8AYT10缸内直喷发动机开发及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油价的不断上涨及排放法规的日趋严格,高效、节能、环保已成为开发发动机新产品的必备条件,具有升功率高、燃油经济性好、排放低、响应速度快的缸内直喷汽油机将成为未来发动机中的主流产品。
     本文在8AYN10气道喷射(PFI)汽油机基础上,完成了8AYT10缸内直喷(GDI)汽油机的全新开发,设计了高滚流比气道和特殊顶面凹坑的活塞,优化了活塞环结构、进气管参数和凸轮轴型线,进行了直喷系统的设计及增压器的匹配研究,评价了增压器的高原能力和瞬态响应性能。整机试验结果表明,8AYT10发动机的动力性、经济性和排放指标均满足设计要求,且达到了国际领先水平。
     采用CFD模拟技术研究了缸内直喷汽油机的喷雾过程、速度场、湍流动能、空燃比分布及温度场分布,揭示了缸内滚流从孕育、发展到被压缩及破碎的过程规律。同时发现在点火时刻火花塞电极处形成了稳定的流场,并且缸内流场流速和湍流动能以火花塞电极为中心向燃烧室周围呈现从小到大的梯度分布,这种分布有利于稳定燃烧和火焰传播,表明了本文燃烧系统设计的合理性。同时分析了不同喷油器方案对缸内混合气均匀度、燃油浓度及燃油撞壁量的影响,结果表明燃油撞壁量受喷油器方案的影响较大,方案1喷油器相比另两个方案总撞壁量少,且不存在撞击气门现象,说明方案1较为合理。通过研究二次喷射对缸内混合气形成的影响,提出了采用二次喷射策略降低油束贯穿距、减少燃油撞壁量的具体方案,并在冷起动工况中得到了验证。
     本文设计开发了研究用缸内直喷光学单缸机,建立了先进的光学测试系统,实现了缸内喷雾过程的可视化研究。利用光学单缸机开展了不同工况下喷雾形状、气流运动及燃烧室结构之间相互作用规律的研究,并与CFD模拟计算结果进行对比分析,证明了模拟计算结果的正确性。分析了不同工况下缸内燃烧时火焰传播及碳烟生成情况,发现在转速1650r/min、全负荷工况下采用二次喷射策略,减小了油束贯穿距,可有效地降低碳烟生成。最后综合光学单缸机试验结果和CFD模拟计算结果确定了方案1喷油器作为最终方案,并推荐冷起动工况下第二次喷油的最佳时刻设置在-100°CAATDC。国内首次采用光学单缸机与CFD模拟技术相结合的研究方法,在试验中验证模拟计算,并通过模拟计算进一步指导试验,使得开发方案的选择更加准确,有效地提高了开发效率,降低了开发风险。
     通过建立的GDI发动机试验台架,研究了喷油定时对发动机燃烧特性的影响。结果表明,喷油时刻过早,易出现油束撞击活塞而造成湿壁现象,使得燃烧室壁面温度低,油气混合速度变慢,燃烧热效率下降;而喷油时刻过晚,油气没有充分的时间混合,在点火时刻均匀性较差,火焰传播速度较慢,热效率降低,并影响燃烧稳定性。喷油定时存在最佳时刻,且在最佳喷油时刻,发动机的累积放热率、燃烧持续期均较短,循环变动率较低,输出转矩大,燃油消耗率低,但因最佳喷油时刻燃烧充分,最高燃烧温度高,NOx排放也相对较高。不同喷油压力工况的试验表明,喷油压力越大,喷射出的燃油雾化质量越好,油气混合的更加充分,发动机发出的转矩越大,平均有效燃油消耗率越低。喷油压力的提高对降低HC排放最为明显,而对CO和NOx排放的影响则相对较小。对不同进、排气VVT开度的试验表明,发动机燃油消耗率随着排气VVT开度的增加逐渐降低,而对于燃烧循环变动率而言,排气VVT开度对循环变动率的影响大于进气VVT开度对循环变动率的影响,但总体来说循环变动率控制在3%以内。
     建立了光纤测试系统,实现了缸内不规则燃烧现象的可视化研究,分析了发动机负荷和喷油定时对常规爆震的影响机理,得出了有效控制爆震的方法,在低速、大负荷工况的测试结果表明8AYT10发动机火焰传播的不规则度小于40%,说明该发动机具有较好的抗爆震性能。开展了早燃及超级爆震现象的试验研究,总结了缸内早燃发生的时刻及位置分布规律,提出了通过二次喷射策略抑制早燃的思路及具体方法。试验结果表明,在转速1500r/min、全负荷工况下采用优化后的二次喷射策略,发动机在试验工况内累计运行3h,未出现早燃现象,证明了抑制早燃方法的有效性。
     通过对GDI发动机振动噪声产生机理的分析,提出了通过减小配缸间隙、偏置活塞销、增大高压油泵柱塞直径、减小喷油速率及优化增压器等方法降低发动机的机械噪声,通过优化点火提前角、改变系统燃烧模式及控制燃油质量等方法降低发动机的燃烧噪声,具有重要的指导意义。
With fuel prices rising and increasingly strict emissions regulations, high efficiency,energy saving and environmental protection has become the essential conditions of a newengine product development. Gasoline Direct Injection (GDI) engine has high power, goodfuel economy, low emissions and rapid response, so it’s main product in the future.
