基于传声器阵列的激光焊接过程质量检测理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于声信号是激光焊接过程质量检测的相关性较强的参数,其带有大量激光焊接过程信息,如焊接熔体金属、熔池小孔、金属蒸汽和等离子体的变化情况,且具有响应速度快、非接触测量的特点,非常适合作为激光焊接过程质量检测参量。但由于声信号极易受到环境噪声的干扰,因此它在激光焊接过程质量检测中的应用受到一定的限制。近期的研究发现,传感器阵列技术与信号处理方法能够消除环境噪声、提取特征信号,同时可以实现声源定位、跟踪,这就为激光焊接过程质量检测提供了新的途径和方法。
     本文主要基于声信号,对激光焊接过程质量检测进行研究。采用新的信号处理技术—盲信号分离算法,实现激光焊过程声信号的降噪、激光特征声信号的提取;以及基于传声器阵列技术—波束形成算法,对激光焊接过程中的声源进行定位与跟踪。
     本文首先深入研究了熔池小孔和熔体金属以及气流喷射两大声源,建立了基于热传导和流体动力学理论的熔池小孔和熔体金属模型;同时以有限元声学软件为基础,通过数值计算,得到激光焊接过程中辐射声场的分布情况。
     在激光声源发声机理的研究基础上,采用实验方法,研究了不同焊接工艺参数与激光声信号的关系,建立了激光焊过程标准声信号库。
     研究了盲信号分离算法,根据选定的优化准则和合适的对比函数,实现了对声信号的降噪、激光焊过程特征声信号的提取。同时,采用基于传声器阵列技术的波束形成算法,根据传声器阵列接收声波的时间差和位置差,实现了激光焊过程声源的定位与跟踪。
     最后,本文从试验的角度研究了传声器阵列技术在400W小功率脉冲激光器、2kW中功率固体连续激光器和12kW大功率CO_2激光器中的应用。试验结果得到:盲信号分离算法对声信号的降噪和特征信号的提取,以及Beamforming对于激光焊接过程声源的定位与跟踪上,效果较好。而且,计算所得到的结果与试验的结果相符,这为激光焊接过程质量检测技术在实际工程中的应用提供了解决方案。
Acoustic signal generated in laser welding processing is suitable parameter of thequality procedure detection. It has the advantages of fast response and non-contactmeasurement and contains a large number of welding processing information, such aswelding molten pool, keyhole, metal vapor and plasma.
     However, its application is limited to some extent in laser welding, due to itsvulnerability to environmental noise. Recent study shows that microphone arraytechnology and signal processing method could eliminate background noises andlocalized sound sources, which provide a new way for quality procedure detection.
     This thesis is mainly focused on the research of the quality procedure detectionin laser welding. The new signal processing technology-blind signal separation isused to extract the feature acoustic signal of the laser welding. the source foridentification, tracking and locations is achieved based on the beamforming algorithmof microphone array technology.
     Firstly, the source mechanisms of keyhole and the plasma jet have beenresearched. Then, the model of the keyhole and pool is established based on thetheory of heat transfer and fluid dynamics. Finally, the distribution of sound field inlaser welding processing is calculated by the acoustic software.
     The relationship between the acoustic signals and different welding processparameters is researched by the experimental methods based on the study of sourcemechanism. And the standard source signal library is established.
     Blind signal separation algorithm is used to extract the feature acoustic signal ofthe laser welding based on the selected optimization criteria and the appropriatecomparison function. At the same time, the identification and location of the source inlaser welding processing is achieved according to the receiving the time and thelocation alternate.
     In order to verify feasibility of microphone array technology for sourceidentification and blind signal processing in applications of quality proceduredetection, the welding tests are implemented on the400Wlow-power laser,2kWmedial-power laser and12kW high-power CO_2laser.
