多孔介质钝体火焰稳定特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空涡轮及火箭冲压发动机、回转窑等燃烧室中,由于来流空气速度较大,导致火焰不稳定。工程中常用V型实心钝体形成稳定的回流区来稳定火焰。然而大量的研究和应用表明,V型实心钝体火焰稳定器可导致燃烧室内较大流动损失,且火焰稳定边界相对较窄,燃烧效率不高,还容易出现振荡燃烧。本文提出用多孔材料代替实心钝体制作多孔介质火焰稳定器。其多孔空间结构,大比热容及大比表面积,可有效减少流动损失,有助于火焰稳定。
     本文主要对比试验研究多孔介质钝体与实心钝体尾迹差异,探究用多孔介质钝体稳定火焰的可能性。主要工作包括:
     (1)在低速条件下用DPIV(Digital Particale Image Velocimetry)系统实现了对粒子的速度分布测量功能。由相同工况钝体尾迹速度矢量图,流函数图,以及涡量场可直观观测到实心钝体和多孔介质钝体尾迹流场的差异。
     (2)回流区的大小和位置决定了钝体下游高温燃气预热新鲜燃料和空气混合的能力,本文利用二维热线测量相同工况下不同钝体尾迹平均速度场,雷诺应力等,进一步探索钝体尾迹回流区结构。并在冷态流场中测量不同钝体的流阻损失。
     (3)用丙烷作燃料观测不同钝体随着工况变化火焰高度,火焰结构演变过程,测试钝体对熄火极限的影响,以及通过火焰图像进行温度定量化处理来研究钝体火焰燃烧静态特性。
     基于上述比较,得出结论如下:(1)实心钝体回流区靠近钝体,回流区范围和回流强度较大;多孔介质钝体回流区状况与孔密度有关,总的来说其回流区范围以及回流强度较实心钝体弱,回流区的位置与向下游移动。(2)在大堵塞比燃烧室内,采用多孔介质钝体可在大大降低流阻。(3)实心钝体堵塞尾迹强剪切可强化混合,但易导致熄火。多孔介质火焰稳定器的通透与弥散性能通过改变钝体后燃空比可拓宽火焰熄火极限。
In aviation turbine engines, rocket ramjet, rotary kiln and other combustion chambers, the high-speed air flow frequently cause flame instability. V-solid bluff body was used to form a stable recirculation zone to stabilize the flame in the actual application. However, a lot of research and application show that, in combustion chamber, this kind of flame stabilizer can lead to large flow loss and narrow the flame stability boundary, decrease the combustion efficiency, prone to generate oscillating combustion. In this paper, the porous media was investigated to make flame holder instead of solid bluff body. The special space structure, large specific heat and specific surface area of porous media can reduce the flow loss effectively, stabilize the flame.
     Based on the comparative trials of porous media and solid bluff body, the possibility of using porous media bluff-body to stabilize flame was reseached. The main research works of this paper are focused on following areas:
     (1) In low-speed flows, a DPIV(Digital Particale Image Velocimetry)system was used to measure the velocity distribution. At the same flow condition, the differences of wake flow of porous medium and solid bluff body can be observed by average velocity field, stream function graph and vorticity field.
     (2) The size and position of recirculation zone depend on the capability of preheating fresh fule and air mixing by high-temperature fuel in the downstream of bluff body.
引文
1丁猛基于凹腔的超声速燃烧火焰稳定技术研究[D]博士学位论文2005
    2金莉,谭永华火焰稳定器综述[J].火箭推进,2006,32(1):30-34.
    3 Irvin Glassman. Combustion[M]. Academic press,Inc.1977
    4李庆基于凹腔火焰稳定器的亚燃冲压发动机燃烧室点火过程研究[D]博士学位论文2010年5月
    5刘兴洲.飞航导弹动力装置[M].国防工业出版社,1992.
    6 D·B·斯柏尔丁燃烧与传质[M]国防工业出版1984
    7 Nicholson,H.M., and Fields,J.P.(1949). Int.Symp.Combust.,3rd p.44, Combustion Inst, Pittsburgh, Pennsylvania.
    8岑可法姚强骆仲泱李绚天著高等燃烧学浙江大学出版社2000 p:96-114
    9 Stephen R.Turns An Introduction to Combustion Concepts and Application(Second Edition) 1996
    10 Zhu M M,Han X S,Ge H W,et al.Simulation of Bluff Body Stabilized Flows with Hybrid Rans and Pdf Method[J].Acta Mechanica Sinica,2007,23(3): 263-273.