     Based on the8AYN10PFI engine,8AYT10GDI engine was designed. High tumbleratio port and piston with special designed top surface have been developed, the piston ringstructure, intake pipe parameter and cam lobe have been optimized, GDI system wasdesigned and turbocharger matching has been studied, and plateau performance, transientresponse character have been estimated. The bench test datas show that the power, fueleconomy and emissions meet expectation, and reached the international leading level.
     CFD simulation technology was used to study spray process, speed field, turbulentkinetic energy, air-fuel ratio distribution and temperature distribution of GDI engine.Revealed tumble feature from birth, development to be compressed and broken process incylinder. and find that stable flow field was formed in spark plug electrodes at ignitiontiming, flow velocity and turbulent kinetic energy were gradient distribution from spark plugelectrode to the wall of combustion chamber, and these distribution are conducive to stablecombustion and flame propagation, proved combustion system design of8AYT10isreasonable. The effects of different injectors to mixture uniformity, fuel concentration andfuel impingement wall were analyzed, the results show that the fuel impingement wall iseffected by injector scheme greatly. Scheme1injector assembly was reasonable for littlefuel impingement wall quantity. The effects of secondary injection to mixture formationprocess were studied in cylinder, and proposed the scheme that using secondary injectionstrategies to reduce spray penetration, decrease fuel impingement wall in GDI engine, andthis scheme was verified in cold start condition.
     GDI optical single-cylinder engine was designed for researching, and optical testingsystem was established, and it realized visualization of spray process in cylinder. Sprayshape, air motion and combustion chamber structure interaction rules were researched byusing optical single cylinder engine, and the results were compared with CFD calculation,the conclusion was that simulation results were right. Combustion flame propagation underdifferent conditions and soot formation were analysed, and found that through two times injection, the spray penetration can be decreased, and reducing soot formation at1650r/min,full load. Finally, integrated optical single cylinder engine results and CFD simulationresults, the scheme1injector was confirmed and set-100°CA ATDC as second injectiontimming at cold start condition. Optical single cylinder engine testing and CFD simulationtechnology were used in researching at the same time, and this was the first time. Thesimulation results were validated in experiment, and the CFD simulation can guide theexperiment further. Development schemes were more accurately by using this method, andimproved development efficiency, reduced development risks.
     Through GDI engine test bench, the effects of injection timing on combustioncharacteristics of GDI engine was studied. The results show that if injection timing was tooearly, fuel beam can impinge on piston and cause wet wall phenomenon, reducedtemperature of chamber wall, decreased mixture speed of air and fuel, and heat efficiencywas low. While if injection timing was too late, there was no enough time for air and fuelmixture, and uniformity was poor at ignition time, flame propagation speed was slow,thermal efficiency was decreased, and combustion stability was poor. Injection timing hasthe best time, and in the best injection timing, cumulative heat release rate and combustionduration of engine were short, and cyclic variation was low, torque was bigger, fuelconsumption was low, but the maximum combustion temperature was high, and NOxemission was high. Experiment of different injection pressure condition shows that ifinjection pressure was high, air and fuel mixture were fully and torque was high, fuelconsumption rate was low. High injection pressure reduced HC emission, but the effects6onCO and NOx emissions were smaller. VVT opening test show that, fuel consumption of theengine was reduced with increasing exhaust VVT opening, while for cyclic variation rate,the effect of exhaust VVT opening to cyclic variation was greater than intake VVT opening,but the cyclic variation rate can be controlled within3%.
