固体燃料冲压发动机工作过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体燃料冲压发动机(SFRJ)是一种吸气式发动机,具有结构简单,比冲高,高速飞行性能良好,可靠性好等优点。它具有广泛的应用前景,国内外做了很多的研究工作。本文以固体燃料冲压发动机为研究对象,采用理论分析和数值仿真相结合的方法,对固体燃料冲压发动机的工作过程进行计算分析研究。
     本文的研究内容包括以下两个部分:
     第一,针对某型60mm固体燃料冲压发动机的燃烧室,基于κ-ε湍流模型,多组分、多步反应机理模型以及EDC燃烧模型,建立了固体燃料冲压发动机燃烧室仿真模型并对该型发动机进行了数值仿真,分析了流动和燃烧特点,得到了燃速变化曲线。曲线与国外实验结果吻合较好,验证了该模型的正确性。将使用多步模型的计算结果同使用单步反应模型的计算结果进行了对比分析,结果表明,使用单步反应模型的燃烧室温度、压强均偏高,燃速也比使用多步反应模型的计算结果误差大。
     第二,针对某固体燃料冲压发动机的模型,基于κ-ε湍流模型,简单反应模型以及涡耗散燃烧模型,建立了固体燃料冲压发动机的统一内流场模型,对固冲统一内流场进行了数值仿真,分析了不同来流马赫数,燃烧室直径对固体燃料冲压发动机流场、再附点位置、燃速以及发动机性能参数的影响,结果显示随着燃烧室直径增大,再附点位置会后移,随着来流马赫数或燃烧室直径增大,燃烧室温度会升高,燃烧室内局部燃速也会增大。
As a new air-breathing engine, the solid fuel ramjet (SFRJ) engine has many desirable advantages, including simple configuration, high specific impulse, well performance in high-speed flight and low cost. It has excellent application prospect and there are a lot of research on it both at home and abroad. Aiming at SFRJ, this dissertation explores computation and analysis research for the working process of SFRJ in the method of theoretical analysis combined with numerical simulation.
     The research of this dissertation can be divided into two parts:
     First, aiming at a 60mm SFRJ, based on standard two equation (κ-ε) turbulence model, multistep global reaction mechanisms and EDC combustion model, the simulation model for combustion chamber of solid fuel ramjet is established. Then, the characters of flow and combustion are analyzed and regression rate along the fuel grain is obtained. That the calculated results are in good agreement with the experimental data abroad confirms the correctness of the presented simulation methold. Besides, when compared with multi-step reaction, the temperature and pressure of combustion chamber simulated in one-step reaction have been found to be slightly higher and the relatively larger error of regression rate occurs.
     Second, aiming at a SFRJ assisted range projectile, based on standard two equation(κ-ε) turbulence model, simple reacting flow model, the whole internal flow field of SFRJ is established and the flow characters of the internal flow field, the location of reattachment point, the regression rate along the fuel grain and the performance parameters are investigated under varying Mach number and diameter of the combustion chamber. Results show that, the location of reattachment point shifts backward with increaing of diameter of the combustion chamber. Besides, the temperature and the regression rate along the fuel grain.rises in the combustion chamber as the diameter of the combustion chamber and flow Mach number increase.
引文
[1]约翰·霍甫金斯大学应用物理实验所.冲压发动机技术[M].国防工业出版社,1980.
    [2]郭锡福等.现代炮弹增程技术[M]北京:兵器工业出版社,1997.
    [3]向敏.固体燃料冲压增程炮弹工作过程仿真及性能分析研究[D].国防科技大学,2006.
    [4]Stockenstrom A.Numerical Model for Analysis and Specification of a Ramjet Propelled Artillery Projectile[C].19th International Symposium on Ballistics,2001:537-544.
    [5]马艳琴.增程外弹道理论分析及数值仿真[D].南京理工大学,2003.
    [6]Deutsche Forschungs. Experimental Investigation of a Solid Fuel Ramjet[D].1978.
    [7]M.J.Nusca, S.R.Chakravarthy, U.C.Goldberg. Computational Fluid Dynamics Capability for Solid Fuel Ramjet Projectile[C]. Journal of Propulsion and Power. Vol.6,No.3, 1990:256-261.
    [8]E.D.James, S.Asher. Evaluation of Solid Fuel Ramjet Projectile Aerodynamic Characteristics[C].17th International Symposium on Ballistics,1995:441-448.
    [9]W.N.Carl. Trajectory Predictions for a 75mm Solid Fuel Ramjet Tubular Projectile[R]. ADA105551.
