内埋武器舱系统气动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统武器外挂模式相比,采用内埋式武器装载后,不仅使飞机的飞行阻力大大减小,同时还会降低其雷达反射面积,因此,武器内埋式装载已成为新一代飞行器武器装载的发展趋势。但武器内埋式装载同样带来许多新的空气动力学/气动声学问题:如舱门开启或武器投放瞬间可能产生较大的动态冲击载荷,从而影响飞行器飞行性能;对于某些几何布局的弹舱,其流场不利于武器安全分离,存在机/弹相互碰撞的危险;当武器舱暴露于高速气流中时,由流动引发的压力、密度以及速度的脉动,将在武器舱内部及周围产生强烈的气动噪声,从而引发结构振动并造成结构疲劳;处于复杂流场且快速运动的武器舱舱门可能发生振动及变形,严重时甚至存在舱门被撕裂或吹飞的危险。因此开展内埋武器舱系统气动特性研究具有重要意义。
     本文以静态压力测量、脉动压力测量以及网格测力等手段,在高速风洞中对内埋武器舱系统气动特性进行了较全面、深入的研究,研究内容分内埋弹舱流场稳态特性、内埋弹舱气动声学特性、内埋武器出舱段气动特性以及舱门开闭动态特性等四方面。本文研究了内埋弹舱流场稳态压力分布特性以及气动声学特性随各种参数的变化规律,并对弹舱流场演化机理以及气动噪声机制进行研究;采用了几种不同的流动控制措施对内埋弹舱流场进行控制,目的是降低弹舱流场压力梯度、抑制弹舱流场引发的强气动噪声;通过网格测力试验,得到了内埋武器出舱段的基本气动特性,在此基础上,研究了几种控制方法对内埋武器分离特性的改善效果。通过动态试验,获取了舱门开闭过程中的动态载荷,研究了舱门运动对舱内流场的影响,同时对舱门分布载荷以及集中载荷特性进行了研究。
     本文研究结果表明:弹舱长深比L/D、来流Ma数以及弹舱前缘边界层厚度与弹舱深度比δ/D等参数对舱内稳态压力分布影响明显,是决定弹舱流场类型的主要参数;随Ma数或δ/D增大,弹舱流场类型有向开式流动转变的趋势,而随L/D增大,弹舱流场类型逐渐演化成闭式流动。笔者认为:当L/D足够大时,弹舱前、后壁附近各有一个分离尾迹区,随L/D减小,弹舱前分离区在舱内逐渐占主导地位,而弹舱后分离区逐渐萎缩,直至被前分离区吞并,正是弹舱前、后分离尾迹区的变化导致了舱内压力分布的变化,进而使弹舱流场类型发生转变。弹舱基准流场类型不同时,采用弹舱后缘修型进行流动控制对弹舱流场稳态压力分布产生影响也不同;弹舱底部安装泄压管对平衡舱内压力梯度有一定作用;采用前缘立齿或前缘射流进行流动控制时,舱内稳态压力梯度降低,弹舱流场类型有向开式流动方向转变的趋势。
     本文针对弹舱流场气动声学特性方面的研究结果表明:与闭式弹舱流场相比,开式弹舱流场气动声学环境较恶劣,弹舱流场主噪声源附近总声压级可达170dB以上,声压频谱曲线上存在多个不同模态的单调声,单调声以及声压能量主要集中在St<2.5范围内。笔者认为,弹舱前缘的剪切层在形成初期包含有多种扰动因子,在声辐射激励作用下,对应弹舱自然频率fn的扰动被放大,并形成K-H涡,弹舱后壁可看成是噪声放大器,气流在该处撞击形成强烈的压力脉动,诱发产生强气动噪声的同时并产生声辐射,声辐射传播到弹舱前缘时将对剪切层产生激励,在该激励作用下,对应弹舱自然频率的扰动因子被放大,从而再次产生K-H涡,形成弹舱流场自持振荡回路。采用边界层扰动法以及气流撞击削弱法进行流动控制后,舱内主噪声源附近总声压级强度均显著降低,声压频谱曲线上主模态单调声强度大幅削弱,弹舱流场气动声学环境明显改善;采用剪切层扰动法进行流动控制对弹舱流场气动声学特性的影响与马赫数关系密切,亚声速条件下,流动控制可导致弹舱流场气动声学环境更加恶劣,跨声速时,流动控制使弹舱流场气动声学环境明显改善;采用声传播回路阻碍法进行流动控制对弹舱流场气动声学环境改善效果不明显。
     本文针对舱内武器分离特性及其控制的研究结果表明:内埋武器出舱段气动特性主要受弹舱流场影响,与外挂武器相比,内埋武器分离过程中的气动力特性更为复杂,武器分离初期容易出现气动力波动,存在机/弹分离安全隐患;弹舱长深比L/D变化对内埋武器气动力特性影响明显,随L/D增大,武器模型将产生较大的抬头力矩,其横航向气动力波动加剧;弹舱后缘修型对武器模型气动力特性影响较小,弹舱底部安装泄压管可使武器出舱段气动力特性得到一定程度的改善;弹舱前缘主/被动流动控制均对武器气动力特性影响明显,武器模型纵向气动力特性均有较大程度改善,有利于机/弹分离安全。
     本文针对舱门开闭动态特性方面的研究结果表明:静态试验获得的舱内稳态压力数据与动态试验处理得到的压力直流量整体变化趋势一致,StD数变化对舱内压力直流量整体分布规律基本无影响。舱门关闭过程中舱内测点频谱曲线上出现能量尖峰的概率较大,StD数变化对舱内测点的脉动压力系数分布影响较明显,频谱曲线则表明随StD数增大,能量尖峰有减弱的趋势。舱门表面不同位置测点动态载荷变化规律可能存在较大差异,StD变化对舱门测点动态载荷特性影响明显,舱门关闭过程StD数对舱门测点动态载荷影响更为复杂。舱门法向力系数与铰链力矩系数变化规律一致,舱门运动可能对上述集中载荷产生明显影响,舱门开启过程可能引发较大的负向附加气动载荷,而舱门关闭过程则可能引发较强正向附加气动载荷;随Ma数增大,StD数对舱门集中载荷特性影响作用降低;超声速条件下,舱门法向力以及俯仰力矩曲线存在显著波动,舱门以较快速度运动时有利于降低该波动。
Compared with the external carriage, the aircraft with internal carriage of storeshas lower drag and radar cross section, so the new generation fighter is tended todesign with internal weapons-bay. But there are also some new aerodynamic andaero-acoustic issues accompanied with the internal weapons-bay. The dynamic load isvery big during a weapon is releasing, and which may effects on the fly performance ofthe plane. The disadvantage separation characteristics of the store may result incollision with the parent aircraft. The strong noise generated by the unsteady pressure,density and velocity around the weapons-bay may result in structure vibration, fatigueand safety of the aircraft at high speed for certain weapons-bay geometries. The doorsof the weapons-bay also may vibrate, distort and even been broken when they aremoving rapidly in the complicated weapons-bay flow field. Therefore, theinvestigation on aerodynamic characteristics of internal weapons-bay system is veryimportant.