     A fiber test system was built, and realizing visualization research of irregularcombustion in cylinder, The influence mechanism of conventional knock with engine loadand fuel injection timing were studied, and obtained the effective methods to control knock.Test results at low speed, high load showed that the flame propagation irregular less than40%of8AYT10engine, indicating that the engine has high anti-konck performance. Thepre-ignition and super knock were studied in GDI engine, researched distribution of timeand location when pre-ignition was occur, and proposed the strategy and detail methods forrestraining pre-ignition by secondary injection. The results at1500r/min, full load showthat there was no pre-ignition phenomenon in GDI engine after running3hours by using optimized secondary injection strategy, proved the methods were effective.
     Generation mechanism of NVH was analyzed in GDI engine, and the methods forreduce engine’s mechanical noise were proposed, such as decreasing gap between cylinderand piston, using bias piston pin, increasing diameter of the high pressure fuel pumpplunger, reducing injection rate and optimizing turbocharger etc. The methods to reduceengine’s combustion noise were proposed too, such as optimizing ignition advance angle,changing combustion mode and controlling fuel quality. All of these methods haveimportant guiding significance to improve NVH performance of GDI engine.
引文
[1]《2012年国民经济和社会发展统计公报》.国家统计局.2013-2-22.
    [2]中国汽车销量首次超过美国[N].证券日报,2009-02-13.
    [3]《世界能源统计2012》.英国石油公司.2011-6-22.
    [4]我国石油对外依存度[N].新京报.2013-02-05.
    [5]钱伯章.醇醚燃料与天然气和煤基合成油技术与应用[M].北京:科学出版社,2010.
    [6]颜祥.美国汽车燃料经济性法规评述[J].世界标准化与质量管理,2007,(1):44-48.
    [7] Konard S, Kevin B, Andrea J.R. Greenhouse gas emissions: a system analysisapproach[C]. SAE Paper:2001-01-1080.
    [8] J.J.J. Louis. Well-to-Wheel Energy Use and Greenhouse Gas Emissions for VariousVehicle Technologies[C]. SAE Paper:2001-01-1343.
    [9]吴建平.国外的汽车排放法规.汽车科技[J].2001,(1):10-14.
    [10]杜维明,曲美兰,李丰军等. CA4GD1型高性能低排放汽油机的开发[J].汽车技术,2011,(1):15-20.
    [11] Hirohisa Ogawa, Masato Matsuki, Takahiro Eguchi Ogawa. Development of a PowerTrain for the Hybrid Automobile-the Honda Civic[C]. SAE World Congress,2003-01-0083.
    [12]刘峥,王建昕.汽车发动机原理教程[M].北京:清华大学出版社,2001.
    [13]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [14]金国栋.内燃机燃烧学[M].武汉:华中理工大学出版社,1991.
    [15]马乔林.汽油机缸内直喷技术的研究现状及技术难点[J].北京汽车,2008(6).
    [16]马力.国外GDI发动机技术特点及发展趋势[N]. http://mikesnow.bokee.com/viewdiary.17149711.html.
    [17]李彧,刘圣华,宫艳峰. GDI发动机的研究概况[J].内燃机,2006(2).
    [18]王燕军,王建昕,帅石金等.汽油机稀薄燃烧研究的新进展―从GDI到HCCI[J].汽车技术,2002,8:1-4.
    [19]钱人一.宝马新型四缸和六缸燃油分层直喷式汽油机[J].技术与市场,汽车与配件, APT(No6)2008-14.
    [20] Pisehinger F, Walzer P. Future trends in automotive engine technology[A]. FISITATechnical Paper, No.P1303[C].1996.
    [21] C. Stan, A. Stanciu, R. Troeger. GDI Compact Four Stroke Engine-an AdvancedConcept for Vehicle Application[C].2004SAE World Congress, Michigan, USA,2004.
    [22]周振巍.缸内直喷汽油机复合喷射进气歧管设计[D].天津:天津大学,2008.
    [23]窦慧莉,刘忠长,李骏,闰涛.电控多点喷射天然气发动机的开发[J].燃烧科学与技术,2006(12-3):257-262.
    [24] Takeshi Matsunaga等.新4.0L V6汽油机的开发[J].国外内燃机,2008(3):7-10.
    [25] Luckert P, Waltner A等. Mercedes-Benz公司新V6直接喷射汽油机[J].国外内燃机,2007(6):1-6.