引文
[1] Lu K, The future of metals, Science,2010,328(5976):319~320
    [2] D. F. Farson A A, and X. C. Li Laser weld penetration monitoring with multipleemission signal measurements, Journal of Laser Applications,1999,11(47):47~53
    [3] T.W.Eagar, The future of metals, Welding Journal,1991,70(6):69~72
    [4] T.W.Eagar. Challenges in joining emerging materials; proceedings of theInternational Conference on Advances in Joining Newer Structural Materials,Montreal,Canada, F,1990[C]. Pergamon Press: Oxford,1990
    [5] Society A W, Welding-related expenditures investment and productivitymeasurement in US manufacturing, construction and mining industries. French:American Welding Society,2002
    [6]中华人民共和国国务院,国家中长期科学和技术发展规划纲要(2006-2020年),北京:中国法制出版社,2006,3~5
    [7] Sheng P, Chryssolouris G, Investigation of acoustic sensing for laser machiningprocesses Part2: Laser grooving and cutting, Journal of Materials ProcessingTechnology,1994,43(2-4):145~163
    [8]第十一届全国人民代表大会第四次会议,中华人民共和国国民经济和社会发展第十二个五年规划纲要,北京:人民出版社,2011,20~25
    [9]高梁,中国装备制造业的自主创新和产业升级,北京:知识产权出版社,2011,50~55
    [10]张少春,中国战略性新兴产业发展与财政政策,北京:经济科学出版社,2010,11~15
    [11]燕来荣,汽车工业中的激光焊接技术,世界制造技术与装备市场,2010,(4):64~68
    [12]李少华,康蓉娣,激光焊接技术及其应用,舰船防化,2011,(4):32~36
    [13] Yilbas B S, Akthar S, Laser welding of Haynes188alloy sheet: thermal stressanalysis, International Journal of Advanced Manufacturing Technology,2011,56(4):115~124
    [14] Rodil S S, Gomez R A, Bernardez J M, et al., Laser welding defects detection inautomotive industry based on radiation and spectroscopical measurements,International Journal of Advanced Manufacturing Technology,2010,49(4):133~145
    [15] Nomoto R, Takayama Y, Tsuchida F, et al., Non-destructive three-dimensionalevaluation of pores at different welded joints and their effects on joints strength,Dental Materials,2010,26(12):246~252
    [16] Park Y W, Park H, Rhee S, et al., Real time estimation of CO2laser weld qualityfor automotive industry, Optics&Laser Technology,2002,34(2):135~142
    [17] Zhang X, Chen W, Ashida E, et al., Relationship between weld quality andoptical emissions in underwater Nd: YAG laser welding, Optics and Lasers inEngineering,2004,41(5):717~730
    [18] Rockstroh T J, Mazumder J, Spectroscopic studies of plasma during cw lasermaterials interaction, Journal of Applied Physics,1987,61(3):917~923
    [19] Park H, Rhee S, Estimation of weld bead size in CO2laser welding by usingmultiple regression and neural network, Journal of Laser Applications,1999,11(3):143~150
    [20] Hand D P, Peters C, Jones J D C, Nd:YAG laser welding process monitoring bynon-intrusive optical detection in the fibre optic delivery system, MeasurementScience and Technology,1995,6(9):1389~1394
    [21] Li L, Brookfield D J, Steen W M, Plasma charge sensor for in-process,non-contact monitoring of the laser welding process, Measurement Science andTechnology,1996,7(4):615
    [22]王勇,陈武柱,激光焊接入焦量控制的声—电传感器,传感器技术,1996,3(1):29~31
    [23] Ra ko D, Acoustic emission from welds as indicator of cracking, MaterialsScience and Technology,1987,3(12):1062~1066
    [24] Li L, A comparative study of ultrasound emission characteristics in laserprocessing, Applied Surface Science,2002,186(4):604~610
    [25] Jon M C, Noncontact acoustic emission monitoring of laser beam welding,Welding Journal,1985,64(2):43~48