     In this paper, investigations on aerodynamic characteristics of internalweapons-bay system were conducted in high speed wind tunnel in detail. Steadypressure measurement, fluctuation pressure measurement and grid measurement wereapplied in the study. The study is focused on the steady flow and aero-acousticcharacteristics of the weapons-bay, weapon’s separation characteristics and thedynamic characteristics of the doors’ movement. Steady pressure distributions andacoustic characteristics vary with different parameters of the weapons-bay werestudied in this paper. The mechanism of the cavity aerodynamic and aero-acousticcharacteristics was also discussed in the paper. Some flow control methods wereconducted to reduce the weapons-bay’s pressure gradient and suppress its strongaero-acoustic noise. The separation characteristics of an internal weapon were obtainedthrough grid measurement and the effects of some flow control methods on itsseparation characteristics were also evaluated. The dynamic pressure loads during theweapons-bay doors’ opening/closing processing were measured. The effect of door’smovement on weapons-bay’s flow was studied and the distributing and average loadson weapons-bay’s doors were discussed.
     The study shows that the type of weapons-bay’s flow based on the cavity floorsteady pressure distribution is mainly depended on the cavity length to depth ratio(L/D), Mach number (Ma) and the scaled boundary layer thickness (δ/D). Theweapons-bay flow transfers to open flow with the increasing of Ma or δ/D, but it willdevelop from open flow to closed flow with the increasing of L/D. In the author’sopinion, separation wake exists both close to the leading and rear wall of the cavity when the L/D is big enough, and the leading separation wake becomes dominantgradually with the decrease of L/D, while the rear separation wake becomes weakerand weaker and finally merges into the leading separation wake. The cavity floorpressure distribution varies with development of the leading and rear separation wakeand the cavity flow type changes accordingly. The effect of the rear wall modificationdepends on the cavity flow type. The floor pressure balance tubes can reduce the cavityfloor pressure gradient. The leading edge vertical saw-tooth fence and blowing bothcan reduce the cavity floor pressure gradient and the cavity flow tends to become openflow.
     The investigations on the cavity aero-acoustic indicated that the aero-acousticenvironment for an open flow cavity is much worse than a closed flow one and themaximum sound pressure level can reach more than170dB. Several tones of differentmodes can be found in the cavity sound pressure spectra and the tones and soundpressure energy mainly appear at St<2.5. In the authors’ opinion, the K-H vortices areformed when the disturbs which exist in the forming of the cavity leading edge shearlayer coincide with cavity inherent frequencies fnare amplified by the sound radiation.The cavity rear wall may serve as an amplifier and strong aero-acoustic noise will beinduced and the sound radiation will be formed by the strong pressure fluctuationemitted from the flow hitting on the cavity rear wall. The disturbs which coincide withcavity inherent frequencies also will be amplified by the driving of the sound radiationin the cavity shear layer when it transfers to the cavity leading edge and the K-Hvortices have been induced again. Thus a self-sustained oscillation is formed in acavity. The boundary layer interruption and rear wall modification can reduce the totalsound pressure level and the main tone of the cavity significantly and its aero-acousticenvironment can be improved greatly. The effect of the shear layer interruption on thecavity aero-acoustic characteristics is different at different Ma. The cavityaero-acoustic environment can be worse when the shear layer interruption is adopted atsubsonic speed but the reverse effect can be achieved at transonic speed. A blockage tothe sound travel loop has little effect on the cavity aero-acoustic environment.