    11傅维镰张永康王清安著燃烧学高等教育出版社1989
    12 Stephen R.turns著燃烧学导论:概念与应用(第2版)清华大学出版社2009
    13严传俊范玮著燃烧学西北工业大学出版社2005
    14 Jiang T L,Shen C-H.Effects of Fuel-Injection Parameters in a Side-Dump RamjetCombustor[C].AIAA 98-3214.1998.
    15 Montazel X,Samaniego J M,Lacas F,et al.Turbulent Combustion Modelling in a Side Dump Ramjet Combustor[C].AIAA 92-3599.1992.
    16 D.Leredo Y L,Y.M.Timnat.Study of Two-Phase Flow for a Ramjet Combustor [J].Journal of Propulsion and Power,1991,7(5):724~731.
    17 J.W.Humphrey F E C C.Pressure Oscillations and Acoustic-Entropy Interactions in Ramjet Combustion Chambers[C].AIAA Paper 87-1872.1987.
    18 Korting P A O G.Combustion of Pmma in a Solid Fuel Ramjet[C].AIAA 86-1250. 1986.
    19 P.J.Elands P A O G K.Combustion of Polyethylene in a Solid Fuel Ramjet-a Comparison of Computational and Experimental Results[C].AIAA Paper 88-3043 1988.
    20 R.Thangadurai B S.Numerical Investigation on Effect of Inlet Dump Angle on Ramjet Combustor Performance[C].AIAA 2004-3876.2004.
    21 Suresh M.A Numerical Study of Secondary Fuel Injection Techniques for Active Control ofCombustion Instability in a Ramjet[C].AIAA Paper 92-0777.1992.
    22 U.G.Hegde D R,B.R.Daniel,B.T.Zinn.Flame Driving of Longitudinal Instabilities in Dump Type Ramjet Combustors[C].AIAA 86-0371.1986.
    23 W.Clauss K V,H.K.Ciezki.Determination of Temperature Distributions by Cars–Thermometry in a Planar Solid Fuel Ramjet Combustion Chamber[C].AIAA 98-0160.1998.
    24 Lee C W,Moon S Y,Sohn C H,et al.Spray and Combustion Characteristics of a Dump-Type Ramjet Combustor[J].Ksme International Journal,2003,17(12): 2019-2026.
    25 R.S.Reilly.Vortex Burning and Mixing Augmentation System.AIAA Paper76-0678.
    26 T.R.Clements. Final Report: Effect of Swirling Flow on Augmentor Performance.NASA CR-134639.1974.
    27 K.J.Hanloser. Test Verification of Turbofan Partial Swirl Afterburner.AIAA Paper 79-1199.
    28邱新宇,张学仁.双管头部进气旋流—突扩燃烧室冷态流场研究[J].推进技术,1990,(2):714-714.
    29 Muruganandam T M,Seitzman J M.Characterization of Extinction Events near Blowout in Swirl-Dump Combustors[C].AIAA 2005-4331.2005.
    30 Li G,Gutmark E J.Experimental Study of Large Coherent Structures in a Swirl-Dump Combustor[C].AIAA 2004_133.2004.
    31丁毅生航空涡轮发动机燃烧及燃烧室原理西北工业大学出版社1984
    32 R.M.StwalleyⅢ,A.H.Lefebvre. Flame Stabilizaton Using Large Flameholders of Irregular Shape. AIAA Paper 87-0469.
    33 N.K.Rizk,A.H.Lefebvre. Influence of Laminar Flame Speed on the Blowoff Velocity of Bluff-Body Stabilized Flames.AIAA Paper 93-1327.
    34王家骅.带缝隙V型火焰稳定器试验研究.高性能推进系统工程预研论文选集.1991.
    35王俊民.涡喷7系列发动机加力燃流室的裙边稳定器设计、试验及应用.
    36王洪卓,付藻群.楔型稳定器的应用分析.csAA-96-Pc—101.