    [26] Ki H, Mohanty P S, Mazumder J, Modeling of laser keyhole welding: Part II.Simulation of keyhole evolution, velocity, temperature profile, and experimentalverification, Metallurgical and Materials Transactions a-Physical Metallurgy andMaterials Science,2002,33(6):1831~1842
    [27] Lee J Y, Ko S H, Farson D F, et al., Mechanism of keyhole formation andstability in stationary laser welding, Journal of Physics D-Applied Physics,2002,35(13):1570~1576
    [28] Susumu N, et al., Detection technique for transition between deep penetrationmode and shallow penetration mode in CO2laser welding of metals, Journal ofPhysics D: Applied Physics,2000,33(22):2941~2948
    [29] Ki H, Mohanty P S, Mazumder J, Modeling of laser keyhole welding: Part I.Mathematical modeling, numerical methodology, role of recoil pressure, multiplereflections, and free surface evolution, Metallurgical and Materials Transactionsa-Physical Metallurgy and Materials Science,2002,33(6):1817~1830
    [30] Mao Y L, Kinsman G, Duley W W, Real-time fast Fourier transform analysis ofacoustic emission during CO2laser welding of materials, Journal of LaserApplications,1993,5(2):17~22
    [31] Nakamura S, Sakurai M, Kamimuki K, et al., Detection technique for transitionbetween deep penetration mode and shallow penetration mode in CO2laserwelding of metals, Journal of Physics D:Applied Physics,2000,33(22):2941~2948
    [32] Duley W W, Mao Y L, The effect of surface condition on acoustic emissionduring welding of aluminium with CO2laser radiation, Journal of Physics D:Applied Physics,1994,27(7):1379~1383
    [33] Gu H, Duley W W, A statistical approach to acoustic monitoring of laserwelding, Journal of Physics D: Applied Physics,1996,29(3):556~560
    [34] Farson D, Hillsley K, Sames J, et al., Frequency-time characteristics ofair-borne signals from laser welds, Journal of Laser Applications,1996,8(1):33~42
    [35] Farson D, Ali A, Sang Y, Relationship of optical and acoustic emissions to laserweld penetration, Welding Journal,1998,77(4):142~148
    [36] Farson D F, Ali A, Li X C, Laser weld penetration monitoring with multipleemission signal measurements, Journal of Laser Applications,1999,11(2):47~53
    [37] Liu J-L, Chen Y-B, Xu Q-H, Correlation of acoustic signals and weld depth inlaser welding, Transactions of the China Welding Institution,2006,27(1):72~75
    [38] Matsunawa A, Kim J D, Seto N, et al., Dynamics of keyhole and molten pool inlaser welding, Journal of Laser Applications,1998,10(6):247~254
    [39] Abels P, Kaierle S, Kratzsch C, et al. Universal coaxial process control systemfor laser materials processing; proceedings of the Icaleo, Orlando, F,2000[C].Laser Inst America,2000
    [40] Kaierle S, Abels P, Kapper G, et al. State of the art and new advances in processcontrol for laser materials processing; proceedings of the ICALEO, Orlando, F,2001[C]. Laser Inst America
    [41] Lee S K, Na S J, A study on automatic seam tracking in pulsed laser edgewelding by using a vision sensor without an auxiliary light source, Journal ofManufacturing Systems,2002,21(4):302~315
    [42] Kamimuki K, Inoue T, Yasuda K, et al., Prevention of welding defect by sidegas flow and its monitoring method in continuous wave Nd: YAG laser welding,Journal of Laser Applications,2002,14(3):136~145