     The results of the internal weapon’s aerodynamic characteristics and its controlsindicated that the separation characteristic of an internal weapon is much morecomplicated than an external weapon. The unsteady forces on the store at the initialseparation stage are harmful to the store safe separation. An internal weapon’sseparation characteristics are mainly depended on the cavity length to depth ratio (L/D).The store’s positive pitching moment increases with L/D and the fluctuations of thelateral forces are also increased. The modification of the cavity rear wall has littleeffect on the store’s aerodynamic characteristics. The cavity base pressure balancetubes can improve the store’s separation characteristics. The axial aerodynamic characteristics can be improved through cavity leading edge active/passive flowcontrols and they are helpful to the store separation.
     The dynamic experiment of weapons-bay doors’ movement showed that theaverage pressure data compared well with the static measurement data on the cavityfloor and almost the same at different StD. More tones may appear on a certain spectrawhen the doors are closing. StDplays an important role on the cavity floor fluctuatingpressure and the peak of the tones reduced with the increasing of StD. The dynamicloads on the doors’ surface are different at different positions. The dynamic loads maychange a lot at different StD, and especially during the doors’ closing process. Themovement of the doors also has great effect on the doors’ normal force and hingemoment. The opening process may produce additional negative aerodynamic loadswhile positive aerodynamic loads may arise during the doors’ closing process. Theeffect of StDon the doors’ average loads decreases with the increasing of Mach number.Faster movement of the door can reduce its unsteady normal force and pitchingmoment at supersonic speed.
引文
[1] Krishnamuty K. Acoustic radiation from two-dimensional rectangular cutoutsin aerodynamic surface[R]. NACA TN-3487,1955.
    [2] Roshko A. Some measurements of flow in a rectangular cut-out[R]. NACATN-3488,1955.
    [3] Charwat A F, Roos J N, Dewey F C and Hitz J A. An investigation of separatedflow—Part I: the pressure field[J]. Aero. Sciences.1960,28:457-470.
    [4] Stallings R L and Wilcox F J. Experimental cavity pressure distributions atsupersonic speeds[R]. NASA TP-2683,1987.
    [5] Stallings R L and Wilcox F J. Measurements of forces, moments, and pressureson a generic store separating from a box cavity at supersonic speeds[R]. NASATP-3110,1991.
    [6] Plentovich E B, Stallings R L and Tracy M B. Experimental cavity pressuremeasurements at subsonic and transonic speeds[R]. NASA TP-3358,1993.
    [7] Rossiter J E. Wind-Tunnel experimental on the flow over rectangular cavitiesat subsonic and rransonic speeds[R]. R.&M. No.3438,1964.
    [8] Zhang J, Morishita E, OKunuki T, and Itoh H. Experimental andcomputational investigation of supersonic cavity flows. AIAA Paper2001-1755.
    [9] Louis G K and Rodney LC. Mach0.6to3.0flows over rectangular cavities[R].AFWAL-TR-82-3112.
    [10] Kung-Ming Chung. A study of transonic rectangular cavity of varyingdimensions[J]. AIAA Paper99-1909.
    [11] Plentovich E B. Three-Dimensional cavity flow fields at subsonic andtransonic speeds[R]. NASA TM4209,1990.
    [12] Plentovich E B, Julio Chu and Tracy M B. Effects of yaw angle and Reynoldsnumbers on rectangular-box cavities at subsonic and transonic speeds[R].NASA TP-3099,1991.
    [13] Tracy M B, Plentovich E B and Julio Chu. Measurements of fluctuatingpressure in a rectangular cavity in transonic flow at high Reynolds numbers[R].NASA-TM4363,1992.
    [14] Tracy M B and Plentovich E B. Characterization of cavity flow fields usingpressure data obtained in the Langley0.3-meter transonic cryogenic tunnel[R].NASA-TM4436,1993.
    [15] Blair A B and Stallings R L. Supersonic axial-force characteristics of arectangular-box cavity with various length-to-depth ratios in a flat plate[R].NASA TM-87659,1986.
    [16] Wilcox F J. Experimental investigation of porous-floor effects on cavity flowfields at supersonic speeds[R]. NASA TP-3032,1990.
    [17] Wilcox F J. Passive venting system for modifying cavity flow-fields atsupersonic speeds[J]. AIAA Journal.1988,26(3).
    [18] Stallings R L, Plentovich E B, Tracy M B and Hemsch M J. Effect of passiveventing on static pressure distributions in cavities at subsonic and transonicspeeds[R]. NASA TM-4549,1994.
    [19] Lada C and Kontis K. Fluidic control of cavity configurations at subsonic andsupersonic speeds. AIAA Paper2005-1298.
    [20] Block P J W and Heller H. Measurements of far-field sound generation from aflow-excited cavity[R]. NASA TM X-3292,1975.
    [21] Block P J W. Noise response of cavities of varying dimensions at subsonicspeeds[R]. NASA TN D-8351,1976.
    [22] James S. Acoustic measurements of a large cavity in a wind runnel[R]. NASATM-78658,1978.
    [23] Block P J W, Stallings R L and Blair A B. Effect of doors on fluctuatingpressure measurements inside a shallow cavity in supersonic flow[R]. NASATP-2849,1988.
    [24] Tracy M B and Stallings R L. Coupling of acoustic environment in rectangularcavity with store vibration characteristics during simulated separation insupersonic flow[R]. NASA TP-2986,1990.
    [25] Crosby W A. Flow field investigations of a simulated weapons cavity at Mach3[R]. AEDC TSR-81-V37,1981.
