a navistar diesel engine fueled with dimethyl ether. [R]SAE paper No 950061, 1995, Detroit Michigan, USA
    [6] 王贺武,周龙保,蒋德明.柴油机燃用二甲醚时采用排气再循环降低NOx排放[J].西安交通大学学报,(2000)7,9—11.
    [7] 陈茂涛.二甲醚—21世纪柴油机代用燃料[J].应用化工,(2001)8,7—9
    [8] 吴学成,杨中极.新型汽车代用燃料二甲醚[j].现代车用动力,(2005)5,32—33,41
    [9] 吕兴才,黄震,李孝禄.代用燃料二甲醚的研究现状与前景[J],车用发动机,2003,8:39—42
    [10] 尧命发,郑尊清.二甲醚燃料燃烧特性研究[J].内燃机学报,(2001)3,20—21.
    [11] Baert Rib S G. Autoignition of a Diesel Spray at High Pressure and Temperature[C]. SAE Paper 890417.
    [12] 蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001
    [13] 杨建军.二甲醚电控单体泵供油系统仿真及控制策略研究[D].西华大学,2006
    [14] 唐丽丽.柴油机掺烧二甲醚掺烧比控制方案实验研究. 武汉理工大学硕士学位论文,(2002)5
    [15] 王贺武,周龙保,陈鸿雁,蒋德明.柴油机燃用二甲醚的燃烧特性[J].燃烧科学与技术,(2000)8,200—204
    [16] 周龙保,王贺武,黄勇成,蒋德明,黄佐华.轻型直喷柴油机燃用二甲醚性能和燃烧特性研究[J].西安交通大学学报,(2000)1,9-13
    [17] 向小军.电控柴油掺烧二甲醚的实验研究及掺烧比确定[D].武汉理工大学,(2003)3
    [18] 徐立华.开展柴油机燃用及掺烧二甲醚研究的必要性[J].汽车科技,(2003)1,1—3
    [19] 丁河清 吴锦翔 王忠俊.柴油—二甲醚混合燃料对柴油机排放的影响[J].武汉理工大学学报,(2001)6,192—194
    [20] 王尚勇 杨青.柴油机电子控制技术[M].机械工业出版社,2005
    [21] 谭文春,张金龙,唐航波,龚元明,卓斌.基于MC68376的高压共轨柴油机电控单元的设计[J].内燃机工程,(2005)2,11—15
    [22] 邓飞.柴油机高压共轨式燃油喷射系统ECU的开发研究[D].华中科技大学,2002.6
    [23] 鲁祥友,滕勤,左承基.二甲醚发动机电控单元的硬件设计[J].小型内燃机与摩托车,(2004)6,12—15
    [24] 张光德,夏新祥.二甲醚发动机电控低压燃料喷射系统的设计[J].内燃机,(2004)10,5—8
    [25] 徐家龙.柴油机电控喷油技术[M].人民交通出版社(2004)3
    [26] AMEsim user manuals
    [27] 汪映 董红义 周龙保 潘克煜.车用柴油机燃用二甲醚的性能研究及行驶试验[J].西安交通大学学报,2004(1),24—27
    [28] Ying, Zhou Longbao, Dong Hongyi. Investigation on combustion and emission characteristic of a multi—cylinder DI diesel engine powered by DME[J]. Transactions of CSICE, 2003, 21(5): 298—302.
    [29] 流体的热物理性质[M].
    [30] 王锡斌,蒋德明,周龙保.利用分子理论估算二甲醚的热物理特性参数[J].西安交通大学学报,2004(1),19—23
    [31] 吴江涛,刘志刚,潘江.293~347K温度区间二甲醚饱和蒸气压的实验研究[J].西安交通大学学报,2003(3),252—255
    [32] 二甲醚手册[J].气雾剂通讯,2003年第5期
    [33] 田立楠.物性手册查用基础[M].湖北科学技术出版社,1985(3)
    [34] 肖文雍 冒晓建 王好战 谭文春 杨林 卓斌.GD21高压共轨式电控柴油机的起动控制策略研究[J].内燃机学报,2003(2),97—100
    [35] 冒晓建.GD21高压共轨喷油系统电子控制的研究与电控供油泵的开发[D].内燃机学报,2002(5),419—423
    [36] 冒晓建,肖文雍,常久鹏等.GD21车用电控柴油机高压共轨系统硬件的开发[J].内燃机学报,2002(3),101—105
    [37] 乔信起 张光德 黄震.柴油机燃用二甲醚喷射与燃烧的试验研究[J].农业机械学报,2004(1),30—33
    [38] Rasmus Charistensen, Sorenson S C, Michael G J, et al. Engine operation on dimethyl ether in a naturally aspirated. DI diesel engine. SAE Paper 971665,1997.
    [39] 胡真 郑国璋 杨庆佛.ZS195柴油机燃用二甲醚的试验研究[J].内燃机工程2001(1),62—65
    [40] 冒晓建 肖文雍 杨林 卓斌.GD—1高压共轨式电控柴油机的怠速控制策略研究[J].内燃机学报,2002(4)321—327.
    [41] 王万利.PID二甲醚预混合燃烧发动机电控燃油喷射系统及其性能研究[D].上海交通大学,2003
    [42] 杭勇.柴油发动机控制模型及控制算法的设计与仿真研究[D].江苏大学,2002
    [43] 刘波澜.基于RTOS思想的单体泵柴油机电控系统研究与开发[D].北京理工大学,2003
    [44] 刘波澜 张付军 黄英 吴思进 孙业保.单体泵柴油机电控系统开发及试验研究[J].内燃机学报,2002(5),450—455
    [45] 肖文雍 冒晓建 杨林 卓斌.GD—1高压共轨式电控柴油机急减速控制策略的研究[J].车用发电机2005(4),35—37
    [45] 仇滔 刘兴华.电控单体泵供油系统仿真研究[J].车用发动机,2005(2),23—25
    [46] 骆聪 周校平 杨中极.二甲醚(DME)发动机燃油系统的试验研究[J].现代车用动力.2005(11)22—26
    [47] 马成杰.495柴油机电控系统设计及喷油控制策略研究[D],浙江大学,2005
    [48] 李君 李理光 江华春.电磁直接驱动式二甲醚喷射器特性试验[J].上海交通大学学报,2004(7),1161—1163
    [49] 魏明 锐文华 张煜盛.二甲基醚喷雾实验研究[J].小型内燃机与摩托车,2005(8),33—38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700