    [26] Kuwahara K, Ueda K, Ando H. Intake-port design for Mitsubishi GDI engine torealize distinctive in-cylinder flow and high charge coefficient. SAE Paper,2000-01-2801
    [27] Krebs R,Szengel R等.采用汽油直接喷射和复合增压的Volkswagen新型汽油机-第二部分:增压、燃烧和控制[J].国外内燃机,2007(4):1-5.
    [28]陈海娥,孟凡臣,宋建龙等.发动机冷却水套CFD分析[J].汽车技术,2003,8:16-20.
    [29]李强.进气歧管喷射式氢气发动机性能研究[D].武汉:武汉理工大学,2008.
    [30] Petitjean D, Bernardini L, Middlemass C.改善汽油机燃油经济性的先进涡轮增压技术[J].国外内燃机,2006,03:56-62.
    [31]王应红,郑国璋.废气涡轮增压与发动机匹配的理论计算研究[J].内燃机,2004,02:1-6
    [32] Christopher A, Sharp Magdi K. The Effect of a Turbocharger Clearance ControlCoating on the Performance and Emissions of a2-Stroke Diesel Engine[C]. SAEPaper,1999-01-3665.
    [33] Walter E. Janach, Marco Wenger, Adolf H. Glattfelder. Boosting of TurbochargerDynamics: Simulation and Comparison of Different Solutions [C]. SAE Paper,2003-01-0399.
    [34] Steve Arnold, David Calta, Kristian Dullack. Development of an Ultra-High PressureRatio Turbocharger [C]. SAE Paper,2005-01-1546.
    [35] Mark D. Ladocha and Pierre B. French. The Development and Application ofTurbocharger Technology to Meet Future Mass Emission Regulations in India [C].SAE Paper,2005-26-027.
    [36] Oldrˇich Vítek, Jan Macek and Milo Polá ek. New Approach to TurbochargerOptimization using1-D Simulation Tools[C]. SAE Paper,2006-01-0438.
    [37]卢超,洪伟,解方喜等.可视化定容系统的开发[J].汽车技术,2011,3:24-27.
    [38]刘铁刚,李君,高莹.498型柴油机冷却水套优化设计[J].吉林大学学报:工学版,2008,38(4):778-781.
    [39] Koch F, Franz Maasen, Frank Haubher. Cooling System Development andOptimizationg with the Computer Code Cool[C]. SAE Paper,980425.
    [40] Okamoto K, et al. Study on combustion chamber deposits from a direct injectiongasoline engine[J]. JSAE Technical Paper, No.20005111[C].2000.
    [41]高剑.缸内直喷汽油机的高压旋流喷油器喷雾特性和分层燃烧的试验与数值研究[D].西安:西安交通大学,2008.
    [42]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [43]王燕军.汽油高压旋流喷雾的数值模拟和试验研究[J].汽车工程,2004,26(6).
    [44] Miok Joh, Kang Y. Huh, Seok Hong Noh, Kyu Hoon Choi. Numerical Prediction ofStratified Charge Distribution in a Gasoline Direct Injection Engine ParametricStudies[C]. SAE Paper1999-01-0178.
    [45]王海波.分层燃烧GDI发动机燃烧过程的仿真研究[D].长春:吉林大学,2009.
    [46]田江平.点火室式直喷汽油机燃烧系统及其喷雾特性研究[D].大连:大连理工大学,2009.
    [47] M. Badami、V. Bevilacqua、F. Millo、M. Chiodi and M. Bargende,GDI Swirl InjectorSpray Simulation: A Combined Phenomenological-CFD Approach[C]. SAE Paper,2004-01-3005.
    [48]杨迪,卓斌,杨世友.用三维计算研究喷油参数对汽油缸内直喷的影响[J].上海交通大学学报,2000,34(9).
    [49]孙勇,帅石金,王建昕,首藤登志夫.汽油缸内喷射喷雾特性的三维数值模拟[J].内燃机学报,2002,20(3).
    [50] Gao Jian, JIANGDe-ming, HUANG Zuo-hua, WANG Xi-bin. Numerical Study onSpray and Mixture Stratif ied Combustion in a Direct Injection Gasol ine Engine[J].内燃机学报(Trans actions of CSICE),2005,20(4).
    [51]陈海娥,宫艳峰等.缸内直喷汽油机的喷雾模拟[C].中国内燃机学会燃烧节能净化分会2009学术年会, CSICE2009-051.