    [26] Bauer R C and Dix R E. Engineering model of unsteady flow in a cavity[R].AEDC TR-91-17,1991.
    [27] Suhs N E. Transonic flow calculations for a cavity with and without a store[R].AEDC TR-92-4,1992.
    [28] Dix R E and Bauer R C. Experimental and theoretical study of cavityacoustics[R]. AEDC TR-99-4,2000.
    [29] Catalano G D. Turbulent flow over an embedded rectangular cavity[R]. AFATLTR-86-73,1987.
    [30] Richard E D and Carroll B. Cavity aeroacoustics[R]. AFATL TP-90-08,1990.
    [31] Heller H H, Holmes G and Covert E E. Flow-induced pressure oscillations inshallow cavities[R]. AFFDL TR-70-104,1970.
    [32] Heller H H and Bliss D B. Aerodynamically induced pressure oscillations incavities—physical mechanisms and suppression concepts[R]. AFFDLTR-74-133,1975.
    [33] Rodney L C. Weapons bay turbulence reduction techniques[R]. AFFDLTM-75-147-FXM,1975.
    [34] Rodney L C. Evaluation of F-111Weapon bay aero-acoustic and weaponseparation improvement techniques[R]. AFFDL TR-79-3003,1979.
    [35] Paul D O and Peter J D. Transient shear layer dynamic of two-and three-dimensional open cavities[R]. AFOSR TR-95-0505,1995.
    [36] Ahwad V, Waye P and Nagle P. An experimental investigation of cavityaeroacoustics in high speed flows[R]. AFOSR TR-95-0510,1995.
    [37] Zoccola P J. Experimental investigation of flow-induced cavity resonance[R].NSWCCD TR-2000-010,2000.
    [38] Ross J. High speed acoustic measurements in cavities[R]. AFRLSR-BL-TR-01-0248,2001.
    [39] Bartel H W, and McAvoy J M. Cavity oscillation in cruise missile carrieraircraft[R]. AFWAL TR-81-3036,1981.
    [40] Kaufman L G, Maciulaitis A, and Clark R L. Mach0.6to3.0flows overrectangular cavities[R]. AFWAL TR-82-3112,1983.
    [41] Shaw L L and Reed G. Supersonic flow induced cavity acoustics[R]. AFWALTM-85-210,1985.
    [42] East L F. Aerodynamic induced resonance in rectangular cavities[J]. Journal ofSound and Vibration.1966, pp:277-287.
    [43] Tani I, Iuchi M, and Kamada H. Experimental investigation of flow separationassociated with a step or a groove[R]. Aero Research Institute, Univ. of TokyoRept. No.364,1961.
    [44] Bilanin A J and Covert E E. Estimation of possible excitation frequencies forshallow rectangular cavities[J]. AIAA Journal.1973,11(3):347-351.
    [45] Tam C K W, and Block P J W. On the tones and pressure oscillations inducedby flow over rectangular cavities[J]. Journal of Fluid Mechanics.1978,89(2):373-399.
    [46] Dix R E and Bauer R C. Experimental and predicted acoustic amplitudes in arectangular cavity[J]. AIAA Paper2000-0472.
    [47] Rockwell D and Naudascher E. Review—self-sustaining oscillations of flowpast cavities[J]. Journal of Fluid Engineering.1978,100(2):152-165.
    [48] Zhang X angd Rona A. An observation of pressure wave around a shallowcavity[J]. Journal of Sound and Vibration.1998,214(4):771-778.
    [49] Woolley J P and Karamcheti K. A study of narrow bond noise generation byflow over ventilated walls in transonic wind tunnels[R]. NEAR TR-50,1973.
    [50] Woolley J P and Karamcheti K. The role of jet stability in edgetonegeneration[J]. AIAA Paper73-628.
    [51] Wittich D J Ⅲ and Eric J J. Velocity of large-scale, cavity shear layerstructures through time-resolved schlieren images[J]. AIAA Paper2011-3263.
    [52] Zhang X and Edwards J A. An investigation of supersonic cavity flows drivenby thick shear layer[J]. Aeronautical Journal. Dec.1990, pp:355-364,.
    [53] ünalmis H, Clemens N T and Dolling D S. Planar laser imaging ofhigh-speed cavity flow dynamics[J]. AIAA Paper98-0776.
    [54] ünalmis H, Clemens N T and Dolling D S. planar laser imaging of asupersonic side-facing cavity[J]. AIAA Paper99-0297.
    [55] Abraham J M and Ahmad D V. An experimental study of open cavity flows atlow subsonic speeds[J]. AIAA Paper2002-0280.
    [56] Ritchie S A, Lawson N J and Knowles K. Application of particle imagevelocimetry to transonic cavity flows[J]. AIAA Paper2005-1060.
    [57] Haigermoser C, Vesely L, Novara M, Zuzio D, and Onorato M. Time-resolvedPIV applied to cavity unsteady flows[J]. AIAA Paper2007-3432.
    [58] Steven J B, Justin L W and Brian O M P. Particle image velocimetry of athree-dimensional supersonic cavity flow[J]. AIAA Paper2012-0030.
    [59] Bjorge S T, Reeder M F, Subramanian C and Jim C. Flow around an objectprojected from a cavity into a supersonic freestream[J]. AIAA Paper2004-1253.
