压电单晶弯张换能器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着减振降噪技术的进步,传统被动声纳探测潜艇遇到了困难,远距离探测潜艇需要低频主动声纳。低频大功率发射换能器的研究是远程主动声纳的关键技术之一。弯张换能器是水声领域一种典型的低频、大功率、小尺寸换能器,但由于其机械品质因数较高,带宽通常较窄,使其应用受到了一定的限制。新型弛豫铁电单晶材料在准同型相界附近具有非常优异的压电性能。本文的主要工作是利用压电单晶作为驱动材料研究弯张换能器的宽带发射问题。本文提出了利用弯张换能器的一阶弯曲振动、膜振动、二阶弯曲振动的耦合实现宽带的思想,并且研制了一种压电单晶驱动的长轴加长型弯张换能器样机。
     首先,运用矩阵变换法推导得到了沿[001]方向极化的铌镁酸铅—钛酸铅PMNT单晶的介电常数、柔性常数和压电常数的矩阵形式和独立的常数分量个数,作为研究压电单晶驱动的弯张换能器的基础。
     然后,采用有限元法,利用ANSYS软件研究了压电单晶Ⅳ型弯张换能器的主要振动模态及特征、换能器的发送电压响应及带宽特性以及换能器的结构尺寸对主要振动模态和宽带发送电压响应的影响,进而提出了利用多模态耦合的原理设计宽带弯张换能器需要解决的两个实际问题。在此基础上,提出了加高Ⅳ型弯张换能器和端面辐射型弯张换能器的解决方案,详细讨论了各种解决方案对于弯张换能器频带拓展所起到的具体作用,并最终提出了长轴加长型弯张换能器的设计思想。利用有限元软件ANSYS,对压电单晶驱动的长轴加长型弯张换能器进行了研究,建立了换能器空气中与水中的有限元模型,分析了换能器实现宽带的基本原理以及振动、辐射特性并进行了宽带性能的优化设计。
     长轴加长型弯张换能器首先以端面辐射型弯张换能器为基础,解决了二阶弯曲振动的响应凹谷问题。接着通过长轴加长型弯张壳体的设计,改变了换能器膜振动模态在频带内的相对位置,使之处于一阶、二阶弯曲振动模态频率之间,利用膜振动的辐射能力进一步解决了弯张换能器一阶、二阶弯曲振动之间响应起伏较大的问题。从而利用一阶弯曲振动、膜振动、二阶弯曲振动之间的耦合形成宽带,实现了弯张换能器的频带拓展,并且借助于压电单晶材料低声速、高应变的特点降低换能器的工作频率,提高换能器的发送电压响应。
     最后,设计并制作了PMNT单晶与PZT-4压电陶瓷驱动的Ⅳ型弯张换能器并进行了水池测试。结果表明:同种结构尺寸的Ⅳ型弯张换能器,利用PMNT做驱动材料相比PZT-4,谐振频率降低17%,谐振时的电导值大5倍,获得的发送电压响应高5dB。对PMNT单晶驱动的长轴加长型弯张换能器进行了制作和测试,在1.6kHz~16kHz的频率范围内,压电单晶长轴加长型弯张换能器的最大发送电压响应136dB,响应起伏7.8dB,带宽达到3个倍频程以上,可以实现弯张换能器的宽带发射。
Along with the development of technologies of vibration and noise reduction, it causes great difficulties in submarine detection by passive sonar, and active sonar has been introduced as an important means for detection of distant submarine. Design and manufacture of high-power, low-frequency projectors is one of the most important technologies for long range active sonar system. Flextensional transducer is a typical low frequency, high-power and small size transducer. But the bandwidth of the transducer is narrow for its high mechanical quality factor. Thus the application is limited. Novel relaxor ferroelectric single crystal is found to exhibit excellent piezoelectric properties near the morphotropic phase boundary. The main content of this dissertation is to study the broadband transmittion of the flextensional transducer driven by piezoelectric single crystal. In this dissertation, an idea of extending the bandwidth of flextensional transducer by coupling the first flexural vibration mode, the membrane vibration mode and the second flexural vibration mode is proposed and a prototype of piezoelectric single crystal flextensional transducer with major axis lengthened is developed.
     Firstly, matrix transformation method is used to obtain the matrix form and the independent number of dielectric, compliance, and piezoelectric constants of PMNT single crystal polarized along [001] direction. It is the foundation of studying the flextensional transducer driven by piezoelectric single crystal.
