超燃冲压发动机支板混合增强机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以超燃冲压发动机支板喷射燃料的混合机理为研究对象,利用基于纳米粒子的平面激光成像(NPLI)技术和高速纹影等实验手段与数值模拟相结合,重点对各种构型支板的通流流场特性和燃料的混合特性进行了研究。
     采用纹影实验与RANS数值模拟方法相结合,对各种构型支板的通流流场特性进行研究。结果表明:采用RANS模拟结果与实验结果吻合较好,本文所用的RANS模拟可以准确的模拟超声速支板流场;基准支板尾部形成的超声速可压混合层发展缓慢,影响了燃料与空气的混合。采用交错尾部支板可以在支板尾部产生流向涡,增强对剪切层的扰动,加快剪切层的发展,同时这种褶皱型的混合层结构增大了质量和动量交换的表面积。凹腔支板在其凹腔内和尾部均可提供大面积的驻涡区,有利于火焰的稳定,但尾部剪切层发展比基准支板更加缓慢。
     利用NPLI技术与RANS数值模拟方法相结合,对支板燃料的混合特性进行了研究,结果表明:基准支板尾部通流剪切层限制了燃料向展向扩散,混合效果较差。引入流向涡可以有效提高燃料与空气的混合能力,燃料喷入流场后迅速充满流向涡,流向涡的发展引导了燃料在流场中的分布和扩散。因而流向涡的发展速度决定了燃料的混合性能。综合膨胀角的大小决定了流向涡的生成和发展,最佳综合膨胀角不是固定值,而是受到喷注方式、喷注压降、还有燃烧的综合影响。采用带凹腔结构的支板时,受到剪切层的制约,燃料主要集中在支板尾迹区内,无法得到良好的展向分布。
The fuel/air mixing mechanism of scramjet with strut was studied in the presented dissertation. Nanoparticle-based Planar Laser Imaging (NPLI), high speed photography and schlieren, as well as numerical simulations, are applied to in-depth investigations on characteristics of non-injection flow and fuel/air mixing with different strut configurations in supersonic flow.
     The characteristics of non-injection flow field with different strut configurations were investigated by schlieren and numerical simulation. The numerical results accord with the experimental results very well which indicates that the supersonic flow field with strut can be properly forecasted by the presented simulation method with RANS(Reynolds Averaged Navier–Stokes). Since the compressible shear layer with basic strut configuration in supersonic flow develops slowly, further fuel/air mixing was impacted. The streamwise vortexs produced by Alternating-Wedge struts can promote the development of shear layer and increase the mass and momentum exchanging interface. A wide range of Recirculation zone which appears both in the curve and at the tail of curve-strut is conducive to the stability of the flame. But the development of shear layer induced by curve-strut was slower than that of basic-strut.
     The fuel/air mixing characteristics were investigated by NPLI and RANS simulation. The results show that the fuel/air mixing performance was poor for basic strut configuration on account of that the spanwise diffusion of the fuel was limited by the shear layer. The streamwise vortexs were filled with fuel as soon as the fuel was injected, and the development of streamwise vortexs conducted the distribution and diffusion of the fuel. Thus the fuel/air mixing performance was determined by the growth rate of streamwise vortexs. The generation and growth of streamwise vortexs was limited by the Total Expansion Angle(TEA). The optimal TEA was affected by the injection mode, the pressure differential of injection, as well as combustion. For curve-strut, fuel mainly concentrated in the wake of strut which limited its spanwise distribution.
引文
[1] Murthy S N B, Curran E T. High-speed flight propulsion systems [J]. Progress inastronautics and aeronautics, 1991, 137:124-158.
    [2] Curran E T. Scramjet Engines: The first Forty Years [J]. Journal of Propulsion and Power, 2001, 17 (6):1138~1148.
    [3]解发瑜,李刚,徐忠昌.高超声速飞行器概念与发展动态[J].飞航导弹, 2004, 5:27~31.
