气动波纹管式燃油流量调节阀控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃油供给技术是超燃冲压发动机的关键技术之一。能按照需要,准确、稳定、快速的调节进入燃烧室的燃料量,是超燃冲压发动机获得稳定推力的基本要求。实际工作中,为了冷却发动机壁面,超燃冲压发动机采用再生主动热防护技术,即燃料在进入燃烧室之前,首先作为冷却介质经过发动机外表面对发动机壁面进行冷却,因此燃油温度被升高,燃油流量调节阀的工作条件十分恶劣。因此,为了准确、稳定、快速的调节燃油流量,以确保超燃冲压发动机的性能,研究燃油流量调节阀的设计方案、工作特性及控制方法是十分必要的。
     气动波纹管式燃油流量调节阀是利用高压气动伺服系统实现先导控制的锥阀式调节阀,本文将该阀等效成气动伺服阀控带弹性负载的单作用气缸,据此建立了其数学模型,得出了分别以波纹管控制腔内气体压力为输出和以阀芯位移为输出的传递函数,提出了压力闭环控制以及阀芯位移闭环控制两种控制方法。针对不同反馈形式传递函数的特点,采取不同的校正方式,并应用传统PID控制器对系统进行控制,采用Matlab的Simulink工具箱对系统进行了仿真。搭建了燃油流量调节阀试验台,进行了阀的控制特性试验,比较了压力闭环控制及阀芯位移闭环控制两种控制方法的优缺点及精度,并与仿真结果进行了比较。
Fuel supply control is one of the key techniques for the development of scramjet technology. In order to generate steady thrust force, the flow rate of the fuel, which flow into the scramjet combustion chamber, should be accurately, smoothly and fastly regulated. Scramjet engine uses active cooling method for coolant system. The fuel circulates across the engine surface as coolant before going into the combustion chamber. The temperature of fuel is raised up. Hence the valve works under adverse conditions. It is necessary to study the control method about the fuel flow rate control valve to ensure the scramjet engine performencs.
     A pneumatic bellow-type fuel flow rate control valve is developed. The theoretical analysis and experimental investigation are carried out. Being considered as a pneumatic servo valve-controlled cylinder with elastic loads, the mathematical models of the valve are built. The transfer functions based on the bellows control pressure and spool displacement are obtained respectly. Pressure closed loop control method and spool displacement closed loop control method are presented. According to the different feedback transfer function, different correction methods are adopted. And the PID controller is used to control the system. The system simulation is carried out by matlab/simulink software. A test rig for high temperature flow rate control valve is set up and the experiment on the valve is carried out. The valve control characteristics about the pressure closed loop control and spool displacement closed loop control are obtained and compared with the simulation results.
引文
1.刘小勇.超燃冲压发动机技术.飞航导弹. 2003, (2):38~42
    2.贺武生.超燃冲压发动机研究综述.火箭推进. 2005, 31(1):29~32
    3. Edward T. Curran. Scramjet Engines: The First Forty Years. Journal of Propulsion and Power. 2001, 17(6):1138-1148.
    4.徐勇勤.高超声速飞行器总体概念研究.西北工业大学硕士学位论文. 2005:2~10
    5.任加万,谭永华.冲压发动机燃烧室热防护技术.火箭推进,2006(4):38-42
    6.臧增为.高温流量调节阀热力学特性的研究.哈尔滨工业大学硕士学位论文. 2007:3~20
    7.陈奇.比例式高温气态燃料流量调节阀的研究.哈尔滨工业大学硕士学位论文. 2007
    8.占云.超燃冲压发动机的第一个40年.推进技术,2002,9:32-42
    9.司徒明.超燃冲压发动机的研究现状与动向.飞航导弹. 1996, (7):24~25
    10.刘兴洲.超燃冲压发动机性能初步研究[ J].航空发动机,2007.33(2):1~4
    11. Edward A. Fletcher. Scramjets and Surfboards: Some Forgotten History. Journal of Propulsion and Power. 2007, 23(1): 15-20
    12.郑日恒.法国冲压发动机研究进展.航天制造技术. 2006, (4):6~10
    13. Takeshi KANDA,Toshihito SAITO,Kenji KUDO,Tomoyuki KOMURO and Fumiei ONO.Mach 6 Testing of a Scramjet Engine Model.Journal of Propulsion and Power 1997(4):543-551
