超音速火焰喷涂的燃烧特性及喷涂粒子行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用计算与试验相结合的方法,对超音速火焰喷涂的燃烧特性及粒子行为对涂层性能影响进行了研究。以计算流体力学(CFD)为理论基础,采用商用软件Fluent,对不同助燃条件下超音速火焰喷涂(HVOF及HVAF)的燃烧特性、粒子行为进行计算,计算结果表明,焰流的温度主要由燃气与助燃气的当量比决定,当量比越接近理论计算值,焰流的温度越高。焰流速度主要由燃气及助燃气流量决定,流量越大,燃烧室的压力越大,焰流的最高速度越大。空气助燃时焰流的温度低、速度大,适宜喷涂低熔点、易氧化的粉末材料。氧-空气联合助燃时,随着助燃气中氧气比例的增大,焰流的温度越高,氧气比例高于75%(体积分数)以后,焰流温度和纯氧助燃时无差别。对粒子行为的计算结果表明,超音速火焰喷涂中粒子行为受焰流特性和自身特性两方面的影响;喷涂粒子温度、速度随焰流温度、速度的增大而增大;粒子直径越小受焰流的影响越明显,粒子直径越大受到焰流的加热、加速效果越小。适宜喷涂的粒子直径范围为20 m -40 m。
     采用CH-2000超音速火焰喷涂系统制备了纯氧助燃时不同粒子行为下的NiCr-25%Cr_3C_2涂层,并对涂层性能进行了测试。粒子行为与涂层性能的研究结果表明,粒子行为对涂层的性能有着显著影响。对温度一定的粒子(未完全熔融)形成的涂层,碰撞时速度越大涂层孔隙率越小,并且粒子速度高于一定值以后,由于涂层间沉积机制改变,粒子速度越高涂层的耐冲蚀性能越好。对于速度一定的粒子,粒子温度越高,形成涂层致密性越好,孔隙率越小,并且碰撞时粒子的温度会严重影响涂层的耐冲蚀性能。
Combining with the experiment and calculating method, the effect which is caused by combustion characteristic and particle behavior of coating's properties are studied in this letter. Based on computational fluid dynamics, a computational framework is developed to calculate the combustion characteristic and particle behavior of HVOF Spraying using the commercial software Fluent. The result shows that the temperature of flame is decided by equivalence ratio of fuel and oxidant gas. When the equivalence ratio is closer to theoretical value, the maximum temperature of flame is higher. The velocity of flame is decided by the pressure of combustion chamber which is affected by the flow rate. It also shows that the particle behavior of HVOF is affected by Combustion Characteristic and self-Characteristic. Both particle velocity and temperature are affected by Combustion Characteristic. Moreover, both particle velocity and temperature at impact are strongly dependent on particle size. The larger the particle size is, the smaller effect the flame has. Even particle size is large enough to lead to undeposition. Result shows that the particle size between 20 m to 40 m is available.
     The coatings are prepared with CH-2000 HVOF system under the condition of different particle behaviors when oxygen is the oxidant gas and the performance of these coatings are tested. The relationship between particle behavior and coating performance is studied. The result shows obviously that coating performance is depended on particle behavior. When particle temperature fixed, the higher the particle velocity is, the smaller the coating porosity is. In addition, the deposition mechanism is changed when particle velocity is higher than a critical value which is different for different particle temperature. And also, when particle velocity is higher than the critical value, the higher the particle velocity is, the better the coating erosion resistance is. When particle velocity is fixed, the compactness and porosity of coating is depended on particle temperature. And also, the erosion resistance of coating is much affected by particle temperature.
