纵向波纹隔热屏局部流动与换热特性数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代航空发动机的加力燃烧室通常装有纵向波纹隔热屏,其上开有气膜孔,可以防止燃烧室筒体的过热和震荡燃烧。本文采用商业软件Fluent对航空发动机的纵向波纹隔热屏进行数值模拟。按照孔径的大小和孔的密集程度,可分为离散孔和发散孔两种结构,本文以离散孔结构的研究为主。
     离散孔结构的孔径较大,且气膜孔之间的轴向和周向间距较大。对于离散孔的研究主要包含两部分内容,即离散孔结构的换热特性和离散孔结构的流量系数。
     流动参数对离散孔结构的换热特性的影响的研究表明:有效温比受吹风比的影响较大,并随着吹风比的增加而增加;热侧换热系数受主流雷诺数的影响较大,并随着主流雷诺数的增加而增加;冷侧换热系数则随着次流雷诺数和射流与次流密流之比的增加而增加。
     结构参数对离散孔结构换热特性的影响的研究表明:随着隔热屏曲率半径或者隔热屏高度的增加,隔热屏的有效温比降低;气膜孔的开孔位置越靠近波峰,冷却效果越好;波谷处不宜开孔。
     对离散孔气膜孔的流量系数的研究发现:越靠近波峰处的气膜孔,其流量系数越大;离散孔的流量系数随着吹风比的增加而增加,随着次流雷诺数的增加而降低,随着主流雷诺数的增加而增加;
     发散孔结构的孔径较小,且气膜孔之间的周向和轴向间距较小。对于发散孔对称板和发散孔非对称板结构,均在给定的冷却流量条件下,研究结构参数的改变对其冷却效果的影响,得到主要的结论如下:随着开孔率增加,冷却效果降低;随着气膜孔孔径或者轴向孔间距的增加,冷却效果降低;随着气膜孔入射角的增加,冷却效果有所降低。
For modern high-powered aircraft engine, longitudinal ripple way liner is used a lot to avoid concussive combustion and the ablation by the high temperature gas. This article uses commercial software, the Fluent, to simulate the longitudinal ripple way liner. According to the diameter or density of the fim holes, the ripple way liners are divided into discrete film holes and transpiration holes. This article argues mainly in the discrete film holes.
     The diameter and space between holes of the discrete holes are larger than that of transpiration holes. The research on the discrete holes have two parts. That is the influence on the heat transfer and on the characteristic and on the flow characteristic.
     The results on the characteristic of heat transfer judged by the flow parameter are as follows. The cooling effectiveness is mainly determined by the blowing ratio and while the blowing ratio incrases, the cooling effectiveness improves a lot. The heat-exchange coefficent of the hot face increase while the the Renalt number of the mainstream increases. The heat-exchange cofficient of the cool side increases while G2/Gc or Renault number of the cooling stream increases.
     The results on the characteristic of heat transfer by the structure are as follows. The cooling effectiveness will arise while the radius of curvature or the height of the ripple changes. The film holes around the crest zone will do more effort on the cooling effectiveness compared with the trough zone.
     The results on the flux cofficient are as follows. The flux cofficient around the crest zone is larger compared with those around trough zone.
     The flux coefficient increases while the blowing ratio or Renault number of the mainstream increases and decreases while the Renault number of the cooling stream decreases.
     For the ripples with transpiration film holes,whether they are symmetrical or unsymmetrical in shape, the results are found as follows.With the fixed mass of cooling air, the cooling effectiveness will decrease when the radius of film hole or the inject angle increase.
引文
[1]葛绍岩,刘登瀛,徐靖中,李静.气膜冷却[M].科学出版社,1985.
    [2]喷气发动机,罗尔斯-罗伊斯公司资料,1986.
    [3] IHPTET十年进展[R].航空工业总公司内部资料,1998.
    [4] Han J. C, Duffa S, Ekkad S.V. Gas Turbine Heat Transfer and Cooling Technology. Taylor & Francis, New York, 2000.
    [5]吴伟民.加力燃烧室隔热屏沿程气流参数的试验研究.燃气涡轮试验与研究,1995,Vol.1:35-38.
    [6]富丽新,张宝诚,王家骅.加力燃烧室隔热屏换热的实验研究.航空发动机,1998,Vol.4:20-23.
    [7]蔡中保.加力筒体隔热屏压制.燃气涡轮试验与研究,1995,Vol.11:47-52.
    [8]赵坚行,刘全忠.加力室隔热屏流场计算.工程热物理学报,1995,Vol.14(4):491-494.
    [9]张环,刘洪,赵坚行.加力燃烧室流场计算及其隔热屏屈曲分析.南京航空航天大学学报,Vol.32(4):394-399.