    14. R.T.Voland,M.K.Smart.CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test.AIAA Paper 99-4848,1999.
    15. Lawrence D.Huebner,Kenneth E.Rock,David W.Witte,Edward G.Ref. Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel. AIAA Paper 2000-3605,2000.
    16. Lawrence D.Huebner,Kenneth E.Rock,Edward G.Ruf,David W.Witte. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction.AIAA Paper 2001-1809,2001.
    17.贺芳,禹天福,李亚裕.吸热性碳氢燃料的研究进展.导弹与航天运载技术. 2005, (1):269~274
    18.孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案.航空动力学报,2006(2)
    19. Rone Bates,Tim Edwards.Heat Transfer and Deposition Behavior of Hydrocarbon Rocket Fuels.Aerospace Sciences Conference AIAA 2003-0123
    20.鲍文,周伟星,周有新,于达仁.超燃冲压发动机再生冷却结构的强化换热优化研究[J].宇航学报,2008,29(1):246~251
    21. Alexander Woschnak. Thermal and Fluid Mechanical Analysis of High Aspect Ratio Cooling Channels. AIAA paper. 2001: 2001~3404.
    22. W. Curran, P. Stiglic. Hypersonic Research Engine Integrated Propulsion Control. J. Aircraft. 1970, 8(8):378~385
    23. Willems, Paul A., Froment, Gilbert F. Kinetic Modeling of the Thermal Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research. 1988, 11(27):1959~1966
    24. Willems, Paul A., Froment, Gilbert F. Kinetic Modeling of the Thermal Cracking of Hydrocarbons2: Calculation of Frequency Factors. Industrial & Engineering Chemistry Research. 1988, 11(27):1966~1971
    25. Hans, Alesi. AllanPuall. The Hyshot Program. ASRI News. 1999:301~307
    26. Montgomery C.J., Cremer M.A., Chen J.Y., Westbrook C.K., Maurice L.Q. Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels. AIAA Paper. 1999:2212~2220
    27. A. Roudakov, V. semenov. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program. AIAA Paper. 1998:98-1643.
    28. C. McClinton, A. Roudakov. Comparative Flow Path Analysis and Design Assessment of an Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine at a Mach Number of 6.5. AIAA Paper. 1996:96-4571.
    29.陈奇.比例式高温气态燃料流量调节阀的研究.哈尔滨工业大学硕士论文. 2007:3
    30.李永红.高温气态燃料流量调节阀的多场耦合热力学特性研究.哈尔滨工业大学硕士论文. 2008:3
    31.姜北.比例式气液两相高温燃料流量调节阀的研究.哈尔滨工业大学硕士论文. 2008:55
    32. M. T. Muller, R. C. Fales. Design an Analysis of a Two-stage Poppet Valve for Flow Control. Proceedings of the American Control Conference, Minneapolis, MN, 2006:4633-4638
    33. S. Hayashi. Instability of Poppet Valve Circuit. JSME International Journal Series C. 1995, 38(3):357-366
    34. J. E. Funk. Poppet Valve Stability. Journal of Basic Engineering. 1964:207-212
    35. Deschamps, M Militzer, W. J. Poole. Precipition Kinetics and Strengthening of a Fe-0.8 wt% Cu All0y, ISIJ Inter. 2001, 41:196-205
    36. Heck Ka, Smith J S. Inconel alloy 783:An Oxidation-resistant, Low Expansion Super Alloy for Gas Turbine Applicants. Joumal of Engineering for Gas Turbines and Power. 1998, 120(4):363-369
    37.贾新云,赵宇新.长期时效对低膨胀高温合金GH783组织与性能的影响.航空材料学报. 2006,26(4):14-17
    38.王永岗,吕英民,张进国.波纹管力学性能研究水平述评.石油机械. 1999, 27(12):47-50
    39.马伟,李德雨,钟玉平.波纹管的发展与应用.河南科技大学学报(自然科学版). 2004, 25(4):28-31
    40.巫宗萍,羊海洋.阀门用波纹管的力学特性分析方法研究进展.机械. 2007, 34(6):1-3
    41.董世章.国外金属波纹管发展概况.仪表技术与传感器. 1974, (3):1-7
    42.徐开先.波纹管类组件的制造及其应用.机械工业出版社,1998. :1-25
    43.第二研究设计院泵阀组编.不锈钢波纹管阀门手册.原子能出版社,1980:1-2
    44.赵洪激.波纹管式截止阀密封装置的设计.石油机械,1994, 22 (4): 33-35
    45.关家麒.机械密封中的波纹管材料.石油机械,2003, 31 (5): 20-22.