    [60] Picolet O, Neely A J and Sudhir L G. PSP measurement of supersonic flowacross an open cavity with serrations[J]. AIAA Paper2010-1094.
    [61] Ahuja K K and Mendoza J. Effects of cavity dimensions, boundary layer, andtemperature on cavity noise with emphasis on benchmark data to validatecomputational aero acoustic codes[R]. NASA CR-4653,1995.
    [62] Tracy M B and Plentovich E B. Cavity unsteady-pressure measurements atsubsonic and transonic speeds[R]. NASA TP-3669,1997.
    [63] Heller H H, Holmes D G and Covert E E. Flow-induced pressure oscillationsin shallow cavities[J]. J. Sound&Vib., Vol.18, Oct.1971, pp.545-553.
    [64] Zhang K and Naguib A M. Effect of cavity width on the unsteady pressure in alow-Mach-number cavity[J]. AIAA Journal.2008,46(7):1878-1880.
    [65] Long D F. An examination of pressure fluctuations in open cavities attransonic speeds[J]. AIAA Paper2003-3100.
    [66] Schmit R F, Schwartz D R, Kibens V, Raman G and Ross J A. High and lowfrequency actuation comparison for a weapons bay cavity[J]. AIAA Paper2005-795.
    [67] McGrath S F and Shaw L L Jr. Active control of shallow cavity acousticresonance[J]. AIAA Paper96-1949.
    [68] Stanek M J, Raman G, Kibens V and Ross J A, etc. Suppression of cavityresonance using high frequency forcing—the characteristics signature ofeffective devices[J]. AIAA Paper2001-2128.
    [69] Smith B R, Welterlen T J, Maines B H, etc. Weapons bay acoustic suppressionfrom rod spoilers[J]. AIAA Paper2002-0662.
    [70] Stanek M J, Raman G, Ross J A, Odedra J, Peto J, Alvi F and Kibens V. Highfrequency acoustic suppression—the mystery of the rod-in-crossflowrevealed[J]. AIAA Paper2003-0007.
    [71] Panickar P and Raman G. Understanding the mechanism of cavity resonancesuppression using a cylindrical rod in cross-flow[J]. AIAA Paper2008-54.
    [72] Sarpotdar S, Panickar P and Raman G. cavity tone suppression using a rod incross flow-investigation of shear layer stability mechanism[J]. AIAA Paper2009-700.
    [73] Bastrzyk M B and Raman G. Cavity noise suppression through shear layer liftoff[J]. AIAA Paper2009-3203.
    [74] Sarpotdar S and Raman G. Influence of shedding cylinder on cavity flowdynamics[J]. AIAA Paper2009-3350.
    [75] Dudley J G and Ukeiley L. Suppression of fluctuating surface pressures in asupersonic cavity flow[J]. AIAA Paper2010-4974.
    [76] Chaudhari K and Raman G. Control of flow over a rectangular cavity using arod in cross flow: further evaluation of key mechanisms[J]. AIAA Paper2011-37.
    [77] Zhang X, Chen X X, Rona A and Edwards J A. Attenuation of cavity flowoscillation through leading edge flow control[J]. Journal of Sound andVibration.1999, pp.23-47.
    [78] Vikramaditya N Sand Kurian J. Pressure oscillations from cavity with aramp[J]. AIAA Paper2009-3208.
    [79] Danilov P V and Quackenbush T R. Flow driven oscillating vortex generatorsfor control of cavity resonance[J]. AIAA Paper2011-1219.
    [80] Hughes G, Mamo T and Dala L. Use of active surface waviness for control ofcavity acoustics in subsonic flows[J]. AIAA Paper2009-3202.
    [81] Sarno R L and Franke M E. Suppression of flow-induced pressure oscillationsin cavities[J]. Journal of Aircraft.1994,31(1):90-96.
    [82] Shaw L. Active control for cavity acoustics[J]. AIAA Paper98-2347.
    [83] Bueno P C, ünalmis H, Clemens n t and dolling d s. the effects of upstreammass injection on a Mach2cavity flow[J]. AIAA Paper2002-0663.
    [84] Sarohia V and Massier P F. Control of cavity noise[J]. Journal of Aircraft.1977,14(9):833-837.
    [85] Vakili A D and Gauthier C. Control of cavity flow by upstreammass-injection[J]. Journal of Aircraft.1994,31(1):169-174.
    [86] Meganathan A J and Vakili A D. Upstream mass-injection effects on cavityflow oscillations[J]. AIAA Paper2003-0224.
    [87] Sahoo D, Annaswamy A, Zhuang N and Alvi F. Control of cavity tones insupersonic flow[J]. AIAA Paper2005-793.
    [88] Lamp A M and Chokani N. Control of cavity resonance using steady andoscillatory blowing[J]. AIAA Paper99-0999.
    [89] Sarohia V and Massier P F. Control of cavity noise[J]. Journal of Aircraft.1977,14(9):833-843.
    [90] Fabris D and Williams D R. Experimental measurements of cavity and shearlayer response to unsteady bleed forcing[J]. AIAA Paper99-0606.
    [91] Arunajatesan S, Kannepalli C and Sinha N. Suppression of cavity loads usingleading-edge blowing[J]. AIAA Journal.2009,47(5).
    [92] Lamp A M and Chokani N. Computation of cavity flows with suppressionusing jet blowing[J]. Journal of Aircraft.1997,34(4):545-551.