    [4] J. M. Tishkoff, J. P. Drummond, T. Edwards, A. S. Nejad. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion. AIAA Paper 97-1017. 1997.
    [5] E. T. Curran, Murthy, S. N. B. Scramjet Propulsion. Volume 189. Progress in astronautics and aeronautics, AIAA 2002.
    [6]刘陵.超音速燃烧与超音速燃烧冲压发动机.西北工业大学出版社. 1993
    [7] W.H.Heiser, D.T.Pratt. Hypersonic Airbreathing Propulsion. Washington, DC: American Institute of Aeronautics and Astronautics, 1994
    [8]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案.飞航导弹. 1997(8): 29~37
    [9]陈英硕. X-43A创新的世界记录.飞航导弹. 2004, 12: 2
    [10] http://www.slinews.com
    [11] Unmeel B Mehta, Jeffrey V.Bowles. Two-Stage-to-Orbit Spaceplane Concept with Growth Potential. Journal of Propulsion and Power, 2001, 17(6):1147~1161
    [12] E. H. Andrews. Scramjet Development and Testing in the United States. AIAA Paper 2001-1927.2001.
    [13] Tsien H S and Beilock M. Heat Source in a Uniform Flow. Journal of Aeronautical Sciences. 1949, 16(12)
    [14] Pinkle I I, Serafini J S. Graphical Method for Obtaining Flow Field in Two-dimensional Supersonic Stream to Which Heat is Added, NACA TN-2206, 1950
    [15] Ferri A. Discussion on M. Roy’s paper propulsion supersonic par turboreacturs et par statoreacteurs. Advances in Ameronautical Sciences, 1959, 1:79~112
    [16]刘兴洲,刘敬华,王裕人等.超声速燃烧实验研究(I).推进技术. 1991, 12(2)
    [17]刘兴洲,刘敬华,王裕人等.超声速燃烧实验研究(II).推进技术. 1993, 14(4)
    [18] Mercier R A, Ronald T M F. US Air Force Hypersonic Technology Program. AIAA 96-2123
    [19] http://www.globalsecurity.org/military/systems/munitions/hytech.htm
    [20] http://www.globalsecurity.org/military/systems/munitions/hyfly.htm
    [21]王培.法俄合作研制超燃冲压发动机.飞航导弹. 1999 (7): 40~42
    [22]郭振玲.法国冲压发动机研制情况介绍.飞航导弹. 1994 (4): 24~28
    [23] Laurent Serre, Jean-Pierre. French Potential for Semi-free Jet Test of an Experimental Dual Mode Ramjet in Mach 4-8 Conditions. AIAA 2002-5448
    [24]周军,徐文.法国实验超声速和高超声速发动机.飞航导弹, 2003(2): 32~33
    [25] Neal E Hass, Michael K S. Flight Data Analysis of HyShot 2. AIAA 2005-3354
    [26] http://www.uq.edu.au/news/hyshot.phtml
    [27]王振国,罗世彬,吴建军.可重复使用运载器研究进展.国防科技大学出版社. 2004
    [28]丁猛.超声速/高超声速进气道——隔离段流场的数值模拟.硕士学位论文.国防科技大学研究生院. 2000.10
    [29]丁猛,李桦,范晓樯.等截面隔离段中激波串结构的数值模拟.国防科技大学学报. 2001, 23(1):15~18
    [30]张树道,张肇元,司徒明.一种研究双燃式(超燃)冲压发动机进气道和燃烧室冷态内流场的实验方法.流体力学实验与测量. 1998, 12(2):51~54
    [31]张树道,张肇元,徐胜利,司徒明.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响.流体力学实验与测量. 1999, 13(2):16~21
    [32]晏至辉.超燃冲压发动机尾喷管仿真和实验研究.工学硕士学位论文,国防科学技术大学研究生院, 2005
    [33] Rogers R C, Capriotti D P, and Guy R W. Experimental Supersonic Combustion Research at NASA Langley [R]. AIAA paper 98-2506, 1998
    [34] Seiner J M, Grosch G E. Effect of Tabs on Mixing on Round Jets [R]. AIAA paper 98-2326, 1998
    [35] Yu K H, Schadow K C. Role of large coherent structures in turbulent compressible mixing [J]. Experimental Thermal and Fluid Science, 1997, 14 (1):75~84.