     Secondly, the ClassⅣflextensional transducer driven by piezoelectric single crystal is studied using finite element software ANSYS. The researches include the main vibration modes and its characteristics, the transmitting voltage response, the bandwidth characteristics, the influence of the sizes of the transducer on the modes and broadband TVR. Then two questions which have to be dealed with for designing broadband flextensional transducer using multiple-mode-coupling are put forward. On this basis, the heightened Class IV flextensional transducer and end radial flextensional transducer are proposed. The specific effect of these kinds of solutions for extending the bandwidth of the transducer is discussed. Finally, the flextensional transducer with major axis lengthened is proposed.The flextensional transducer with major axis lengthened is analyzed using finite element software ANSYS. The finite element models of the transducer in air and water are builded. The basic principle of extending the bandwidth, the characteristics of the vibration and radiation are analyzed. The performance of its bandwidth is optimized.
     The flextensional transducer with major axis lengthened is proposed based on the end radial flextensional transducer whose response sunken of the second flexural vibration has been overcome. Then the relative position of the membrane mode in the bandwidth has been changed by the design of the shell with major axis lengthened. Its position has been adjusted to the region between the first and second flexural vibration modes. The large discrepancy between responses of the first and second flexural vibrations has been further overcome by the capability of radiation of the membrane mode. So the bandwidth of the flextensional transducer is extended by the coupling of the first flexural vibration mode, the membrane vibration mode and the second flexural vibration mode. Meanwhile the working frequency of the transducer is lowered by the lower sound speed of single crystal. The transmitting voltage response of the transducer is increased by the higher strain of single crystal.
     Finally the ClassⅣflextensional transducers driven by PMNT and PZT-4 are designed, produced and tested. It is shown that the PMNT flextensional transducer possesses a 17% lower resonance frequency,5 times more conductance and a 5dB higher transmitting voltage response than the PZT-4 flextensional transducer of the same dimensions. A flextensional transducer with major axis lengthened is produced and tested. The transmitting voltage response of the transducer reaches to 136dB with 7.8dB variation between 1.6kHz to 16kHz. The bandwidth is more than 3 octaves. The broadband transmittion of flextensional transducer has been achieved.
引文
[1]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981:1页
    [2]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,1993:3页
    [3]周利生,胡青.水声发射换能器技术研究综述.哈尔滨工程大学学报.2010,31(7):932-937页
    [4]高源,姚蓝.低频、甚低频段矢量水听器的应用研究.第十一届船舶水下噪声学术讨论会.陕西西安,2007年:271-276页
    [5]Peter F. Worcester, Bruce D. Cornuelle. A test of basin-scale acoustic thermometry using a largeaperture vertical array at 3250-km range in the eastern North Pacific Ocean. J. Acoust.Soc.Am.1999,105(6):3185-3201P