    [10]张环,谭辉平,刘洪等.隔热屏的流场计算及其屈曲分析.燃烧科学与技术,2000, 2000,Vol.6(2):107-110.
    [11]张海涛,赵坚行.带隔热屏加力燃烧室热态流场计算.航空动力学报,1995,Vol.22(8):1241-1246.
    [12]明贵清,何家德,王月贵,敖志强.加力燃烧室模型试验研究.燃气涡轮试验与研究,2000,Vol.13(1):35-39.
    [13]季鹤鸣,王乃绪.加力燃烧室隔热屏屈曲变形和热结构稳定性试验研究.航空发动机,1997,Vol.1:1-5.
    [14]丁力铭. F-22战斗机动力装置制造技术浅析.航空制造工程,1996,Vol.5:3-18.
    [15]白烙林,刘松龄.冲压发动机燃烧室隔热屏温度计算研究,[西北工业大学硕士学位论文].西安:西北工业大学,2000.
    [16]陈健,谈浩元.加力燃烧室纵向波纹隔热屏的实验和计算研究,[南航博硕士论文].南京:南京航空航天大学,2000.
    [17]世界航空发动机手册,航空工业出版社,1996年.
    [18]陆永华,常海萍,谈浩元.纵向波纹隔热屏通道的换热特性.推进技术,2002,Vol.23(3):230-232.
    [19]唐婵,常海萍,毛军逵.离散孔纵向波纹隔热屏气膜冷却特性研究.工程热物理学报,2007,Vol.28(3):487-489.
    [20]黄海明,刘勇,赵坚行.纵向隔热屏三维热态流场数值模拟. [南京航空航天大学硕士学位论文].南京:南京航空航天大学,2006.
    [21]季鹤鸣.第四代歼击机发动机加力燃烧室的技术特点.航空发动机,1996,Vol.4:3-12.
    [22]江涛,刘松龄.曲壁气膜冷却数值计算的研究.航空学报,1991,Vol.12(5):272-278.
    [23] E.Lutum, J.von Wolferdorf, K.Semmler et al.“film cooling on a convex surface:influence of external pressure gradient and Mach number on film cooling performance”, heat and mass transfer, 2001.
    [24]徐磊,常海萍,毛军逵,张镜洋.气膜出流冷气侧气膜孔附近壁面换热特性.推进技术,2007,Vol.28(2):141-203.
    [25]徐磊,常海萍,毛军逵.涡轮叶片内“冲击-气膜出流”局部换热特性数值模拟.南京航空航天大学学报,2006,Vol.38(2):148-152.
    [26]徐磊,常海萍,毛军逵,张镜洋.叶片弦中区内部气膜孔局部换热特性实验.航空动力学报,2006,Vol.21(2):331-335.
    [27]张净玉,常海萍.稀疏型气膜出流内部冷气侧换热特性实验研究.航空动力学报,2003,Vol.18(4):515-518.
    [28]陶智,吴宏,蔡毅.气膜出流对叶片各内表面换热系数的影响.航空动力学报,1997,Vol.12(4):413-415.
    [29]董志锐,马斌.气膜冷却式隔热屏壁温的数值计算方法.西北工业大学学报,1994,Vol.12(2):207-213.
    [30]朱惠人,郭涛,许都纯.双排簸箕形孔气膜冷却效率及其叠加算法.航空动力学报,2006,Vol.21(5):814-819.
    [31]韩振兴,末永洁,刘石.吹风比对气膜冷却效率影响的实验研究.航空学报,2004,Vol.25(16):551-555.
    [32]陶涛,吴海玲,彭晓峰.多斜孔层板发散冷却流动传热特性.航空发动机,2004,Vol.30(3):26-30.
    [33]刘江涛,吴海玲,陶涛,彭晓峰.斜孔气膜冷却数值模拟分析.工程热物理学报,2004,Vol.25(6):1034-1036.
    [34]赵梦梦,张弛,林宇震,刘高恩.弯曲多孔壁不同倾斜角气膜孔整体气膜冷却效果研究.航空动力学报,2007,Vol.22(2):210-215.
    [35]徐红洲,苏红桢,刘松龄,许都纯.倾斜30°锥形喷孔气膜冷却的流动和传热实验研究.推进技术,1996,Vol.17(5):52-58.
    [36]孟祥泰,刘高恩.多斜孔冷却技术分析.航空动力学报,1994,Vol.9(4):391-393.
    [37] K.Shinbo, Y.Koide, T.Kashiwagi, et al.“Research of Heat Transfer of a Liner for an Aferburner”. 33rdAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, 1997, AIAA-97-3005.