    [36] Vandsburger U. A Self-Excited Wire Method for Cotrol of the Evolution of a Turbulent Mixing Layer [R]. AIAA paper 93-0443, 1993
    [37] Bogdanoff D W. Advanced injection and mixing techniques for scramjet combustors [J]. Journal of Propulsion And Power, 1994, 10 (2):354-361.
    [38] Doty M J. Experiments on mach wave interactions in a compressible mixing layer [R]. AIAA paper 99-2105, 1999
    [39] Adelgren R G, Elliott G S, Crawford J B. Axisymmetric Jet Shear Layer Excitation Induced by Electric Arc Discharge and Focused Laser EnergyDeposition [R]. AIAA paper 2002-0729, 2002
    [40] Cao W, Zhou H. The enhancement of the mixing of a 2D supersonic mixing layer [J]. Science in CHINA(Series A), 2002, 45 (7):874-883.
    [41] J.S.Fox, M.J.Gastont, A.F.P.Houwingf. Instantaneous Mole-Fraction PLIF Imaging of Mixing Layers Behind Hypermixing Injectors. AIAA Paper 99-0774
    [42] R.J.Hartfield, S.D.Hollo, J.C.McDaniel. Experimental Investigation of a Supersonic Swept Ramp Injector Using Laser-induced Iodine Fluorescence. Journal of Propulsion and Power, 1994, 10(1):129-135
    [43] S.K.Cox, R.P.Fuller, J.A.Schetz, et al. Vortical Interactions Generated by an Injector Array to Enhance Mixing in Supersonic Flow. AIAA Paper 94-0708
    [44] Gruber M R, Donbar J M, Jackson T A, et al. Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor. AIAA 2000-3708
    [45] R. C. Rogers, D. P. Capriotti, R. W. Guy. Experimental Supersonic Combustion Research at NASA Langley. AIAA Paper 98-2506. 1998.
    [46] V. L. Semenov. The Possibility Investigation of Strut Fuel Feed System Use in Scramjet Combustors on Results of Tests with Hydrocarbon Fuel. AD A-332687. 1997
    [47] Viacheslav A. Vinogradov, Yurii M. Shikhman, Ruslan V. Albegov, Georgi K. Vedeshkin. About Possibility of Effective Methane Combustion in High Speed Subsonic Airflow. AIAA Paper 2002-5206
    [48] D.Scherrer, O.Dessornes. Injection Studies in The French Hypersonic Technology Program. AIAA-95-6096
    [49] Emmanuel Dufour, Marc Bouchezf. Computational Analysis of a Kerosene-Fuelled Scramjet. AIAA-2001-1817
    [50] Kanda T, Study of the Intensive Combustion in the Scramjet Engine. AIAA-98-3123
    [51] Sadatake Tomioka, Atsuo Murakami, Kenji Kudo. Combustion Tests of a Staged Supersonic Combustor with a Strut.
    [52] Papamoschou,D. and Roshko,A., The Compressible Turbulent Shear Layer: Experimental Study. Journal of Fluid Mechanics, Vol.197, 1988, pp:453-477.
    [53] M.J.Doty, D.K.McLaughlin. Experiments on Mach Wave Interactions in a Compressible Mixing Layer. AIAA-99-2105
    [54] Tetsuji Sunami, Michio Nishioka. Supersonic Mixing and Combustion Control Using Streamwise Vortices. AIAA paper 98-3271.