    [93] Stanek M J, Raman G, Kibens V, Ross J A, Odedra J and Peto J. Control ofcavity resonance through very high frequency forcing[J]. AIAA Paper2000-1905.
    [94] Stanek M J, Raman G, Ross J A, Odedra J, Peto J, Alvi F and Kibens V. Highfrequency acoustic suppression—the role of mass flow, the notion ofsuperposition, and the role of inviscid instability—a new model (Part Ⅱ)[J].AIAA Paper2002-2404.
    [95] Raman G, Raghu S, and Bencic T J. Cavity resonance suppression usingminiature fluidic oscillators[J]. AIAA Paper99-1900.
    [96] Zhuang N, Alvi F S, Alkislar M B, Shih C, Sahoo D and Annaswamy A M.Aeroacoustic properties of supersonic cavity flows and their control[J]. AIAAPaper2003-3101.
    [97] Zhuang N, Alvi F S and Shih C. Another look at supersonic cavity flows andtheir control[J]. AIAA Paper2005-2803.
    [98] Ukeiley L S, Ponton M K, Seiner J M and Jansen B. Suppression of pressureloads in resonating cavities through blowing[J]. AIAA Paper2003-0181.
    [99] Lada C and Kontis K. Fluidic control of cavity configurations at subsonic andsupersonic speeds[J]. AIAA Paper2005-1298.
    [100] Ukeiley L, Sheehan M, Coiffet F, Alvi F S, Arunajatesan and Jansen B.Control of pressure loads in complex cavity configurations[J]. AIAA Paper2007-1238.
    [101] Zhuang N, Alvi F S, Alkislar M B, and Shih C. Supersonic cavity flows andtheir control[J]. AIAA Journal.2006,44(9).
    [102] Ali M Y, Solomon J T, Gustavsson J, Kumar R and Alvi F S. Control ofresonant flow inside a supersonic cavity using high bandwidth pulsedmicro-actuators[J]. AIAA Paper2010-1198.
    [103] Cattafesta L N III, Garg S, Choudhari M and Li F. Active control offlow-induced cavity resonance[J]. AIAA Paper97-1804.
    [104] Mendoza J M and Ahuja K K. Cavity noise control through upstream massinjection from a coanda surface[J]. AIAA Paper96-1767.
    [105] Hsu J S and Ahuja K K. Cavity noise control using helmholtz resonators[J].AIAA Paper96-1675.
    [106] Lazar E, Elliott G and Glumac N. Control of the shear layer above asupersonic cavity using energy deposition[J]. AIAA Paper2007-1229.
    [107] Chan S, Zhang X and Gabriel S. The attenuation of cavity tones using plasmaactuators[J]. AIAA Paper2005-2802.
    [108] Fabris D and Williams D R. Experimental measurement of cavity and shearlayer response to unsteady bleed forcing[J]. AIAA Paper99-0605.
    [109] Rowley C W and Williams D R. Control of forced and self-sustainedoscillations in the flow past a cavity[J]. AIAA Paper2003-0008.
    [110] Mongeau L, Kook H, Franchek M A. Active control of flow-induced cavityresonance[J]. AIAA Paper98-2349.
    [111] Cattafesta L N III, Shukla D, Garg S and Ross J A. Development of anadaptive weapons-bay suppression system[J]. AIAA Paper99-1901.
    [112] Pillarisetti A, Cattafesta L N III. Adaptive identification of fluid dynamicsystems[J]. AIAA Paper2001-2978.
    [113] Holmes P, Lumley J L, Berkooz G. Turbulence, coherent structures, dynamicsystems and symmetry[R]. Cambridge: Cambridge University Press,1996.
    [114] Samimy M, Debiasi M, Caraballo E, Serrani A, Yuan X, Little J. Feedbackcontrol of subsonic cavity flows using reduced-order models[J]. J. Fluid Mech.2007,579:315–46.
    [115] Rowley C W, Colonius T and Murray R. POD based models of self-sustainedoscillations in the flow past an open cavity[J]. AIAA Paper2000-1969.
    [116] Rowley C W, Colonius T and Murray R. Dynamic models for control of cavityoscillations[J]. AIAA Paper2001-2126.
    [117] Ukeiley L S, Kannepalli C, Arunajatesan S and Sinha N. Low-dimensionaldescription of variable density flows[J]. AIAA Paper2001-0515.
    [118] Rowley C W, Colonius T, Murray R M. Model reduction for compressibleflows using pod and galerkin projection[J]. Physical D.2004,189(1–2):115–29.
    [119] Cain A B, Bower W W, McCotter F and Romer W W. Modeling and predictionof weapons bay acoustic amplitude and frequency[R]. VEDA Inc. February1996.
    [120] Rowley C W, Williams D R, Colonius T, Murray R M, MacMynowski D G.Linear models for control of cavity flow oscillations[J]. J. Fluid Mech.2006,547:317–30.
    [121] Kerschen E J, Tumin A A. Theoretical Model of Cavity Acoustic ResonancesBased on Edge Scattering Processes[J]. AIAA Paper2003-0175.
    [122] Alvarez J O, Kerschen E J and Tumin A A. Theoretical Model for CavityAcoustic Resonances in Subsonic Flow[J]. AIAA Paper2004-2845.
    [123] Efe M, Debiasi M, Yan P, zbay H and Samimy M. Control of subsoniccavity flows by neural networks–analytical models and experimentalvalidation[J]. AIAA2005-294.
