旋流杯燃烧室主燃区回流结构及其贫熄相关初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于燃气轮机具有污染排放低、噪声小、维护费用低、大修周期长以及单位体积功率大等优点,因而应用较广。随着能源紧张、环境承受能力有限等问题日益突出,一些中低热值的燃料利用成为人们关注的重要内容,例如热解油、生物气化气、生物柴油、醇醚等燃料。然而,中低热值燃料一般着火温度比较高、着火下限较高,容易导致熄火、脱火,燃烧稳定性差,所以需要在燃烧组织、拓宽稳定范围方面做更多的、更细致的工作。
     本文以燃气轮机旋流杯燃烧室为研究对象,从燃烧室主燃区的流动组织入手,抓住贫熄具有很强的局部特征这一点,对主燃区流场结构进行了分析。主要研究内容如下:
     1.以单头部旋流杯燃烧室为研究对象,得到了常压下燃烧室进口空气速度和进口空气温度的改变对贫熄油气比的影响的实验数据,进行了相应于贫熄工况点的冷、热态数值模拟计算。分析了进气速度和进气温度的改变对回流区大小、位置等的影响,并且通过模拟计算结果和相应的贫熄实验数据的结合,分析了进气条件的改变对贫熄油气比影响的原因。
     2.对模化前和模化后的WR230燃烧室主燃区流场结构进行了数值模拟计算,通过定性比较,分析了其头部流场结构特点,设计了一种端盖冷却装置,对燃烧室头部起到了预期的冷却作用,为对模化实验件进行贫熄性能实验提供了参考。
     3.本文设计了一种旋流杯头部,以试图产生丰富的主燃区流场结构。采用含甲烷28%、含二氧化碳72%的燃气作为燃料,通过数值模拟计算初步分析了其与典型旋流杯燃烧室在主燃区流场结构方面的不同之处,为设计新型的稳燃装置和改善贫熄性能提供参考。
Gas turbine has the merits of low emissions, low noise, low maintenance costs, long repair cycle, and high power per unit volume, so it has wide application. As the problems of energy crisis and the limited environmental capacity becoming increasingly prominent, the utilization of medium and low heat value fuel has been very important, such as the pyrolysis oil, bio-gasification gas, bio-diesel, alcohols and ethers, and so on. However, the minimum ignition temperature of the medium and low heat value fuel is relatively high, and the lower combustion limit is also relatively high, which easily lead to extinction and poor combustion stability, so it is needed to do more and meticulous work for combustion organization and widing combustion stability range.
     This paper took gas turbine combustor with swirl cup dome as research object, based on the flow organization of the primary zone, focused on that the lean blowout has strong local features apparently, and took analysis for the flow field structure of the primary zone. The main contents are as follows:
     1. The experimental data of lean blowout fuel/air ratio of a single-dome swirl cup combustor with different inlet air velocities and temperature was obtained at atmospheric pressure conditions. Numerical simulations both burning and non-burning were performed corresponding to the experimental data at lean blowout. The effects of changes of the inlet air velocity and temperature on the recirculation zone's size, location and so on, have been analyzed. Through combining the simulation results with the corresponding experimental data, the reasons why the lean blowout fuel/air ratio varied with inlet air conditions' changes were analyzed.
     2. Numerical simulations for WR230 combustor's primary zone of pre-modeling and post-modeling were performed. The features of the combustor dome's flow structure were analyzed by comparing qualitatively. A cooling device was designed for combustor lid, and it played a role of protecting combustor's dome with effective result. These can provide reference for testing the lean blowout performance of the modeling combustor rig.
     3. A new swirl cup dome was designed to try to produce rich flow structure in primary zone. The fuel gas composed of 28% methane and 72% carbon dioxide was used. Numerical simulations were performed to analyze the differences of the flow structures in primary zone between the combustor with new swirl cup dome and the one with typical swirl cup dome. This research can provide reference for the design of new flame stabilizer and the improvement of the lean blowout performance.
引文
[1]赵黛青,夏亮,何立波.低热值燃料稳定燃烧的研究现状与进展.世界科技研究与发展,2005(5):33-39
    [2]林功舒,杨道刚.现代大功率发电用燃气轮机.北京:机械工业出版社,2007.
    [3]黄勇等.燃烧与燃烧室.北京:北京航空航天出版社,2009.
    [4]房爱兵,徐纲.燃气轮机合成气燃烧室燃烧稳定性的实验研究.博士学位论文,中国科学院工程热物理研究所,2007.
    [5]林宇震,许全宏,刘高恩.燃气轮机燃烧室.北京:国防工业出版社,2008.
    [6]Glassman I. Combustion. London:Academic Press,1996.
    [7]Lefebvre A H, Reid R. The Influence of Turbulence on the Structure and Propagation of Enclosed Flames. Combustion and Flame,1960.
    [8]欧文·格拉斯曼(Irvin Glassman).燃烧学.北京:科学出版社,1983.
    [9]Dilip R.Ballal, Lefebvre A H. Weak Extinction Limits of Turbulent Heterogeneous Fuel/air Mixtures. ASME Journal of Engineering for Power, Vol.102,1980.
    [10]M.R.Baxter, A.H.Lefebvre. Flame Stabilization in High-velocity Heterogeneous Fuel-air Mixtures. IS ABE 91-7107,1991.
    [11]G.J.Sturgess, S.P.Heneghan, M.D.Vangsness, D.R.Ballal, A.L.Lesmerises. Lean Blowout in a Research Combustor at Simulated Low Pressures. Journal of Engineering for Gas Turbine and Power, Vol.118,1996.