    [52]谭文政,冯立岩等.缸内直喷汽油机工作过程的数值模拟[C].中国内燃机学会燃烧节能净化分会2009学术年会, CSICE2009-070.
    [53] S.Malaguti, G.Cantore and S.Fontanesi. CFD Investigation of Wall Wetting in a GDIEngine under Low Temperature Cranking Operations[C]. SAE Paper,2009-01-0704.
    [54]陈芳菲.分层稀薄燃烧GDI发动机缸内浓度场的模拟仿真研究[D].长春:吉林大学,2008.
    [55]石皓天. GDI汽油机进气系统的数值模拟研究[D].天津:天津大学,2008.
    [56]陈海娥,宫艳峰,李伟等.缸内直喷汽油机的喷雾模拟[J].汽车技术,2010,03:12-15.
    [57] Siders J A,Tiuey D G. Optimizing cooling system performance using computersimulation[C]. SAE Paper,971802.
    [58] Ortmann R, Arndt S, Raimann J, et al. Methods and analysis of fuel injection, mixturepreparation and charge stratification in different direct injected SI engines[C]. SAEPaper,2001-01-0970.
    [59] Zhi Wang, Jian-Xin Wang, Shi-Jin Shuai. Numerical Simulation of HCCI Engine withMulti-stage Gasoline Direct Injection Using3D-CFD with Detailed Chemistry[C].SAE Paper,2004-01-0563.
    [60] Baumgarten H, Wolfters P, Geiger J. Vehicle application of a4-cylinder tumble DISIengine[C]. SAE Paper,2001-01-0735.
    [61]李晓娟.车用柴油机燃烧过程及碳烟和NOX排放的数值模拟[D].天津:天津大学2007.
    [62]张楠.模拟研究轨压及废气再循环对柴油机性能的影响[D].长春:吉林大学,2009.
    [63]余以正.缸内直喷加氢柴油机混合气形成与燃烧过程的数值模拟研究[D].北京:北京交通大学,2009.
    [64]徐玉梁.车用四气门汽油机气道及缸内气体流动状态的研究[D].天津:天津大学,2004.
    [65]赵昌普,宋崇林,张延峰等.涡流运动降低柴油机混合气浓度及碳烟排放的数值分析[J].燃烧科学与技术,2004,12.
    [66]段加全. EGR对柴油机燃烧及排放影响的数值模拟[D].长春:吉林大学,2008.
    [67]任晓宇.基于排气门二次开启的可控自燃工质混合状态的模拟研究[D].长春:吉林大学,2009.
    [68]祖炳锋.基于虚拟设计的车用四气门汽油机工作过程研究[D].天津:天津大学,2006.
    [69]吴贻君.预喷射对高压共轨柴油机燃烧影响的模拟研究[D].长春:吉林大学,2006.
    [70]罗金.汽油机气道流动与燃油喷射三维数值模拟研究[D].武汉:华中科技大学,2007.
    [71]黄晨,尧命发. DME燃料HCCI燃烧过程及排放的数值模拟[J].燃烧科学与技术,2006,6.
    [72]于善颖,刘德新,王天友等.火花点火发动机激光诱导荧光及散射测量技术应用研究[J].小型内燃机与摩托车,2003,32(3).
    [73]马骁,何旭,王建昕.激光诱导荧光法用于内燃机燃烧可视化的研究进展[J].车用发动机,2008,2(1).
    [74]关小伟,刘晶儒等.利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布[J].强激光与粒子束,2003,7.
    [75] Block B, Oppermann W, Budack R. Luminosity and laser-in investigations on a DIgasoline engine[C]. SAE Paper,2000-01-2903.
    [76]杜维明,李君,宫艳峰等.缸内直喷汽油机部分负荷燃烧特性试验[J].农业机械学报,2011,7.
    [77] Ueda S, Mori Y, Iwanari E, et al. Development of a new injection in gasoline directinjection systems[C]. SAE Paper,2000-01-1046
    [78]王燕军.基于两次喷射的汽油缸内直喷式燃烧系统的研究[D].北京:清华大学,2004.
    [79] Zhao F.Q., Lai M.C., Harrington D.L. A review of mixture Preparation andcombustion control strategies for spark-ignited direct-injection gasoline engines[C].SAE Paper,970627,1997.
    [80] Han Zhiyu, ReitzRD, Claybaker P J, et al. Modeling the Effects of Intake FlowStructures on Fuel/Air Mixing in a Direct-injected Spark-ignition Engine[C]. SAEPaper,961192.