    37王家骅.一个预燃式火焰稳定器稳定机理研究工程热物理学报,2(4):373—379.1981.
    38 Jing-Tang Yang,Chang-Wu Yen,Flame Stability in the Wake Flow behind a Slit V-Gutter Conmusdon and Flanle,99(2).1994.
    39宁榥,高歌燃烧室气动力学科学出版社1987
    40高歌宁榥沙丘驻涡火焰稳定性的理论及实验研究[J]工程热物理学报1982 vol.3 No.1.
    41付藻群.吸入式稳定器设计研究与试验[J].航空发动机.1998,3.
    42王家骅.蒸发式火焰稳定器的稳定机理研究.中匿工程热物理学会第三次学术会议.1980.
    43刘鸿,王方,王家骅.特种V型蒸发式火焰稳定器的总压损失试验研究[J] .江苏石油化工学院学报.2002.14(3).
    44岳连捷,杨茂林,黄勇,徐行.尾缘吹气式火焰稳定器流场计算[J].航空发动机.1998,2.
    45张洪滨王纪根双V型火焰稳定器的研制和应用【J】推进技术1994年6月第3期
    46杜声同孙慧贤顾恒祥多孔毛细陶瓷稳定器背后火焰和回流区分析【J】推进技术1996年4月17卷第2期
    47 A Schaffer,A.B. Cambel. The Effect of an Opposing Jet on Flame Stability. Jet propulsion,25(7):516-518 1956
    48 A Schaffer,A.B.Cambel. Continued Investigations of an Opposing Jet Flameholder.Jet Propulsion,26(7):516-518.1956.
    49 L.Bellamy,C.H.Barron,J.R.O'Loughlin. A Critical Zone Analysis of Reverse Jet Flame Stabilization.Combustion and Flame,12(4):107-114,1968.
    50 R.E.Peck,G.S.Samuelsen, Generalized Stability Criteria for an Opposed-Jet Flameholder.AIAA Paper 82-4229.
    51 K.Sridhara,M.S.Chidananda. Jet Curtain Flameholder for Aircraft Afterburners. ASME 78-GT-95.
    52 K.Sridhara,M.S.Chidananda. Fresh Mixture Entrainment in a Jet Curtain Flameholder 5th International Symposium on Airbreathing Engines.1981.
    53钱壬章,邹怀宇,张孝春,尚守唐.钝体冷态流场的PIV实验研究[J].华中科技大学学报(自然科学版),2005,33(11): 48-50
    54周见广,臧述升,翁史烈,葛冰.扩散燃烧流场测量的PIV应用研究[J].燃烧科学与技术,2005,11(1):pp92-94.
    55张亚竹,赵增武,武文斐,龚志军,李保卫,苍大强.丙烷/空气扩散火焰流场的PIV实验研究[J]工业加热2006,36(6) :pp20-22
    56 Chen, Y. C,Chang, C. C.Pan, K. L.Yang, J. T. Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner[J] Combustion and Flame 1998,115(1-2): pp51-65
    57 B B Dally, D F Fletche ,A R Masri Flow and mixing fields of turbulent bluff-body jets and flames[J] Combustion Theory and Modelling 1998,2(2):pp193-219
    58顾欣湿空气钝体扩散燃烧火焰结构与稳定性研究上海交通大学博士学位论文2007年7月
    59 I Esquiva-Dano, HT Nguyen, D Escudie Influence of a Bluff-Body’s Shape on the Stabilization regime of Non-Premixed Flames[J] Combustion and Flame 2001,127(4):pp2167-2180
    60 Yuji Yahagi,M.Sekiguti,Kenjiro Suzuki. Flow structure and flame stability in a micro cancombustor with a baffle plate[J]. Applied Thermal Engineering,2007,27(4):188-794.