引文
[1]赵文珍.超音速火焰喷涂一热喷涂领域的最新技术.西安交通大学材料强度研究所
    [2]赵文转.金属材料表面新技术[M].西安交通大学出版社,1992,1-10
    [3]董鹏,李金龙.超音速火焰喷涂技术研究进展[J].中国材料科技与设备(双月刊), 2008,4,11-13
    [4] Ulataba D.Numerical modeling of particle laden flow in HVOF torch with gas shroud[A],Proceeding of the 16thITsC[c],Canada:2000
    [5]邢亚哲.HVAF系统喷枪及雾化喷嘴的研究[J].长安大学硕士论文,2003
    [6]王志平,董祖珏,霍树斌.超音速火焰喷涂涂层特性研究[J].机械工程学报,Vo1.37,No.1 1,2CHD1,96-98
    [7]张军红,沈瑾林.超音速火焰喷枪的研究[J].焊接学报,1999(2),114-120
    [8]解永杰,牛二武等.超音速火焰喷涂技术的发展与特点[J].天津冶金2004,2, 23-28
    [9] Browning .J. B, Hypersonic Velocity Fusion Spraying,Proceedings of the International thermal Spray Conference& Exposition.1992:123—125
    [10]王锋,漆波等.超音速冷喷涂Cu2Al2O3复合涂层特性[J].材料导报:研究篇,2009 (23)47-52
    [11]刘雪锋,袁晓静等.低温超音速火焰喷涂特性研究[J].材料保护, 2004,02,17-19 []李娜,王志平.氧气-空气混合助燃超音速火焰喷涂WC - Co涂层性能研究[J].焊接,2008(8),49-56.
    [12] I.A. Gorlach.A new method for thermal spraying of Zn–Al coatings [J].Thin Solid Films 517 (2009) 5270–5273
    [13]侯根良,王汉功等.送粉参数对超音速火焰喷涂粒子速度与温度的影响[J].兵器材料科学与工程,2005,28(03),23-28
    [14]王志健.田欣利,空气超音速火焰喷枪设计理论与数学模型的建立[J].材料科学与工程,2002(1),54-59.
    [15] S. Kamnis,S.Gu,3-D modelling of kerosene-fuelled HVOF thermal spray gun[J]. Chemical Engineering Science 61 (2006) 5427–5439
    [16] M. Gaona, R.S. Lima,Influence of particle temperature and velocity on the microstr- ucture and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings[J], journal of materials processing technology 198 ( 2008 ) 426–435
    [17] Mingheng Li, Dan Shi, Panagiotis D. Christofides, Model-basedestimation andcontrol of particle velocity andmelting in HVOF thermal spray[J], Chemical Engineering Science 59 (2004) 5647– 5656
    [18] Li, M. Shi, D. Christofides, P.D., Diamond jet hybrid HVOF thermal spray: gas-phase and particle behavior modeling and feedback control design[J]. Industrial and Engineering Chemistry Research 2004.43, 3632–3652
    [19] V.R. Srivatsan and A. Dolatabadi, Simulation of Particle-Shock Interaction in a High Velocity Oxygen Fuel Process[J] Technical Note JTTEE5 15:481-487
    [20]姚泰山,李戈扬等.表面工程科学与技术[M].北京:机械工业出版社2003:161-165.
    [21] D. CHENG, Q. X U, A Numerical Study of High-Velocity Oxygen Fuel Thermal Spraying Process. Part I: Gas Phase Dynamics[J], METALLURGICAL AND MATERIALS TRANSACTIONS A, 2001,32,1609-1615
    [22] Jae-Sang Baik, Youn-Jea Kim, Effect of nozzle shape on the performance of high velocity oxygen-fuel thermal spray system[J], Surface & Coatings Technolog,2008,202, 5457–5462
    [23] (美)斯特里特等.流体力学[M].清华大学出版社,2003
    [24]王志吉.固体火箭冲压发动机燃烧过程仿真与试验研究[D].国防科学技术大学硕士学位论文,2002
    [25]王兰.超音速燃烧冲压发动机燃烧室数值模拟[D].西北工业大学硕士学位论文。
    [26]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002
    [27] Mingheng Li ,Panagiotis D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray:A Tutorial Review[J], Journal of Thermal Spray Technology,2009,18, 753–768
    [28] Gutheil,e.,Bockhorn,h.,Elements of Modeling of turbulent Diffusion Flames.Symp on Coal Comb.,1988,181-188
    [29]周立行.多相湍流反应流体力学[M].国防工业出版社,2002.01
    [30] S. Gordon and B.J. McBride:“Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,”NASA Reference Publication No. 1311, Lewis Research Center, Cleveland, OH, Oct. 1994.