    [55] Tetsuji Sunami, Philippe Magre. Experimental Study of Strut Injections in a Supersonic Combustor Using OH-PLIF, AIAA 2005-3304
    [56] Masatoshi Kodera, Tetsuji Sunami. Numerical Study on The Supersonic Mixing Enhancement Using Streamwise Vortices, AIAA-2002-5117
    [57] Dr.Satish Kumar, Scramjet Combustion Development
    [58] Desikan.S.l.N, Job Kurian. Mixing Studies in Supersonic Flow Employing Strut Based Hypermixers. AIAA 2005-3643
    [59] K. -Y. Hsu. Experimental Study of Cavity-Strut Combustion in Supersonic Flow. AIAA 2007-5394
    [60] Ramya P.Hande, A.G. Marathe. A Computational Study on Supersonic Combustion with Struts as Flame Holder. AIAA 2008-4712
    [61] Brandstetter, S.Rocci Denis, H.-P.Kau, D.Rist. Flame Stabilization in Supersonic Combustion. AIAA-2002-5224
    [62] P. Kasal, P. Gerlinger, R. Walther, J. von Wolfersdorf, B. Weigand. Supersonic Combustion: Fundamental Investigations of Aerothermodynamic Key Problems. AIAA-2002-5119
    [63] Chung-Jen Tam, Kuang-Yu Hsu, Mark R. Gruber. Aerodynamic Performance of an Injector Strut for a Round Scramjet Combustor. AIAA 2007-5403
    [64] Chung-Jen Tam, Kuang-Yu Hsu, Mark R. Gruber. Fuel/Air Mixing Characteristics of Strut Injections for Scramjet Combustor Applications. AIAA 2008-6925
    [65] Jason C. Doster and Paul I. King, Mark R. Gruber, Campbell D. Carter, Michael D. Ryan, Kuang-Yu Hsu. Experimental Investigation of Air and Methane Injection from In-stream Fueling Pylons. AIAA 2008-4501
    [66]俞刚,李建国.氢/空气超声速燃烧研究.流体力学实验与测量. 1999, 13(1):1~12.
    [67] XinYu,Chang, HongBin,Gu. Thrust and Drag of a Scramjet Model with Different Combustor Geometries. AIAA-2005-3315
    [68]余勇,丁猛,刘卫东,等.煤油超音速燃烧的试验研究.国防科技大学学报. 2004. 26(1):1~4.
    [69]苏义,支板超声速混合增强机理及其阻力特性研究.硕士学位论文.国防科学技术大学研究生院
    [70]刘世杰.超燃冲压发动机支板流场RANS/LES模拟及燃烧过程试验研究.硕士学位论文.国防科技大学研究生院
    [71]黄生洪,何国强,何洪庆.支板火箭引射冲压发动机引射模态燃烧流动(1)瞬时掺混燃烧流场的数值模拟.推进技术. 2003
    [72]黄生洪,何国强,何洪庆.支板火箭引射冲压发动机引射模态燃烧流动二次燃烧及构型的影响.推进技术. 2003,6
    [73]王晓栋,宋文艳.燃料引射方式对超燃冲压燃烧室混合及燃烧效率的影响.航空学报. 2004,11. Vol.25, No.6
    [74]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究.空气动力学学报. 2004.09. Vol.22, No.3
    [75]孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案.航空动力学报. 2006.04, Vol.21 No.2
    [76] S.Gordon, B.J.Mcbride. Computer Program for the Calculation of Complex Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations. NASA SP-273,1976.
    [77]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究.博士学位论文,国防科学技术大学研究生院,2004,10
    [78] Ali M,Fujiwara T,Leblanc J E.Influence of main flow inlet configuration on mixng and flameholding in transverse injection into supersonic airstream.International journal of Engineering Science, 2000, 38(20): 1161~1180 .
    [79]王永寿.超燃冲压发动机燃烧室内的超声速纵涡流效应.飞航导弹. 2003. No.12
    [80]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究.
    [81]博士学位论文,国防科学技术大学研究生院, 2007, 10.于江飞.双燃烧室冲压发动机超声速混合层数值模拟及非线性分析.硕士学位论文,图防科学技术大学研究生院,2008,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700