    [6]Walter H. Munk, Robert C. Spindel, Arthur Baggeroer, Theodore G. Birdsall. The Heard Island Feasibility Test. J. Acoust. Soc. Am.1994,96(4):2330-2342P
    [7]John A. Colosi and the ATOC Group. A Review of Recent Results on Ocean Acoustic Wave Propagation in Random Media:Basin Scales. IEEE JOURNAL OF OCEANIC ENGINEERING 1999,24(2):138-155P
    [8]James F. Tressler, Homas R. Howarth, Walter L. Carney. Thin, lightweight electroacoustic projector for low frequency underwater applications. J. Acoust. Soc. Am. 2004,116(3):1536-1543P
    [9]Jean-Noel Decarpigny, Bernard Hamonic, Oscar Bryan Wilson. The Design of Low-Frequency Underwater Acoustic Projectors:Present Status and Future Trends. IEEE JOURNAL OF OCEANIC ENGINEERING.1991,16(1):107-122P
    [10]Dimitri M. Donskoy, Joseph E. Blue. A new concept of a low-frequency underwater sound source. J. Acoust. Soc. Am.1994,95(4):1977-1982P
    [11]周福洪.水声换能器与基阵.国防工业出版社,1984:6页
    [12]刘望生,俞宏沛,周利生.具有连续纵向激励模态宽带水声换能器研究.应用声学.2007,26(5):257-261页
    [13]俞宏沛,宋兰英.采用多模振动拓宽换能器频带的几种方法.声学与电子工程.1999年第3期:23-27页
    [14]范进良,楼成淦,夏铁坚.低频宽带大功率纵向振动换能器的研究.2007年全国水声学学术会议.河南郑州,2007年:202-204页
    [15]沈铁东,俞宏沛,谢民.合成孔径声纳宽带换能器研究.中国声学学会2006年全国声学学术会议.福建厦门,2006年:553-554页
    [16]张春华,刘纪元.合成孔径声纳成像及其研究进展.物理.2006,35(5):408-413页
    [17]钱建平,杨芸.国外鱼雷及自导技术现状与发展趋势.船舶工程.2003,25(4):10-16页
    [18]杨云川,崔怀林,李志舜.宽带噪声水下对抗仿真技术研究.西北工业大学学报.2005,23(1):115-120页
    [19]戎华,陈明荣,梁敬平.水面舰艇水声干扰器材与战斗使用.舰船科学技术.2010,32(5):56-58页
    [20]吕连港,袁业立.海洋声层析研究的两个热点问题.黄渤海海洋.2002,20(2):133-138页
    [21]H.Li, Y.C.Li, D.Zhou, J.Peng, H.S. Luo. Application of PMNPT single crystal in a 3.2 MHz phased-array ultrasonic medical imaging transducer. IEEE International Symposium on Applications of Ferroelectrics. Nara,2007:572-574P
    [22]徐钧,俞宏沛,李建成.纵振换能器拓宽频带的方法综述.声学与电子工程.2003年第4期:17-21页
    [23]Henrik Borg, Anders Svensson, Daniel Johansson. A New Generation of Broad Band Transducers.Undersea Defence Technology. Hamburg.2001:PⅡ16.
    [24]蓝宇.低频宽带弯张换能器研究.哈尔滨工程大学博士学位论文.2005:63-64页
    [25]李宁,陈建峰,黄建国.各种水下声源的发声机理及其特性.应用声学.2009,28(4):241-248页
    [26]潘正伟,焦善武,顾晓辉.水下爆炸——高功率宽频带的水声干扰源.南京理工大学学报.1999,23(6):507-509页
    [27]P. J. Westervelt. Parametric Acoustic Array. J. Acoust. Soc. Am.1963,35(4):535-537P
    [28]李荣福,崔桂华,桑国明,田作喜.水中激光声脉冲特性及其传输损失.舰船科学技术.2002,24(1):41-45页
    [29]陈兵,宋昭海,钟磊.气枪式气爆声源的工作原理及发展趋势.水雷战与舰船防.2006年第3期:42-43页
    [30]James E. Barger, William R. Hamblen. The air gun impulsive underwater transducer. J. Acoust. Soc. Am.1980,68(4):1038-1045P
    [31]郑士杰,袁文俊,缪荣兴.水声计量测试技术.哈尔滨工程大学出版社,1995:366页
    [32]杜功焕,朱哲民,龚秀芬.声学基础.南京大学出版社,2001:32页
    [33]Charles H. Sherman, John L. Butler. Transducers and Arrays for Underwater Sound.Springer,2006:53-55P
    [34]D.Berlincourt. Transducers Using Forced Transitions Between Ferroelectric and Antiferroelectric States. IEEE Transactions On Sonics and Ultrasonics.1966,116-125P
    [35]W.Y.Pan, C.Q.Dam, Q.M.Zhang. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics. J. Appl. Phys.1989,66(12):6014-6023P
    [36]K. G Brooks, J. Chen, K. R. Udayakumar, and L. E. Cross. Electric field forced phase switching in La-modified lead zirconate titanate stannate thin films. J. Appl. Phys.1994, 75(3):1699-1704P
    [37]吕可佳,李俊宝,尹义龙.基于相变换能机理的反铁电陶瓷水声换能器初探.应用声学.2010,29(2):93-99页
    [38]莫喜平.新型弯张换能器的研究与设计.哈尔滨工程大学博士学位论文.1998年5月:79页
    [39]张文波,王明洲,郝保安.一种多模宽带水声换能器设计.鱼雷技术.2008,16(2):31-33页
    [40]陈航,张允孟,李志舜.宽频带水下导引系统的水声传感器设计.探测与控制学报.2002,24(1):37-39页