    [12]GJ.Sturgess, D.T.Shouse. A Hybrid Model for Calculating Lean Blow-outs in Practical Combustors. AIAA 96-3125,1996.
    [13]Lefebvre A H. Gas Turbine Combustion. Second Edition, Phiadelphia:Taylor & Francis, 1999.
    [14]A.M.Mellor. Design of Modern Turbine Combustor. New York:Academic Press,1990.
    [15]Lefebvre A H. Gas Turbine Combustion. Washington:Hemisphere Publishing Corporation, 1983.
    [16]Lefebvre A H. Fuel Effects on Gas Turbine Combustion-Ignition, Stability and Combustion Efficiency. ASME Journal of Engineering for Gas Turbines and Power,1985,107 (1):24-37.
    [17]宁晃,高歌.燃烧室气动力学.北京:科学出版社,1987.
    [18]金如山.航空燃气轮机燃烧室.北京:宇航出版社,1988.
    [19]廖传华,史永春等.燃烧过程与设备.北京:中国石化出版社,2008.
    [20]杨茂林.旋流器后火焰流场的试验研究.航空学报,1990(12):B549-B556
    [21]于强,刘兴洲,司徒明,胡梦觉.旋流突扩燃烧室中回流区的嵌套结构.航空动力学报,1991(1):79-82
    [22]傅维镳等.燃烧学.北京:高等教育出版社,1989.5.
    [23]G.J.Sturgess. Isothermal Flow Fields in a Research Combustor for Lean Blowout Studies. Journal of Engineering for Gas turbines and Power,1992,4.
    [24]G.J.Sturgess. Effect of Back-Pressure in a lean Blowout Research Combustor. Transactions of the ASME, July 1993.
    [25]G.J.Sturgess. Relation of CARS Temperature Fields to Lean Blowout Performance in an Aircraft Gas Turbine Generic Combustor. June,1994.
    [26]G.J.Sturgess. Design and development of a research combustor for lean blow-out studies. Journal of Engineering for Gas Turbines and Power. January,1992.
    [27]张红梅,李德玉,过增元.突扩燃烧室内回流区长度研究.燃烧科学与技术,1999(2):199-204
    [28]王卫东,过增元,张振.冲压发动机突扩燃烧室回流旋涡热缩效应的研究.推进技术,1996(1):8-12
    [29]李长林.可变几何径向涡流器流量特性及流量系数的试验研究.航空发动机,1997(3):36-41
    [30]孟江涛,黄勇,郭志辉,许旭.带旋流杯的模型回流燃烧室主燃孔射流研究.航空动力学报,2007(7):1148-1152
    [31]Stephen Douglas Terry. On Flame Stability in the Hysteresis Regime in Co-flow, North Carolina State University. Doctoral dissertation, ProQuest Information and Learning Company,2005.
    [32]赵坚行,胡劲,丁万山,赖寿昌,邓淑文,邓武.突扩区/火焰筒头部流动特性研究.航空动力学报,1999(1):79-82
    [33]罗渝东.低热值煤层气燃烧器的数值模拟与实验研究.硕士学位论文,重庆大学,2006.
    [34]Adel Mansour, Michael Benjamin. A New Hybrid Air Blast Nozzle For Advanced Gas Turbine Combustors.2000-GT-0117,2000.
    [35]Yokichi Sugiyama, Rintarou Takamura, etal. Research and Development of a 1600℃-Level Combustor with High Heat Release Rate. Third Research Center, Technical R & D Institute, Japan Defence Agency,1995, ISABE 95-7099,1995.
    [36]袁怡祥,林宇震,刘高恩.三旋流器头部燃烧室拓宽燃烧稳定工作范围的研究.航空动力学报,2004(1):142-147
    [37]许全宏,林宇震,刘高恩,王志平.航空发动机高温升燃烧室贫油熄火及冒烟性能研究.航空动力学报,2005(4):636-640
    [38]袁怡祥.拓宽高温升燃烧室燃烧稳定工作范围的研究.博士论文,北京航空航天大学,2003.
    [39]汪风山.低NOx排放微型燃气轮机燃烧室的数值模拟及实验研究.博士论文,2009.
    [40]张宝诚,纪友哲,王平.航空发动机燃烧室熄火特性的研究.沈阳航空工业学院学报,2004(3):1-3
    [41]侯晓春,季鹤鸣等.高性能航空燃气轮机燃烧技术.北京:国防工业出版社,2002.1.
    [42]王平,张宝诚.航空发动机燃烧室主燃区的数值模拟分析.航空发动机,2005(1):47-51
    [43]吕文菊,张宝诚,纪友哲,程新荣.某型发动机燃烧室工作稳定性的数值计算.沈阳航空工业学院学报,2006(2):1-5
    [44]焦树建.燃气轮机燃烧室.北京:机械工业出版社,1981.
    [45]Nobuko I, Wakayama and Masaaki Sugie. Magnetic promotion of combustion in diffusion flames. Proceedings of the International Workshop on Advances in High Magnetic Fields, Volume 216, Issues 3-4,1 January 1996, Pages 403-405.
    [46]陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001.
    [47]李武奇,张均勇,张宝诚,韩力.航空发动机主燃烧室稳定工作范围研究,航空发动机.2006(2):38-42
    [48]韩占忠,王敬等.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2008.
    [49]Dilip R.Ballal, Arthur H.Lefebvre. Weak Extinction Limits of Turbulent Flowing Mixture. ASME Journal of Engineering for Power, Vol.101, No.3,1979.
    [50]袁怡祥,林宇震,刘高恩,胡国新,龚静.燃油周向分级对贫油熄火油气比的影响.航空动力学报,2003(5):639-644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700