    [43] Jeng J Y, Mau T F, Leu S M, Gap inspection and alignment using a visiontechnique for laser butt joint welding, International Journal of AdvancedManufacturing Technology,2000,16(3):212~216
    [44] Kroos J, et al., Dynamic behaviour of the keyhole in laser welding, Journal ofPhysics D: Applied Physics,1993,26(3):481~486
    [45] Klein T, M.Vicanek, J.Kroos, Oscillations of the keyhole in penetration laserbeam welding, Journal of Physics D: Applied Physics,1994,27(10):2023~2030
    [46] Kroos J, Gratzke U, Simon G, Towards a self-consistent model of the keyhole inpenetration laser beam welding, Journal of Physics D: Applied Physics,1993,26(3):474~480
    [47] Gu H, Duley W W, Acoustic emission from modulated laser beam welding ofmaterials, Journal of Laser Applications,1996,8(4):205~210
    [48] Palanco S, Laserna J, Spectral analysis of the acoustic emission oflaser-produced plasmas, Applied Optics,2003,42(30):6078~6084
    [49] Conesa S, Palanco S, Laserna J J, Acoustic and optical emission duringlaser-induced plasma formation, Spectrochimica Acta Part B: AtomicSpectroscopy,2004,59(9):1395~1401
    [50] Duley W W, Mao Y L, The effect of surface condition on acoustic emissionduring welding of aluminium with CO2laser radiation, Journal of Physics D:Applied Physics,1994,27(7):1379~1383
    [51]秦国梁,齐秀滨,激光焊接过程实时监测技术的研究现状及其发展,焊接,2002,10(2):5~8
    [52]曾浩,胡席远,激光焊接质量实时检测和控制的进展,激光杂志,2000,21(1):2-5
    [53]骆红,胡伦骥,激光焊接出现未焊透时等离子体光,声信号的傅里叶分析,中国激光,1998,25(6):570~572
    [54] Serrano E P, Fabio M A, Application of the wavelet transform to acousticemission signals processing, Signal Processing,1996,44(5):1270~1275
    [55] Ali A, Farson D, Statistical classification of spectral data for laser weld qualitymonitoring, Journal of Manufacturing Science and Engineering-Transactions ofthe Asme,2002,124(2):323~325
    [56] Luo H, Zeng H, Hu L J, et al., Application of artificial neural network in laserwelding defect diagnosis, Journal of Materials Processing Technology,2005,170(2):403~411
    [57] Huang W, Kovacevic R, A neural network and multiple regression method forthe characterization of the depth of weld penetration in laser welding based onacoustic signatures, Journal of Intelligent Manufacturing,2011,22(2):131~143
    [58]赵楠,基于声信号处理的激光焊接过程实时检测研究:[硕士学位论文],天津:天津大学,2010
    [59] Luo Z, Ao S, Zhao N. Blind source separation based on principal componentanalysis-independent component analysis for acoustic signal during laserwelding process; proceedings of the International Conference on DigitalManufacturing and Automation, Changsha, China, F,2010[C]. IEEE ComputerSociety
    [60] Luo Z, Ao S, Zhao N, et al. Microphone Arrays for Acoustic Detection duringLaser Welding of Cold-rolled Steel Strip; proceedings of the2010InternationalConference on Intelligent System Design and Engineering Application, LosAlamitos, CA, USA, F,2010[C]. IEEE Computer Society
    [61]罗震,敖三三,玄文博,一种基于激光焊接过程的原始激光声信号提取装置,中国专利,2010106095863,2011-08-03
    [62]罗震,敖三三,宋宏伟,基于传声器阵列的激光焊接质量检测的方法和装置:中国专利,2010106095581,2011-08-03
    [63] Huang W, Kovacevic R, Asme. Noise reduction during acoustic monitoring oflaser welding of high-strength steels; proceedings of the InternationalManufacturing Science and Engineering Conference, New York, F,2009[C].Amer Soc Mechanical Engineers