    [41]俞宏沛,李继增,林家旺.采用匹配层的超宽带换能器实验研究.声学与电子工程.1998年第1期:23-26页
    [42]严伟,俞宏沛,唐军.一种纵弯宽带换能器设计.声学与电子工程.2007年第3期:22-24页
    [43]孙好广,俞宏沛,欧阳哲.双激励宽带换能器的有限元设计.声学与电子工程.2003年第3期:12-14页
    [44]John L. Butler, Alexander L. Butler. Ultra Wideband Multiple Resonant Transducer. OCEANS 2003. San Diego, CA., United states,2003:2381-2387P
    [45]Stephen C. Butler. Triply Resonant Broadband Transducers. Ocean's 2002 Conference and Exhibition. Mississippi,2002:2334-2341P
    [46]刘强,范进良,曹荣.压电/超磁致伸缩混合式宽带纵振换能器的线性数学模型.声学与电子工程.2005(1):12-15页
    [47]刘继伍,徐铭,夏铁坚.一种水声通信宽带圆管换能器的设计.2008年船舶通信导航学术年会.陕西宝鸡,2008:170-173页
    [48]滕舵,陈航,朱宁.宽频带径向极化压电圆管水声换能器研究.压电与声光.2008,30(4):411-413页
    [49]衰易全.一种新型压电多层环宽带换能器的研究.电子学报.1986,14(6):79-84页
    [50]王清池.水声通讯仪换能器系统的研制.海洋科学.1998年第5期:56-58页
    [51]卢苇,张振宇,蓝宇.新型低频溢流式宽带压电水声换能器研究.2009年全国压电和 声波理论及器件技术研讨会.武汉,2009:41-44页
    [52]John L. Butler, Alexander L. Butler, Joseph A. Rice. A tri-modal directional transducer. J.Acoust. Soc.Am.2004,115(2):658-665P
    [53]卢苇,蓝宇.宽带圆管换能器的有限元分析.声学技术.2007,26(5):210-212页
    [54]桑永杰,蓝宇.一种低频宽带液腔谐振水声换能器有限元设计.2009年全国水声学学术交流暨水声学分会换届改选会议.辽宁大连,2009年:243-245页
    [55]Yves Lagier, Vito Suppa. Underwater Broadband Acoustic Transducer. U.S.Patent 6,617,765,2004
    [56]Y. Le Gall, D. Boucher, X. Lurton. Great depth, high efficiency, broadband, reliable low frequency transducer for acoustical oceanography. OCEANS'94.'Oceans Engineering for Today's Technology and Tomorrow's Preservation.'Brest,1994:Ⅱ/284-Ⅱ/288P
    [57]Alexander L. Butler, John L. Butler. A Deep-Submergence, Very Low-Frequency, Broadband, Multiport Transducer. Ocean's 2002 Conference and Exhibition. Mississippi,2002:2350-2353P
    [58]Christopher John A. Purcell, Richard A. Fleming. Flextensional Resonant Pipe Projector. U.S.Patent 6,567,343 B1,2003
    [59]Colin W. Skinner, Qi-Chang Xu.Self Bised Transducer Assembly and High Voltage Drive Circuit. U.S.Patent US2001/0022757 Al,2001
    [60]Raymond Porzio.Active Housing Broadband Tonpilz Transducer. U.S.Patent 6,690,621 B2,2004
    [61]James F. Tressler, Thomas R. Howarth, Dehua Huang.A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based "cymbal" projectors. J. Acoust. Soc. Am.2006,119(2):879-889P
    [62]D.Stansfield. Underwater Electroacoustic Transducers. Bath University Press,1990: 55-56P
    [63]徐家跃,金敏.新型弛豫铁电晶体—生长、性能及应用.化学工业出版社,2008:2页
    [64]栾桂冬,黄进来,顾海仁.灌注成型的PVDF薄膜水听器.声学与电子工程.1992,(25):14-22页
    [65]徐红星,骆英,柳祖亭.PVDF压电薄膜的应用进展.江苏理工大学学报(自然科学版).1999,20(5):88-91页
    [66]Xuecang Geng, T. A. Ritter, K. K. Shung.1-3 Piezoelectric Composites for High Power Ultrasonic Transducer Applications. IEEE ULTRASONICS SYMPOSIUM. Tahoe, 1999:1191-1194P
    [67]Wallace Arden Smith. The application of 1-3 piezocomposites in acoustic transducers. IEEE 7th International Symposium on Applications of Ferroelectrics.1990:145-152P
    [68]刘慧生,莫喜平,崔政.纳米复合压电材料水声换能器研究.中国声学学会2006年全国声学学术会议.福建厦门,2006:567-568页
    [69]莫喜平.功能材料及其应用于换能器技术的研究进展.物理.2009,38(3):149-156页
    [70]Jun Kuwata, Kenji Uchino, Shoicchior Nomura. Phase transitions in the Pb(Zn1/3Nb2/3)O3—PbTiO3 system. Ferroelectrics.1981, (37):579-582P
    [71]Jun Kuwata, Kenji Uchino, Shoicchior Nomura.Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3—0.09PbTiO3 Single Crystal.Japanese Journal of Applied Physics.1982, (21):1298-1302P