    61 D.P. Mishra , D.Y. Kiran Experimental studies of bluff-body stabilized LPG diffusion flames [J] Fuel 2009,88(3): pp573-578
    62 P. Kumar, D.P. Mishra Characterization of bluff-body stabilized LPG jet diffusion flame with N2 dilution[J] Energy Conversion and Management 2008,(49):pp 2698–2703
    63 Mishra, D. P. Kumar, P. Experimental study of bluff-body stabilized LPG-H-2 jet diffusion flame with preheated reactant[J] Fuel 2010,89(1): pp212-218
    64 A. Soika, F. Dinkelacker, A. Leipertz Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory[J] Combustion and Flame 2003(132): pp451-462
    65 S.F. Ahmed , R. Balachandran , T. Marchione , E. Mastorakos Spark ignition of turbulent non-premixed bluff-body flames[J] Combustion and Flame 2007(151): pp366-385
    66程秋芳.一种引燃式组合火焰稳定器.航空动力学报,6(3),1991,259-262.
    67 Swetaprovo Chaudhuri, Baki M. Cetegen, Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients, Combustion and Flame, 2009,156,706-720
    68 C.M.Coats, Coherent structures in combustion,prog.energy combustion science,22,1996,427-509.
    69 I. Esquiva-Dano, D. Escudie, A way of considering the influence of the bluff-body geometry on the nonpremixed flame stabilization process, Combustion and Flame, 2005,142, 299-302.
    70 S. Mǒbauer, O. Picken?cker, K. Picken?cker, et al. Application of the porous burner technology in energy- and heat- engineering. In: 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), Lisbon, Protugal, 12-15 July 1999, Volume 1, Lecture 20.2: 519-523
    71 M. Abdul Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, 2009. Applications of porous media combustion technology–A review. Applied Energy 86, 1365–1375.
    72 Trimis, D., Stabilized Combustion in Porous Media - Applications of the Porous Burner Technology in Energy- and Heat-Engineering, The American Institute of Aeronautics and Astronautics, 2000.
    73 K.Hanamura, R. Echigo and S.A. Zhdanok. Superadiabatic combustion in a porous medium. Int. J. Heat and Mass Transfer, 36(13): 1993.
    74 J.G. Hoffmann, R. Echigo, H. Yoshida, and S. Tada. Experimental study on combustion in porous media with a reciprocating flow system. Combustion and Flame, 111:32-46,1997.
    75徐侃,刘明侯,姜海,陆游,应用于热光伏系统中的多孔介质燃烧器[J].工程热物理学报, 2009, 30(5): pp887-889.
    76杜声同,孙惠贤,唐明,陈炳录,陶瓷多孔毛细渗油火焰稳定性研究,推进技术,1991,4, pp61-67.
    77 S.L. Plee, A.M. Mellor, Characteristic Time Correlation for Lean Blowoff of Bluff Body Stabilized Flames,”Comb. Flame 35 (1979): 61-80;
    78 K. Radhakrishnan, J. Heywood, and R. Tabaczynski, Premixed Turbulent Flame BlowoffVelocity Correlation Based on Coherent Structures in Turbulent Flows, Comb. Flame 42 (1981): 19-33.
    79 E.E. Zukoski,“Afterburners,”in Aerothermodynamics of Gas Turbine and Rocket Propulsion, G. Oates, Ed., 1997;
    80 D. Spaulding,“Some Fundamentals of Combustion,”Ch. 5, Butterworth Press: London, 1955;
    81 J. Longwell, E. Frost, and M. Weiss,“Flame Stability in Bluff-Body Recirculation Zones,”Ind. Eng. Chem. 45 no. 8 : 1629-1633;
    82 S. Hoffmann, P. Habisreuther, and B. Lenze,“Development and Assessment of Correlations for Predicting Stability Limits of SwirlingFlames,”Chemical Engineering and Processing 33 (1994): 393-400.
    83 T. Lieuwen, H. Torres, C. Johnson, and B.T. Zinn,“A Mechanism for Combustion Instabilities in Premixed Gas Turbine Combustors,”Journal of Engineering for Gas Turbines and Power 123 no. 1 (2001): 182-190.
    84 M. Abdul Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, 2009. Applications of porous media combustion technology–A review. Applied Energy 86, 1365–1375.
    85 Dally B.B.,Masri A.R.,Barlow R.S.,Fiechtne G.J.Instantaneous and mean compositional structure of bluff-body stabilized non-premixed flames,Combust.Flame,1998,114:119-148.
    86 Masri A.R.,Dibble R.W.,Barlow R.S.,The structure of turbulent non-premixed flames reavealed by Raman—Rayleigh-LIF measurements.Prog.Energy Combust.Sci,1996,22:307—362.