    [64] Kozick R J, Sadler B M, Source localization with distributed sensor arrays andpartial spatial coherence, Signal Processing,2004,52(3):601~616
    [65] Ajdler T, Kozintsev I, Lienhart R, et al. Acoustic source localization indistributed sensor networks; proceedings of the Signals, Systems and Computers,Switzerland F7-10Nov,2004[C]. Switzerland2004
    [66] Zheng Y R, Goubran R A, El-Tanany M, Robust near-field adaptivebeamforming with distance discrimination, Speech and Audio Processing,2004,12(5):478~488
    [67] Zheng Y R, Peng X, Grant S. Robustness and Distance Discrimination ofAdaptive Near Field Beamformers; proceedings of the Acoustics, Speech andSignal Processing, Rolla, F14-19May2006[C]
    [68] Billingsley J, Kinns R, The acoustic telescope, Journal of Sound and Vibration,1976,48(4):485~510
    [69] R K, Binaural source location, Journal of Sound and Vibration,1976,44(2):275~289
    [70] Fisher M J, Harper-Bourne M, Glegg S A L, Jet engine noise source location:The polar correlation technique, Journal of Sound and Vibration,1977,51(1):23~54
    [71] Brooks T F, Marcolini M A, Pope D S, A directional array approach for themeasurement of rotor noise source distributions with controlled spatial resolution,Journal of Sound and Vibration,1987,112(1):192~197
    [72] King Iii W F, Bechert D, On the sources of wayside noise generated byhigh-speed trains, Journal of Sound and Vibration,1979,66(3):311~332
    [73] Barsikow B, King Iii W F, On removing the Doppler frequency shift from arraymeasurements of railway noise, Journal of Sound and Vibration,1988,120(1):190~196
    [74] Barsikow B, King Iii W F, Pfizenmaier E, Wheel/rail noise generated by ahigh-speed train investigated with a line array of microphones, Journal of Soundand Vibration,1987,118(1):99~122
    [75] Aarabi P, Zaky S, Robust sound localization using multi-source audiovisualinformation fusion, Information Fusion,2001,2(3):209~223
    [76] Nakashima H, Mukai T.3D sound source localization system based on learningof binaural hearing; proceedings of the Systems, Man and Cybernetics, Nagoya,Japan F10-122005[C].2005
    [77] Doh-Hyoung Kim Y P, Development of moving sound source localizationsystem, Electronic Journal Technical Acoustics,2006,11(1):1~12
    [78] Trifa V M, Koene A, Moren J, et al. Real-time acoustic source localization innoisy environments for human-robot multimodal interaction; proceedings of theRobot and Human interactive Communication, Jeju, F26-29Aug.2007,2007
    [C].2007
    [79]李加庆,陈进,刘先锋,基于虚拟仪器的声场可视化系统,计算机工程与应用,2006,42(24):219~221
    [80]杨珂,泛华测控噪声源定位分析系统国内首款“声音照相机”,信息与电子工程,2007,5(5):381~381
    [81] Jutten C, Herault J, Blind separation of sources, part I: An adaptive algorithmbased on neuromimetic architecture, Signal Processing,1991,24(1):1~10
    [82] Pierre C, Independent component analysis, A new concept?, Signal Processing,1994,36(3):287~314
    [83] Bell A J, Sejnowski T J, An information-maximization approach to blindseparation and blind deconvolution, Neural computation,1995,7(6):1129~1159
    [84] Amari S-i, Natural Gradient Works Efficiently in Learning, Neural computation,1998,10(2):251~276
    [85] Amari S, Superefficiency in blind source separation, Signal Processing,1999,47(4):936~944
    [86] Hyv rinen A, The fixed-point algorithm and maximum likelihood estimation forIndependent component analysis, Neural Processing Letters,1999,10(1):1~5