    [72]T.R.Shrout, Z.P.Chang, N.Kim.Dielectric behavior of single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary. Ferroelectrics Letter.1990, (12):63-69P
    [73]李国荣,罗豪甦,殷庆瑞.PMN-PT弛豫铁电单晶及其超声换能器性能研究.无机材料学报.2001,(16):1077-1083页
    [74]郭益平,罗豪甦等.铅基弛豫型铁电单晶研究进展及其应用.人工晶体学报.2001,(30):330-336页
    [75]Zhang Rui, Jiang Bei, Cao Wenwu. Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals. J. Appl. Phys.2001, 90(7):3471-3475P
    [76]Seung Eek Park, Thomas R. Shrout. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE transactions on ultrasonics, ferroelectrics, and frequency control.1997,44(5):1140-1147P
    [77]王荣津.水声材料手册.科学出版社,1983:144页
    [78]James M. Powers, Mark B. Moffett, F. Nussbaum. Single Crystal Naval Transducer Development. IEEE Internal Symposium on Application of Ferroelectrics.2000: 351-354P
    [79]Mark B. Moffett, Harold C. Robinson, James M. Powers.Single-crystal lead magnesium niobate-lead titanate (PMN/PT) as a broadband high power transduction material. J. Acoust. Soc.Am.2007,121(5):2591-2599P
    [80]Harold C. Robinsona, James M. Powersb, P. David Baird, and Mark B. Moffett. Development of broadband, high power single crystal transducers. Undersea Defence Technology. Glasgow,2008:855-864P
    [81]James F. Tressler, Thomas R. Howarth.Cymbal Drivers Utilizing Relaxor-Based Ferroelectric Single Crystal Materials. IEEE Internal Symposium on Application of Ferroelectrics.2000:561-564P
    [82]James F. Tressler, Thomas R. Howarth, Dehua Huang.A Comparison of the Underwater Acoustic Performance of Single Crystal vs. Piezoelectric Ceramic based Cymbal Projectors. IEEE Oceans Conference Record.2003:2372-2379P
    [83]Kan Deng, Fred Schloss, P.A.Wlodkowski. Method of Strain Amplification for Piezoelectric Transducers. U.S.Patent 6,715,363 B1,2004
    [84]S.Cochran, M.Parker, and P.Marin-Franch. Ultrabroadband Single Crystal Composite Transducers.For Underwater Ultrasound. IEEE Ultrasonics Symposium.2005:231-234P
    [85]孟洪,俞宏沛,罗豪甦.PMNT及其在水声换能器中的应用.声学与电子工程.2004,(73):22-26页
    [86]Laihui Luo, Yanxue Tang, Feifei Wang. Displacement amplification and electric characteristics of modified rectangular cymbal transducers using electroactive materials. Solid State Communications.2007, (143):321-325P
    [87]Zhaohui Li, Aigen Huang, Guidong Luan. Finite element analyzing of underwater receiving sensitivity of PMN-0.33PT single crystal cymbal hydrophone. Ultrasonics. 2006, (44):e759-e762
    [88]E. F. Rynne. Innovative approaches for generating high power, low frequency sound. Proceeding of the third international workshop on transducers for sonics and ultrasonics. Orlando Florida.1992:38-49P
    [89]柴勇,莫喜平,刘永平.磁致伸缩-压电联合激励凹筒型发射换能器.声学学报.2006,31(6):523-526页
    [90]Raymond Porzio. Multiple frequency sonar transducer. U. S. Patent,7,535,801 B1,2009
    [91]Richard A. G. Fleming, Dennis F. Jones, Charles G Reithmeier. Broadband cluster transducer for underwater acoustics applications. J. Acoust. Soc. Am.2009,126(5): 2285-2293P
    [92]Seung-Eek Park, Thomas R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys.1997,82(4):1804-1811P
    [93]莫喜平.ANSYS软件在模拟分析声学换能器中的应用.声学技术.2007,26(6):1279-1290页
    [94]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.修订版.北京大学出版社,2005:49页
    [95]B.A.奥尔特.固体中的声场和波.孙承平译.科学出版社,1982:70页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700