    [124] Alvarez J O, Kerschen E J. Influence of wind tunnel walls on cavity acousticresonances[J]. AIAA Paper2005-2804.
    [125] Gharib M. Response of the cavity shear layer oscillations to external forcing[J].AIAA Journal.1987,25(1): pp.43–47.
    [126] Shaw L and Northcraft S. Closed loop active control for cavity resonance[J].AIAA Paper99-1902.
    [127] Micheau P, Chatellier L, Laumonier J and Gervais Y. Active control of a self-sustained pressure fluctuation due to flow over a cavity[J]. AIAA Paper2004-2851.
    [128] Debiasi M, Samimy M. Logic-based active control of subsonic cavity flowresonance[J]. AIAA Journal.2004,42(9):1901–1909.
    [129] Cattafesta L N III, Shukla D, Garg S and Ross J A. Development of anadaptive weapons-bay suppression system[J]. AIAA Paper99-1901.
    [130] Rowley C W, Williams D R, Colonius T, Murray R M, MacMartin D andFabrisD. Model-based control of cavity oscillations—part ii: systemidentification and analysis[J]. AIAA Paper2002-0972.
    [131] Rainey R W. A wind-tunnel investigation of bomb release at a Mach number of1.62[R]. NACA RM-L53L29, March1954.
    [132] Carter H S and Lee J B. Investigation of the ejection release of severaldynamically scaled bluff internal stores at Mach numbers of0.8,1.39, and1.98[R]. NACA RM-L56H28, Dec.1956.
    [133] Stallings R L, Plentovich E B, Tracy M B and Hemsch M J. Measurements ofstore forces and moments and cavity pressures for a generic store in and near abox cavity at subsonic and transonic speeds[R]. NASA TM4611.
    [134] Stallings R L. Store separation from cavities at supersonic speeds[J]. AIAAPaper82-0372.
    [135] Bjorge S T, Reeder M F, Subramanian C and Crafton J. Flow around an objectprojected from a cavity into a supersonic freestream[J]. AIAA Paper2004-1253.
    [136] Blair A B and Stallings R L. Cavity door effects on aerodynamic loadings ofcompressed-carriage store configurations separating from cavities atsupersonic speeds[J]. AIAA Paper88-0333.
    [137] Brooks D L and Hinckley E C. F-111A predicted weapon separationcharacteristics[R]. Pt. I, Weapons Loading Priorities I thru Ⅳ, Weapon BaySeparation. General Dynamics, Fort Worth Div., Rept. FZM-12-4520, Oct.1966.
    [138] Kamrass M. Wind tunnel drop tests at supersonic speeds using bomb baysdesigned for improved bomb separation[R]. Cornell Aeronautical Lab. Inc.,Cornell Univ., Buffalo, NY, Rept. GC-910-C-20, Sept.1957.
    [139] Stallings R L and Forrest D K. Separation characteristics of internally carriedstores at supersonic speeds[R]. NASA TP-2993.
    [140] Rodney L C. Evaluation of F-111Weapon bay aero-acoustic and weaponseparation improvement techniques[R]. AFFDL-TR-79-3003.
    [141] Grove J and Shaw L. USAF/RAAF F-111flight test with active separationcontrol. AIAA Paper2003-9.
    [142] Kibens V, Bower W W and Schwartz D R. Active flow control for high-speedweapon release from a bay[R]. Pto-Mp-AVT-108,2004.
    [143] Sahoo D, Annaswamy A and Alvi F. Microjets-based active control of storetrajectory in supersonic cavity using a low-order model[J]. AIAA2005-3097.
    [144]罗柏华,胡章伟,戴昌晖.空腔的流激振荡及其声激励抑制方法的数值模拟[J].振动工程学报.1997,10(1):61-64.
    [145]罗柏华.二维高亚声速空腔流激振荡的数值模拟研究[J].空气动力学学报.2002,20(1):84-88.
    [146]陈若航,孔令江,何云,李华兵,刘慕仁.二维空腔黏性流的格子Boltzmann方法模拟[J].物理学报.2000,49(4):631-635.
    [147]侯中喜,易仕和,王承尧.超声速开式空腔流动的数值模拟[J].推进技术.2001,22(5):400-403.
    [148]侯中喜,夏刚,秦子增.三维超声速开式空腔振荡特性研究[J].国防科技大学学报.2004,26(6):1-4.
    [149]陈伟芳,尹乐,吴雄,周菊光.开式空腔流动的蒙特卡罗直接模拟[J].力学季刊.2003,24(3):341-345.
    [150]耿冬寒,刘正先.大涡模拟-Lighthill等效声源法的空腔水动噪声预测[J].哈尔滨工程大学学报.2010,31(2):182-187.
    [151]赖焕新,周邵萍,罗开红.空腔的非定常可压缩过流及相关气动声学问题[J].工程热物理学报.2007,28(5):
    [152][153]李晓东,刘靖东,高军辉.空腔流激振荡发声的数值模拟研究[J].力学学报.2006,38(5):599-604.
    [153]谭玉婷,伍贻兆,田书玲.基于DES的二维和三维空腔流动特性研究[J].2010,40(1):67-70.
    [154]马明生,张培红,邓有奇,吴晓军.超声速空腔流动数值模拟研究[J].空气动力学学报.2008,26(3):387-393.