    [87] Hyvarinen A, Fast and robust fixed-point algorithms for independent componentanalysis, Neural Networks,1999,10(3):626~634
    [88] Takahashi Y, Takatani T, Osako K, et al., Blind spatial subtraction array forspeech enhancement in noisy environment, Audio, Speech, and LanguageProcessing,2009,17(4):650~664
    [89] Yermeche Z, Grbic N, Claesson I, Blind subband beamforming with time-delayconstraints for moving source speech enhancement, Audio, Speech, andLanguage Processing,2007,15(8):2360~2372
    [90] Draper B A, Baek K, Bartlett M S, et al., Recognizing faces with PCA and ICA,Computer Vision and Image Understanding,2003,91(2):115~137
    [91] Martinson E, Schultz A, Discovery of sound sources by an autonomous mobilerobot, Autonomous Robots,2009,27(3):221~237
    [92] Wu S, Zhao H-Y, Wang Y, et al., New heat source model in numericalsimulation of high energy beam welding, Transactions of the China Welding,2004,25(1):91~94
    [93] Xu G X, Wu C S, Qin G L, et al., Adaptive volumetric heat source models forlaser beam and laser plus pulsed GMAW hybrid welding processes, InternationalJournal of Advanced Manufacturing Technology,2012,57(4):245~255
    [94] Carmignani C, Mares R, Toselli G, Transient finite element analysis of deeppenetration laser welding process in a singlepass butt-welded thick steel plate,Computer Methods in Applied Mechanics and Engineering,1999,179(3-4):197~214
    [95] Chen Y, Fang J, Feng X, Temperature field simulation of laser-TIG hybridwelding, China Welding,2003,12(1):62~66
    [96] Jandric Z, Kovacevic R, Heat management in solid free-form fabrication basedon deposition by welding, Proceedings of the Institution of MechanicalEngineers Part B-Journal of Engineering Manufacture,2004,218(11):1525~1540
    [97] Andrews J G, Atthey D R, Hydrodynamic limit to penetration of a material by ahigh-power beam, Journal of Physics D: Applied Physics,1976,9(15):2181~2194
    [98]杨德庆,郑靖明,基于sysnoise软件的船舶振动声学数值计算,中国造船,2002,43(4):32~38
    [99] Lee J, Wang S, Shape design sensitivity analysis for the radiated noise from thethin-body, Journal of Sound and Vibration,2003,261(5):895~910
    [100] Desmet W, van Hal B, Sas P, et al., A computationally efficient predictiontechnique for the steady-state dynamic analysis of coupled vibro-acousticsystems, Advances in Engineering Software,2002,33(7-10):527-540
    [101] Yao G Z, Mechefske C K, Rutt B K, Characterization of vibration and acousticnoise in a gradient-coil insert, Magnetic Resonance Materials in Physics Biologyand Medicine,2004,17(1):12-27
    [102] Tong Z, Zhang Y, Zhang Z, et al., Dynamic behavior and sound transmissionanalysis of a fluid-structure coupled system using the direct-BEM/FEM, Journalof Sound and Vibration,2007,299(3):645~655
    [103] Scarpa F, Parametric Sensitivity Analysis of Coupled Acoustic-StructuralSystems, Journal of Vibration and Acoustics,2000,122(2):109-115
    [104] Liu Z S, Lu C, Wang Y Y, et al., Prediction of noise inside tracked vehicles,Applied Acoustics,2006,67(1):74-91
    [105]中华人民共和国国家标准.激光焊接工艺规范.2008
    [106]中华人民共和国机械行业标准.激光焊接工艺指南.2010
    [107]中国机械工程学会焊接学会,焊接手册-焊接方法及设备,北京:机械工业出版社,2001,451~458
    [108]李增刚, SYSNOISE REV5.6详解,北京:国防工业出版社,2005,57~58
    [109]韩阳泉,喷注噪声的数值模拟:[硕士学位论文],哈尔滨:哈尔滨工程大学,2007