    [10]Michael J Nusca. Steady Flow Combustion Model for Solid-Fuel Ramjet Projectiles[J]. Journal of Propulsion and Power.1990,(6)3:348-352
    [11]M.C.Ronald. Ronald.M.C.Rotation Effects on Axisymmetric Sudden-Expansion Flows[J]. Journal of Propulsion and Power, Vol.4,No.3.1988.270-275.
    [12]谭建国.固体燃料冲压发动机理论与实验研究[D].国防科技大学,2000.
    [13]GSchulte. Fuel Regression and Flame Stabilization Studies of Solid-Fuel Ramjets [J]. Journal of Propulsion and Power,Vol.2,No.4.1986:301-304.
    [14]H.K.Ciezki, B.Schwein. Investigation of Gaseous and Solid Reaction Products in Step Combustor using a Water-Cooled SamPling Probe[R]. AIAA96-2768.
    [15]P.A.O.GKorting. Combustion of Polymethylmethacrylate in a Solid Fuel Ramjet[J]. Jou-rnal of Propulsion and Power,Vol.6,No.6.1990.
    [16]G.V.Ronald. A Computer Program for Flight Performance Prediction of Solid Fuel Ram-ject Propelled Projectiles[C].15th International Symposium on Ballistics,1995:441-448.
    [17]Ronald G. Veraar and Guido Giusti. Application-an overview of the tnorwms technology demonstration programme[C].20th International Symposium on ballistics,2002
    [18]Technion-Israel Institute of Technology,32000 Haifa, Israel.Investigation of a small Solid Fuel Ramjet Combustor [J]. J.of Propulsion and Power.1989.Vol.4(3)
    [19]W.Peter,N.Yngve.Initial Study of a 40mm SFRJ Projectile[C].20th International Symposium on Ballistics.1993:723-733.
    [20]R.G.Veraar, K.Anderson. Flight Test Results of the Swedish-Dutch Solid Fuel Ramjet Propelled Projectile[C].19th International Symposium on Ballistics.2001:429-436
    [21]R.GVeraar, P.J.M.Elands. Overview of the Swedish-Dutch Co-Operation Programme on Solid Fuel Ramjet Propelled Projectiles[C].18th International Symposium on Ballistics, 1999:409-416.
    [22]N.Amnon, G.Alon. Burning and Flameholding Characteristics of a Miniature Solid Fuel Ramjet Combustor[J]. Journal of Propulsion and Power,Vol.19,No.6.1991:357-363.
    [23]P.Deborah,G.Alon. Bypass Regulated Solid Fuel Ramjet Combustor in Variable Flight Conditions[J]. Journal of Propulsion and Power, Vol.19,No.1,2003:73-80.
    [24]S.Krishnan, S.S.GPhilmon. Design and Control of Solid-Fuel Ramjet for Pseudovacuum Trajectories[J]. Journal of Propulsion and Power,Vol.6,No.5,2000:815-822.
    [25]S.Krishnan, Philmon. Solid Fuel Ramjet Combustor Design[J].Prog.Aerospace Sci. Vol.34,1998,pp.219-256.
    [26]R.Oosthuizen, A.Stockenstrom and J.J.du Buisson. Solid Fuel Ramjet(SFRJ) Propulsion for Artillery Projectile applications-Concept Development overview[C].20th International Symposium on Ballistics,2002.
    [27]A.Stockenstrom. Numerical model for analysis and specification of a ramjet propelled artillery projectile[C].19th International Symposium on Ballistics,2001.
    [28]F.Dionisio,A.Stockenstrom. Aerodynamic Wind-Tunnel Test of a Ramjet Projectile[C]. 19th International Symposium on Ballistics,2001:529-536.
    [29]郭健,张为华,杨涛等.固体燃料冲压发动机研究进展[J].固体火箭技术,2003,26(2):8-21.
    [30]谭建国,陈小前,杨涛,张为华.固体燃料冲压发动机燃速理论分析与数值模拟[J].航空动力学报,2000,5(2):201-204.
    [31]向敏,张为华,王中伟.冲压增程炮弹工作性能分析[J].弹箭与制导学报2006,26(4):185-191.
    [32]谭建国,陈小前,杨涛,张为华.固体燃料冲压发动机简单反应流模拟[J].固体火箭技术,1999,22(3):11-15.
    [33]陈军,朱福亚,周长省.固体燃料冲压发动机在小口径弹药上的应用[J].弹道学报,1999(2):55-88.