    [38] K. Funazaki, Iwate University, Morioka.“Studies on Cooling Air Ejected over a Corrugated Wall: Its Aerodynamic Behavior and Film”. ASME turbo expo, 2001.
    [39] J.L. Champion, Deshaies, R Curtelin, et al.“Aerodynamical Structure of the Wall Flow over a Wavy Surface Partially Cooled by A r Injection Through Multiperforations”. AIAA Aerospace Sciences Meeting and Exhibit, 1999.
    [40]N.Kasayapanand, T.Kiatsiriroat.“EHD enhanced heat transfer in wavy channel”. International Communicatins in Heat and Mass Transfer, 2005, Vol.32(2005): 809-821.
    [41] Hang Seok Choi, Kenjiro Suzuki.“arge eddy simulation of turbulent flow and heat”. International Communicatins in Heat and Mass Transfer, 2005.
    [42] S.Jayanti, G..F.Heiwitt.“ydrodynamics and heat transfer of wavy thin film flow”. Jounral of heat mass transfer, 1997, Vol.40(1): 179-190.
    [43] Ram K.Avva, Shivshankar Sundaram.“arge eddy simulation of incompressible flow”. AIAA-98-0539, 1997.
    [44] Hong Liu. three-dimension numerical study on the combustion flow in an afterburner”. AIAA thermophysics conference, 1999, AIAA-99-3752.
    [45] B.Eu.Zhestkov, D.V.Ivanov, V.V.Shvedchenko, et al.“calculated and experimental flat and wavy suiface temperature distributions”. AIAA aerospace sciences meeting and exhibit, 1999, AIAA-99-0733.
    [46] Jeffery A.Lovett, Torence P.Brogan, Derk S.Philippona.“Development Needs for Advanced Afterburner Designs”. joint propulsion conference and exhibit, 2004, AIAA-2004-4192.
    [47]A.K.Tolpadi.“numercial analysis of the flow field in an aircraft engine exhaust nozzle cooling liner”. Aerospace Sciences Meeting and Exhibit, 1995, AIAA-95-0647.
    [48] J.C.Bailey, J.Intile, T.F.Fric, et al.“experimentaland numercial study of heat transfer in a gas turbine combustor liner”. transaction of the ASME, 2003, Vol.125: 994-1002.
    [49] M.Vasudeviah, K.Balamurugan.“on forced convective heat transfer for a stokes flow in a wavy channel”. heat mass transfer, 2001, Vol.28(2): 289-297.
    [50] Jeffrey D.Ferguson, Dibbon K.Walters, James H.Leylek.“performance of turbulence modelsand near-wall treatment in discrete jet film cooling simulations”. ASME, 1998.
    [51]Robert A.Nicoll, Beverly, John W.Vdoviak,et al.“multi-hole film cooled afterburner combustor liner”. United States Patent, No 5483794, 1996.
    [52] John W.Vdoviak, Marblehead, Chester J.Lamando, et al.“gas turbine engine augmentor”. United Stated Patent, No 4833881, 1989.
    [53]张小英,王先炜.比较研究多种气膜冷却效果模型的冷却效果.航空动力学报,2002,Vol.17(4):475-479.
    [54]陈义良,孙慈. SIMPLE方法的收敛特性.工程热物理学报,1984,Vol.5(3),306-311.
    [55]李峰,陈维,曹会东.离散孔板气膜冷却对流换热系数的计算.吉首大学学报,2002,Vol.23(4):35-39.
    [56]朱惠人,许都纯,郭涛,刘松龄.气膜孔形状对孔排下游换热的影响.航空动力学报,2001,Vol.16(4):360-364.
    [57]崔玉峰,徐纲,田学清,黄伟光.燃气轮机燃烧室进气孔流量系数的数值模拟.航空动力学报,2005,Vol.20(2):192-196.
    [58]杨世铭,陶文铨.传热学.高等教育出版社,1995年.
    [59]陶文铨.数值传热学.西安交通大学出版社,2001.
    [60]王福军.计算流体动力学分析.清华大学出版社,2004.
    [61]韩占忠,王敬,兰小平. fluent流体工程仿真计算实例与应用.北京理工大学出版社,2004.
    [62]曹玉璋.航空发动机传热学.北京航空航天大学出版社,2005.
    [63] fluent手册,fluent.inc,2003.
    [64]金如山.航空燃气轮机燃烧室.宇航出版社,1988 .
    [65]裘云.带肋壁和气膜孔出流通道的流动特性研究,[西北工业大学博士学位论文].西安:西北工业大学,2003.
    [66]张弛,赵梦梦,林宇震,刘高恩.弯曲壁面上开孔倾角对气膜孔流量系数的影响.航空动力学报,2007,Vol.22(7):1127-1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700