    [110] Colonius T, Lele S K, Computational aeroacoustics: progress on nonlinearproblems of sound generation, Progress in Aerospace Sciences,2004,40(6):345-416
    [111] Wang M, Freund J B, Lele S K. Computational prediction of flow-generatedsound. Annual Review of Fluid Mechanics. Palo Alto; Annual Reviews.2006:483-512
    [112] Gloerfelt X, Bailly C, Juve D, Direct computation of the noise radiated by asubsonic cavity flow and application of integral methods, Journal of Sound andVibration,2003,266(1):119~146
    [113] Jiang C L, Chen J P, Chen Z J, et al., Experimental and numerical study onaeroacoustic sound of axial flow fan in room air conditioner, Applied Acoustics,2007,68(4):458~472
    [114] Abderrazak K, Bannour S, Mhiri H, et al., Numerical and experimental study ofmolten pool formation during continuous laser welding of AZ91magnesiumalloy, Computational Materials Science,2009,44(3):858~866
    [115] Allalou N, El Hachemi A, Mebani N, et al. Modeling of heat transfer and fluidflow during laser welding of aluminum; proceedings of the AdvancedOptoelectronics and Lasers,2005Proceedings of CAOL2005SecondInternational Conference on, F12-17Sept.2005,2005[C]
    [116] Hoffman J, Moscicki T, Szymanski Z, Modelling of time dependent plasmaplume induced during laser welding, Czechoslovak Journal of Physics,2006,56(1):938~943
    [117] Moscicki T, Hoffman J, Szymanski Z, Modelling of plasma plume inducedduring laser welding, Journal of Physics D-Applied Physics,2006,39(4):685~692
    [118] Wang R P, Lei Y P, Shi Y W, Numerical simulation of transient temperature fieldduring laser keyhole welding of304stainless steel sheet, Optics and LaserTechnology,2011,43(4):870~873
    [119] Jiang C L, Chen J P, Chen Z J, et al., Experimental and numerical study onaeroacoustic sound of axial flow fan in room air conditioner, Applied Acoustics,2007,68(4):458~472
    [120] Tsai C H, Fu L M, Tai C H, et al., Computational aero-acoustic analysis of apassenger car with a rear spoiler, Applied Mathematical Modelling,2009,33(9):3661~3673
    [121] Shangke Y, Rennian L. Analysis of flow field and sound field characteristic of2D airfoil based on FLUENT; proceedings of the Mechanic Automation andControl Engineering (MACE),2011Second International Conference on, F15-17July2011,2011[C]
    [122] Lu H Z, Huang L, So R M C, et al., A computational study of the interactionnoise from a small axial-flow fan, Journal of the Acoustical Society of America,2007,122(3):1404~1415
    [123] Mathey F, Aerodynamic noise simulation of the flow past an airfoil trailing-edgeusing a hybrid zonal RANS-LES, Computers&Fluids,2008,37(7):836~843
    [124] Ozan A Y, Yuksel Y, Simulation of a3D submerged jet flow around a pile,Ocean Engineering,2010,37(8-9):819~832
    [125]马大猷,现代声学理论基础,北京:科学出版社,2004
    [126] Henning A, Kaepernick K, Ehrenfried K, et al., Investigation of aeroacousticnoise generation by simultaneous particle image velocimetry and microphonemeasurements, Experiments in Fluids,2008,45(6):1073~1085
    [127] Mathey F, Aerodynamic noise simulation of the flow past an airfoil trailing-edgeusing a hybrid zonal RANS-LES, Computers&Fluids,2008,37(7):836~843
    [128] Zhang X, Ren J, Chen W, Welding mode transition and process stability in highpower laser welding, China Welding,1997,6(1):61~66