    [34]孙振宗.固体燃料冲压发动机试验研究[C].北京动力机械研究所.GF -AOO34213G,1998
    [35]陈军,武晓松.固体燃料冲压发动机燃烧室流动分析.兵工学报[J],2004,25(4):450-453
    [36]陈雄,郑亚.转速对高速旋转冲压增程弹用进气道影响数值模拟.推进技术[J],2006,27(6):521-524.
    [37]夏强,武晓松,王喜耀,孙波.固体燃料冲压发动机内流场数值模拟.弹道学报[J],2009,21(4):88-91.
    [38]T.Milshtein, D.W.Netzer. Three-Dimensional,Primitive-Variable Model for Solid-Fuel Ramjet Combustion[J] .Journal of Spacecraft.1986:113-117.
    [39]Elands, P.J.M.Korting, P.A.O.G. Combustion of Polyethylene in a Solid Fuel Ramjet-A Comparison of Computational and Experimental Results[R]. AIAA88-3043
    [40]P.J.M.Elands, P.A.O.G.Korting, T.Wijchers. Comparison of Combustion Experiments and Theory in Polyethylene Solid Fuel Ramjets[J].Journal of Propulsion and Power, Vol.6, No.6.1990:732-739.
    [41]M.J.Nasca. Steady Flow Combustion Model for Solid Fuel Ramjet Projectiles [R]. AIAA 89-2797.
    [42]郭应钧.超声速进气道流场与边界层计算[J].空气动力学学报.1990.V0l.8(1)
    [43]Elands, P. J. M. Dijkstra. Validation of the Flow and Combustion Processes in a Solid Fuel Ramjet[R].AIAA91-1869.
    [44]P.J.Coelho.Modeling of a Solid Fuel Combustion Chamber of a Ramjet Using aMulti-block Domain Decomposition Technique[R].AIAA-96-0847.
    [45]陈小前,杨涛,方丁酉.二维实验固体燃料冲压发动机冷流数值分析[J].固体火箭技术,1999,22(2):12-15.
    [46]陈军,武晓松,丘光申等.固冲发动机三维内流场数值计算与应用[J].推进技术,2000,21(1):20-22.
    [47]王喜耀.固体燃料冲压发动机内流场数值模拟研究[D].南京理工大学,2008.
    [48]夏强,武晓松.超声速轴对称进气道稳定工作范围研究[J].计算机仿真,2009,26(5):68-71.
    [49]熊志平,武晓松,孙波等.固体燃料冲压发动机高速旋转对进气道稳定工作范围的影响[J].兵工学报,2009,30(8):1051-1055.
    [50]李泽勇,郭健,王振国.固体燃料冲压发动机燃烧室燃烧特性数值模拟[J].弹道学报,2009,21(1):75-78.
    [51]刘巍,杨涛,程兴华.固体燃料冲压发动机内旁路分气流场数值模拟[J].推进技术,2010,31(3):257-261.
    [52]刘巍,杨涛,程兴华.固体燃料冲压发动机内部套管结构数值分析[J].固体火箭技术, 2010,33(2): 152-155.
    [53]吉秋平.弹用固体燃料冲压发动机性能研究[D].南京理工大学.2006
    [54]马骏.固体燃料冲压增程炮弹技术研究[D].国防科技大学.2004
    [55]顾玉萍.冲压增程炮弹进气道工作特性分析与研究[D].南京理工大学.2004
    [56]董家峰.弹用二元混压超声速进气道设计与试验研究[D].西北工业大学.2007
    [57]M.J.左克罗,J.D.霍夫曼.气体动力学[M].国防工业出版社.1984
    [58]刘巍,杨涛,程兴华,李理.固体燃料冲压发动机两种内旁路构型燃烧性能数值分析[J].国防科技大学学报,2009,31(4):107-111.
    [59]谭建国.固体燃料冲压发动机理论与实验研究[D].国防科技大学.2000
    [60]武晓松,陈军,王栋.固体火箭发动机气体动力学[M].国防工业出版社.2005
    [61]温正,石良辰FLUENT流体计算应用教程[M]清华大学出版社.2008
    [62]赵坚行.燃烧的数值模拟[M].科学技术出版社.2002.
    [63]A.Brindle,R.Boyce,J.Neely,CFD analysis of an ethlene-fueled intake-injection shock induced-combustion scamjet configuration[R].AIAA 2005-3239
    [64]Netzer.A.and Gany.A,Burning and flameholding characteristics of a minature solid fuel ramjet combustor[J] Journal of Propulsion and Power, Vol.6, No.7.1991:357-363.
    [65]Many,C.J.,Hickey,P.J.,Netzer,D.W.,Combustion behaviors of solid-fuel ramjet[J] Journal of Spacecraft Rockets, Vol.6, No.15.1978:131-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700