    87 Masri A.R.,Dally B.B.,Barlow R.S.,Caster C.D.,The Structure of the Recirculation Zone of a Bluff-Body Combustor.Twenty-Fifth International Symposium on Combustion,The Combustion Institute,Pittsburgh,1994,PP 130 1—1308.
    88 72.Masri A.R.,Bilger R.W.,Turbulent diffusion flame of hydrocarbon fuels stabilized on a bluff body.Twentieth International Symposium on combustion,The Combustion Institute,Pittsburgh,123.1984,PP 319-326.
    89 Prade B..Lenze B.Experimental Investigation in Extinction of Turbulent Non—Premixed Disk Stabilized Flames.Twenty-Fourth International Symposium on Combustion,The Combustion Institute,Pittsburgh,1992,PP 369-375.
    90 Kundu K.M.,Banerjee D.,Bhadufi D.,Theoretical analysis Oil flame stabilization by a bluff-body. Combust Sci. Technol.1977,17:153-162.
    91 Fujii S.,Gomi M.,Eguchi K.,Cold flow tests of bluff-body flame stabilizer.J. Fluid Eng,1978,100:323-332.
    92 Fujii S.,Eguchi K.,A comparison of cold and reacting flows around a bluff-body flame stabilizer. Transactions of the ASME,1981,328:328-334.
    93 Schefer R.W.,Velocity measurements in a turbulent nonpremixed bluff-body stabilized flame. Combust Sci,.Technol.,1987,56:101-138.
    94 Esquiva-Dano I.,Nguyen H.T.,and Escudie D.,Influence of a bluff-body’s shape on the stabilization region of non-premixed flames.Combust.Flame,2001,127:2167-2180.
    95 Roquemore W.M.,Tankin R.S.,Chiu H.H.,LoRes S.A.,A study of a bluff-body combustion using laser sheet lighting.Exp Fluid,1986,4:205—213.
    96 4Chela Y.- C.,Chang C.-C.,Pan k-L.,and Yang, J.- T.,Flame lift-off and stabilization mechanisms of non-premixed jet flames on a bluff-body burner.Combust.Flame,1998,l1 5:51-65.
    97 Huang R.F.,Lin C.L.Characteristic modes and thermal structure of non-premixed circular-disc stabilized flame.Combust.Sci . Technol,1994,100:123-139.
    98 Huang&F..Lin C.L.Velocity fields ofnonpremixed bluff-body stabilized flames.Z Energy Res. Tech.,2000,122:88-93.
    99 Bakrozis A.G,Papailiou D.D.,Koutmos E,A study of the turbulent structure of a two- dimentional diffusion flame formed behind a slender bluff-body.Combust.Flame,1999,119: 291-306.
    100 Koutmos P,Papailiou D.Bakrozis A.,Experimental and computational study of square cylinder wakes with two-dimentional injection into the base flow region.Eur.J. Mech.B/Fluids,2004,23: 353-365.
    101 J Westerweel. Fundamentals of digital particle image velocimetry [J].Measurement Science and Technology,1997,8(12):1379-1392.
    102段俐康琦申功PIV技术的粒子图像处理方法[J]北京航空航天大学学报2000,26(1):79-82
    103廖光煊王喜世秦俊热灾害实验诊断方法[M]中国科学技术大学出版社2003
    104王世喜基于数字粒子成像的细水雾全场诊断方法博士学位论文2001.12
    105 Willert C E and Gharib M. Digital Particle Image Velocimetry. Experiments in Fluids, 1991,10:181-193
    106翁文国廖光煊王喜世基于互相关的DPIV图像诊断方法研究实验力学1999,14,323-329.
    107 D. J. Craze, On the Near Wake Behind a Circular Disc, 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, Australia, 5-9 December, 1977, pp282-286
    108刘明侯,周裕,陈义良,圆柱绕流尾迹中相干结构对湍流特性的影响,力学学报,34(4),2002, 508-518.
    109吴波,符泰然,程晓舫,袁耀明,郑小兵,章骏平.彩色数码相机光强响应特性的标定实验[J].光电工程, 2006, 33(6): 101 - 105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700