    [31] S. Gordon and B.J. McBride. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication No. 1311, Lewis Research Center, Cleveland, OH, Oct. 1994.
    [32]徐旭常,周力行.燃烧技术手册[M].化学工业出版社,2007
    [33]严传俊,范玮.燃烧学[M].,西北工业大学出版社,2005
    [34] Tutorial guide of fluent
    [35]宁晃.燃烧室气体动力学基础[M].科学出版社,1980
    [36]许普源等.燃烧学[M].北京:机械工业出版社,1982.4
    [37] Crowe, C.T., Sommerfeld, M., Tsuji, Y., 1997. Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, FL, USA.
    [38]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].科学出版社,1994
    [39] Kalani, A., Christofides, P.D., Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction nucleation, condensation andcoagulation[J]. Computers andChemical Engineering 2002. 26, 1153–1169.
    [40] Planche, M.P., Normand, B., Liao, H., Rannou, G., Coddet, C., 2002. Influence of HVOF spraying parameters on in-flight characteristics of Inconel 718 particles and correlation with the electrochemical behaviour of the coating[J]. Surface & Coatings Technology 157, 247–256.
    [41]王汉功,袁晓静.超音速火焰喷涂Ni粒子特性数值仿真[J].兵工学报,2006,27(2),310-314
    [42] Gordon, S., McBride, B.J., 1994. Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, Lewis Research Center, Cleveland, OH,USA.
    [43] Rosner, D.E., 2000. Transport Processes in Chemically Reacting Flow Systems. Dover Publications, Inc, New York, USA
    [44] Tutorial guide of fluent
    [45]周力行.湍流气粒两相流动和燃烧的数值模拟[M].清华大学出版社,1991
    [46]夏钧.气固两相平面湍流射流的直接数值模拟[D].浙江大学博士学位论文,2002
    [47]刘道银,陈晓平等.流化床密相区颗粒扩散系数的CFD数值预测[J].化工学报,2006,60(9),2183-2189
    [48]刘小云,罗坤等.气固两相湍流射流中颗粒的统计特性[J].中国电机工程学报,2005,29(5),108-113
    [49] Mills, D., 2003. Personal communication, Sulzer Metco.
    [50] Cheng, D., Xu, Q., Trapaga, G., Lavernia, E.J., 2001a. The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metallurgical and Materials Transactions B 32, 525–535.
    [51] Mingheng Li, Panagiotis D. Christofides. Multi-scale modeling and analysis of an industrial HVOF thermal spray process[j], Chemical Engineering Science 60 (2005) 3649– 3669
    [52] Dolatabadi, A., Mostaghimi, J., Pershin, V., 2003. Effect of a cylindrical shroud on particle conditions in high velocity oxy-fuel spray process[J]. Journal of Materials Processing Technology 137, 214–224.
    [53] Li, M., Christofides, P.D. 2004. Feedback control of HVOF thermal spray process accounting for powder size distribution. Journal of Thermal Spray Technology 13, 108–120
    [54]王引真,孙永兴,曹文军.超音速火焰喷涂工艺参数对镍基涂层结构和性能的影响[J].机械工程材料,2005,29(1),10-15
    [55] M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Appl. Surf. Sci.219 (2003) 211–223.
    [56] M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Mater. Des. 25 (2004) 681.
    [57] Nisbida M, H auabuse T . Measurement o f r esidual str ess and thermal stress in sprayed coatings [ A] . Proceeding s of ITSC'95 [C] . A. Ohmo ri: Ja pan H igh T em perat ur e Society,1995. 915
    [58]王志平,董祖玉,李丽.热喷涂涂层残余应力的测试与分析[J].焊接学报,1999,20(4),278-283
    [59] S.Kamnis a, S. Gua, Numerical modeling the bonding mechanism of HVOF sprayed particles[J], Computational Materials Science 46 (2009) 1038–1043
    [60] Berget J , Rogne T. A summary of recent developments of HVOF sprayed ceramic2metallic coatings for corrosion and wear resistance[A] . Thermal Spray[C] . Ohio USA : ASM International Materials Park ,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700