    [81]刘瑞林,马康,温永继等.四气门汽油机低速低负荷燃烧过程的试验研究[J].燃烧科学与技术,2006,12:361-366.
    [82]白云龙,王志,王建昕.利用废气滞留改善缸内直喷汽油机部分负荷性能的研究[J].内燃机学报,2009,04.
    [83]程勇,王建昕,庄人隽.电喷汽油机循环变动的测量分析[J].汽车工程,2002(2).
    [84] Yankun Jiang, Ningning Xu. A Study on Ignition Advanced Angle Control Strategy ofEFI Gasoline Engine [C]. SAE Paper,2010-01-0244.
    [85] Seoksu Moon, Jaejoon Choi, Essam Abo-Serie. The Effects of Injector Temperature onSpray and Combustion Characteristics in a Single Cylinder DISI Engine[C].SAE Paper,2005-01-0101.
    [86] Cornel Stan, Andrei Stanciu and Ralf Troeger. Theoretical and Experimental Analysisof the Spray Characteristics of a Pressure Pulse GDI System[C]. SAE Paper,2004-01-0538.
    [87] Yufeng Li, Hua Zhao, Nikolaos Brouzos and Tom Ma. Effect of Injection Timing onMixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector[C]. SAEPaper,2006-01-0206.
    [88] N. Kapilan, R. P. Reddy and T. P. Prakash. Effect of injection Timing andCompression Ratio on the Performance and Emissions of2–S SI Engine within-Cylinder Injection of Methanol[C]. SAE Paper,2005-01-3711.
    [89] B. Leach, H. Zhao, Y. Li and T. Ma. Control of CAI Combustion Through InjectionTiming in a GDI engine With an Air-Assisted Injector[C]. SAE Paper,2005-01-0134.
    [90] Thomas Pauly, Stefan Franoschek, Ruediger Hoyer and Stephan Eckhoff. Cost andFuel Economy Driven Aftertreatment Solutions-for Lean GDI [C]. SAE Paper,2010-01-0363.
    [91] Nebojsa Milovanovic, Dave Blundell, Stephen Gedge. Cam Profile Switching andPhasing Strategy vs Fully Variable Valve Train Strategy for Transitions between SparkIgnition and Controlled Auto Ignition Modes[C]. SAE Paper,2005-01-0776.
    [92] Sandqulst H, Lindgren R, Denbratt I. Sources of hydrocarbon emissions from a DirectInjection stratified charge spark ignition engine[C]. SAE Paper,2000-01-906,2000.
    [93]李元平,平银生,尹琪.增压缸内直喷汽油机早燃及超级爆震试验研究[J].内燃机工程.2012,33(5):63-66.
    [94]张志福,舒歌群,梁兴雨等.增压直喷汽油机超级爆震现象与初步试验[J].内燃机学报,2011,29(5):422-426.
    [95]刘成,颜伏.伍.车用发动机振动测试方法的新进展[J].柴油机,2006,28(5):41-49.
    [96] Naoto Kawabata, Masashi Komada, Takayoshi Yoshioka. Noise and vibrationreduction technology in the development of hybrid luxury sedan with series/parallelhybrid system[C]. SAE Paper,2007-01-2232.
    [97] Timothy A.Rogge, Hart Silverwood and Mickey Love. MCU Optimization in BodyMount Applications[C]. SAE Paper,2003-01-1452.
    [98] In-Soo Suh. Combustion on Radiation Noise and Mount Vibration from a V8GasolineEngine[C]. SAE Paper,2003-01-1730.
    [99] Xiao Yunkui, Cao Yajuan, Zhang Lingling. To Analyze Unstable Vibration Signal ofDiesel Engine Basing on the Theory of Cyclical Spectrum[C]. SAE Paper2007-01-2377.
    [100] Jerzy Merkisz, Franciszek Tomaszewski, Grzegorz Szymański. Application of theTime-Frequency Selection of the Vibration Signal for Misfire Sensing in DieselEngines[C]. SAE Paper,2009-01-0242.
    [101]成大先.机械设计手册单行本机械振动[M].北京:北京工业出版社,2004.1.
    [102]石秀勇,李国祥,胡玉平,高雪峰.基于特征建模的柴油机机体有限元分析[J].车用发动机,2006,2:59-63.
    [103] James M. Boileau. The Dimensional Stability of Cast319Aluminum[C]. SAE Paper,2003-01-0822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700