    [155]杨党国,李建强,梁锦敏.基于CFD和气动声学理论的空腔自激振荡发声机理[J].空气动力学学报.2010,28(6):724-730.
    [156]司海青,王同光.边界条件对三维空腔流动振荡的影响[J].南京航空航天大学学报.2006,38(5):595-599.
    [157]王少童,张彬乾,李沛峰.超音速流动空腔形状研究[J].机械科学与技术.2010,29(8):1031-1034.
    [158]刘琼,桑为民,雷熙薇.二维空腔超声速流动特性及形状影响数值研究[J].航空计算技术.2010,40(6):81-85.
    [159]肖虹,高超,党云卿.飞行器腹部空腔绕流的数值模拟[J].航空计算技术.2007,37(4):44-46.
    [160]司海青,王同光.数值模拟有外挂物的空腔流动[J].空气动力学学报.2007,25(3):404-409.
    [161]冯必鸣,聂万胜,车学科.超声速条件下内埋式武器分离特性的数值分析[J].飞机设计.2009,29(4):1-5.
    [162]史爱明,叶正寅,杨永年.内埋式弹舱舱门气动载荷计算分析研究[J].航空计算技术.2007,37(3):5-6.
    [163]林晔,喻天翔,崔卫民.飞机内埋弹舱随动舱门卡滞可靠性影响因素分析[J].2010,32(11):58-61.
    [164]侯志辉,童明波,杨波.基于EASY5的某型飞机武器舱门收放过程仿真[J].机床与液压.2010,38(21):111-113.
    [165]杨益,曾建江.型飞机武器舱门液压系统设计与仿真[J].流体传动与控制.2009,37(6):20-22.
    [166]赖焕新,周邵萍,苏永升,邢改兰,罗开红.空腔流动的大涡模拟及气动噪声控制[J].工程热物理学报.2008,29(2):228-232.
    [167]罗柏华,胡章伟,戴昌晖.空腔流激振荡的简化模型分析及振荡频率预估[J].空气动力学学报.1999,17(1):39-43.
    [168]田春,张强,李青.流动诱导空腔振荡预测方法的改进[J].南京航空航天大学学报.2002,34(2):173-177.
    [169]吴继飞,罗新福,范召林.亚、跨、超声速下空腔流场特性实验研究[J].实验流体力学.2008,22(1):71-75.
    [170]白胜勇,靳晓雄.三维空腔声学模态试验的潜在误差分析[J].上海汽车.1999,10(6):32-36.
    [171]罗柏华,胡章伟,戴昌晖.空腔流激振荡的实验研究[J].上海交通大学学报.1998,32(7):32-35.
    [172]罗柏华,胡章伟,戴昌晖.声激励抑制空腔流激振荡的实验研究[J].南京航空航天大学学报.1999,31(1):1-5.
    [173]杨党国,范召林,李建强,罗新福,蒋卫民.后壁倒角对空腔噪声的抑制效果[J].实验流体力学.2010,24(5):22-25.
    [174]樊开导.0.6m跨超声速风洞新技术改造后的试验段[J].实验流体力学.1999,13(3):42-46.
    [175]马东平.1.2米跨超声速风洞捕获轨迹试验装置控制系统的研制.硕士学位论文.国防科学技术大学,2002.
    [176]罗新福,王发祥,于志松.一种特殊情形下风洞M≥1跨声速均匀流场的建立[J].流体力学实验与测量.2003,17(1):36-38.
    [177]杨党国.内埋武器舱气动声学特性与噪声抑制研究.博士学位论文,中国空气动力研究与发展中心,2010.
    [178]冯金富,杨松涛,刘文杰.战斗机武器内埋关键技术综述[J].飞航导弹.2010,7:71-75.
    [179] Simon T, Sebastien S, Phileppe D. Time-frequency analysis and detection ofsupersonic inlet buzz[J]. AIAA Journal.2007,45(9):2273-2284.
    [180] Marie F. Wavelet transforms and their applications to turbulence[J]. Annu. Rev.Fluid Mech.1992,24:395-457.
    [181] Jonathan P and Alexander S J. Wavelet analysis of wall-pressure fluctuationsin a supersonic blunt-fin flow[J]. AIAA Journal.1997,35(10):1597-1603.
    [182] XU Q, JIN C and LIAO G X. Joint time-frequency analysis of static pressurein semi-closed container-launcher[J]. AIAA Paper2002-4302.
    [183]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社.1998.
    [184]郭洪涛,徐来武,吴继飞,余立.脉动压力时频分析技术研究[J].实验流体学.2011,25(5):40-44.
    [185]恽起麟.试验空气动力学[M].国防工业出版社.1994.
    [186] A.г.穆宁著,曹传钧译.航空声学[M].北京航空航天大学出版社.1993.
    [187] Brown G T. The vortex motion causing edge tones[J]. Proc. Phys. Soc.,1937,Vol.49.
    [188] Batchelor G K. An introduction to fluid dynamics[R]. Cambridge: CambridgeUniversity Press.1967.
    [189] Van Dyke M. An album of fluid motion[R]. Stanford: Parabolic Press.1982.
    [190] Freymuth P. On transition in a separated laminar boundary layer[J]. FluidMech.1966,25:683-704.
    [191] Gursul I and Ho C M. High aerodynamic loads on an airfoil submerged inunsteady stream. AIAA Journal.1992,30:1117-1119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700