    46.林国栋,李敏,张大林.阀门用金属波纹管的选型及应用.阀门. 2007, (1):29-32
    47.刘岩,段玫,张道伟.波纹管应力分析研究进展.管道技术与设备. 2006, (4):31-36
    48.章一明.锥阀的液动力及其出流特性.浙江大学硕士学位论文. 1982:39
    49.付文智,李明哲,李东平,孙刚,金昕.液压锥阀的数值模拟.机床与液压. 2004, (2):44-46
    50.张作状,李建楠,陈媛媛.关于滑阀与锥阀中稳态液动力方向的比较分析[J].液压与气动,2009(3):68~69
    51.王福生(译).针阀和锥阀中的节流面积.MACHINE DESIGN MAR ,1983,155(5):60-61
    52.赵铁均、王毅.锥阀受力分析及动特性研究.长春光学精密机械学院学报,1992,15(4):43-47
    53.章一明.锥阀的动态方程及稳定性分析.华东冶金学院学报,1987,4(3):53-56
    54.汤智勇等.关于锥阀动态液动力的探讨.机床与液压,1993(1):1-9
    55.曾德芬.论锥阀的稳定性.重型机械,1996(3):17-21
    56.李振辉.锥阀特性研究.长春光学精密机械学院学报,1998,21(4):56-58
    57.宋天池,沈燕良,胡良谋,李永林.基于结构参数优化的锥阀式单向阀消振研究.机床与液压,2009,37(1):77-79
    58. B.M. Mohan, A. Sinha. Analytical structure and stability analysis of a fuzzy PID controller. Applied Soft Computing 8 (2008) 749–758
    59. S. Bhattacharya, A. Chatterjee, S. Munshi.A new self-tuned PID-type fuzzy controller as a combination of two-term controllers. ISA Transactions 43 (2004) 413–426
    60. Zhi-Wei Woo, Hung-Yuan Chung, Jin-Jye Lin.A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets and Systems 115 (2000) 321–326
    61. Minyou Chen, D.A. Linkens.A hybrid neuro-fuzzy PID controller. Fuzzy Sets and Systems 99 (1998) 27-36
    62. Scheidl, R.E., Manhartsgruber, B. On the dynamic behavior of servo-hydraulic drives. Nonlinear Dyn. 17(1998), 247–268
    63. Bonchis, A., Corke, P.I., Rye, D.C. Experimental evaluation of position control methods for hydraulic systems.IEEE Trans. Control Syst. Technol. 10(6) (2002)
    64. Li, G., Khajepour, A. Robust control of a hydraulically driven flexible arm using backstepping technique. J. Sound Vib. 280, 759–775 (2005)
    65. Kim, C.S., Hong, K.-S., Kim, M.-K. Nonlinear robust control of a hydraulic elevator experiment-based modeling and two-stage Lyapunov redesign. Control Eng. Pract. 13, 789–803 (2005)
    66.查宏民.基于比例方向阀的气动位置控制系统控制策略的研究[D].天津:天津大学,2005,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700