    [129] Dhahri M, Masse J E, Mathieu J F, et al., Laser welding of AZ91and WE43magnesium alloys for automotive and aerospace industries, AdvancedEngineering Materials,2001,3(7):504~507
    [130][130] Weisheit A, Galun R, Mordike B L, CO2laser beam welding ofmagnesium-based alloys, Welding Journal,1998,77(4):149~154
    [131] Willgoss R A, Megaw J H P C, Clark J N, Laser welding of steels for powerplant, Optics& Laser Technology,1979,11(2):73~82
    [132] Liu X-B, Yu G, Pang M, et al., Dissimilar autogenous full penetration weldingof superalloy K418and42CrMo steel by a high power CW Nd:YAG laser,Applied Surface Science,2007,253(17):7281~7289
    [133]胡昌奎,陈培锋,梁军,激光焊接厚钢板的工艺研究,应用激光,2003,23(5):268~270
    [134] Lehner C, Reinhart G, Schaller L, Welding of die-casted magnesium alloys forproduction, Journal of Laser Applications,1999,11(5):206~210
    [135]吴勇军,基于盲信号分离的齿轮系统故障诊断研究:[硕士学位论文],石家庄:石家庄铁道学院,2008
    [136]徐尚志,盲信号分离算法的研究:[博士学位论文],合肥:中国科学技术大学,2005
    [137] HongLi, Yunlian S. The study and test of ICA algorithms; proceedings of theWireless Communications, Networking and Mobile Computing,2005Proceedings2005International Conference on, F23-26Sept.2005,2005[C]
    [138] Hsu C-C, Chen M-C, Chen L-S, A novel process monitoring approach withdynamic independent component analysis, Control Engineering Practice,18(3):242~253
    [139]马建仓,盲信号处理,北京:国防工业出版社,2006,85~90
    [140] Li C L, Liao G S, Shen Y L, An improved method for independent componentanalysis with reference, Digital Signal Processing,2009,20(2):575~580
    [141] Cardoso J F, Laheld B H, Equivariant adaptive source separation, SignalProcessing,1996,44(12):3017~3030
    [142] Cichocki A, Unbehauen R, Rummert E, Robust learning algorithm for blindseparation of signals, Electronics Letters,1994,30(17):1386~1387
    [143] Hyvarinen A, Fast and robust fixed-point algorithms for independent componentanalysis, Ieee Transactions on Neural Networks,1999,10(3):626~634
    [144] Oja E, Zhijian Y, The FastICA Algorithm Revisited: Convergence Analysis,Neural Networks, IEEE Transactions on,2006,17(6):1370~1381
    [145] Saruwatari H, Kawamura T, Nishikawa T, et al., Blind source separation basedon a fast-convergence algorithm combining ICA and beamforming, Audio,Speech, and Language Processing, IEEE Transactions on,2006,14(2):666~678
    [146]崔玮玮,基于麦克风阵列的声源定位与语音增强方法研究:[博士学位论文],北京:清华大学,2009
    [147] Zheng Y R, Goubran R A, El-Tanany M, Experimental evaluation of a nestedmicrophone array with adaptive noise cancellers, Instrumentation andMeasurement, IEEE Transactions on,2004,53(3):777~786
    [148]鲁佳,基于传声器阵列的声源定位研究:[硕士学位论文],天津:天津大学,2008
    [149]许春民,基于传声器阵列技术的车辆噪声源识别方法研究:[硕士学位论文],西安:长安大学,2011
    [150] Mumolo E, Nolich M, Vercelli G, Algorithms for acoustic localization based onmicrophone array in service robotics, Robotics and Autonomous Systems,2003,42(2):69~88
    [151] Castellini P, Sassaroli A, Acoustic source localization in a reverberantenvironment by average beamforming, Mechanical Systems and SignalProcessing,24(3):796~808
    [152]王军,基于线形麦克风阵列的声源定位算法改进与噪声的实验分析:[硕士学位论文],西安:西北大学,2008
    [153]朱维杰,于湘珍,基于自适应波束形成的宽带基阵设计,武警工程学院学报,2009,25(2):16~19
    [154]赵芳芳,波束形成方法在噪声源识别应用中的仿真和实验研究:[硕士学位论文],上海:上海交通大学,2007
    [155]周晓华,运动噪声源识别技术的研究:[博士学位论文],吉林:吉林大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700