腺病毒介导的双基因(anti-VEGF发夹状核酶+IL-24)治疗结肠癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:结肠癌的发病率不断上升,但结肠癌的治疗效果仍不理想,特别是复发和转移的患者。VEGF在肿瘤血管形成方面起着关键作用,VEGF在大多数结肠癌组织中高表达,并且其表达水平与结肠癌患者的复发和预后高度相关。发夹状核酶(hairpin ribozyme)是一种有催化活性的RNA,它能特异切割、降解含有能被其识别序列的靶mRNA,从而抑制该基因的表达。白细胞介素-24即黑素瘤分化相关基因-7(IL—24/Mda-7),是细胞因子白细胞介素-10基因家族成员。高表达白细胞介素-24在许多肿瘤中能引起肿瘤细胞凋亡和肿瘤生长抑制,但其对正常上皮细胞未产生明显的有害影响。本研究旨在构建带有双基因(抗VEGF-发夹状核酶+白细胞介素-24)的复制缺陷型腺病毒载体,并在细胞水平及移植瘤水平观察带有抗VEGF-发夹状核酶和白细胞介素-24的腺病毒对结肠癌VEGF表达的抑制作用以及对结肠癌生长的抑制作用。
     方法:根据Genebank公布的VEGF165基因序列设计并合成编码抗VEGF165的发夹状核酶的双链DNA,所合成的双链DNA两端分别带有SalⅠ、BglⅡ酶切位点。将该双链DNA插入包含IRES(克隆于SalⅠ和NotⅠ之间)和人IL-24基因(克隆于XhoⅠ和XbaⅠ之间)的转移质粒pAdTrack-CMV-IRES-IL-24的相应多克隆位点上(pAdTrack-CMV-IRES-IL-24苏州大学细胞与分子生物学教研室构建并测序保存)。转移质粒pAdTrack-CMV-Rz/IL-24经PmeI酶切后与腺病毒骨架质粒pAdEasy-1在BJ5183大肠杆菌中同源重组,得到的重组质粒pAdTrack-CMV-Rz/IL-24-AdEasy-1经PacI酶切后用脂质体转染QBI-293A细胞,在293细胞中包装成完整病毒(命名为Ad-Rz/IL24)并复制扩增,获得重组腺病毒Ad-Rz/IL24。同时构建仅带有抗VEGF发夹状核酶的腺病毒(Ad-Rz)作为对照,带有IL-24的腺病毒(Ad-IL24)和空病毒载体(Ad-GFP)由苏州大学细胞与分子生物学教研室构建。RT-PCR及免疫荧光法检测病毒感染后抗-VEGF发夹状核酶及白细胞介素-24在HT-29细胞中的表达,Real-time PCR及ELISA检测其对VEGF mRNA及蛋白表达的抑制作用,MTT法和流式细胞仪检测Ad-Rz/IL24对HT-29细胞生长抑制和凋亡诱导作用。在Balb/c裸鼠皮下建立HT-29细胞动物移植瘤模型,观察Ad-Rz/IL24基因治疗对结肠癌移植瘤生长的抑制作用,免疫组化法检测白细胞介素-24、生长抑制和DNA损伤基因(GADD)及VEGF在移植瘤组织中的表达,CD34标记检测移植瘤组织微血管密度(MVD)。
     结果:成功将抗-VEGF发夹状核酶和白细胞介素-24克隆至同一复制缺陷型腺病毒载体上。实验所构建复制缺陷型腺病毒Ad-Rz/IL24可以有效感染结肠癌HT-29细胞,Ad-Rz/IL24感染HT-29细胞后抗-VEGF发夹状核酶和白细胞介素-24可在HT-29细胞中高效表达。Ad-Rz/IL24能显著抑制HT-29细胞VEGF的表达,Ad-Rz/IL24、Ad-Rz、Ad-IL24感染48小时后HT-29细胞中VEGFmRNA的相对表达量分别为PBS组的(39.0±1.0)%,(45.0±1.0)%和(91.0±1.0)%,与PBS比较P<0.05;Ad-GFP组(空病毒载体)中VEGF的相对表达量为PBS组的(122.0±2.0)%;在蛋白水平,Ad-Rz/IL24、Ad-Rz、Ad-IL24、Ad-GFP及PBS组细胞上清液中VEGF蛋白含量(OD.值)分别为0.37±0.28/million cells,0.46±0.35/million cells,0.56±0.30/million cells,0.74±0.13/million cells和0.81±0.16/million cells(P<0.05)。MTT示Ad-Rz/IL24、Ad-IL-24可显著抑制人结肠癌HT-29细胞的生长(P<0.05),Ad-Rz对人结肠癌HT-29细胞的生长有一定的抑制作用,其差异没有统计学意义(P>0.05)。Ad-Rz/IL24诱导的HT-29细胞凋亡率为(11.00±0.80)%,大约为Ad-IL-24所诱导凋亡的两倍(Ad-IL-24凋亡率:(5.60±0.27)%,P<0.05)。Ad-Rz所诱导得HT-29细胞凋亡率约(1.83±0.18)%,与PBS组和Ad-GFP组比较差异有统计学意义(P<0.05)。Ad-Rz/IL24可在一定程度上抑制HT-29细胞移植瘤的生长,与PBS比较统计学意义处于临界状态间(P=0.0619,秩和检验),而Ad-Rz、Ad-IL24对移植瘤生长的抑制作用无统计学意义(P>0.05)。使用免疫组化方法在Ad-Rz/IL24及Ad-IL-24处理组移植瘤中均检测到了白细胞介素-24及GADD的表达,Ad-Rz/IL-24可以显著抑制移植瘤组织中VEGF的表达及微血管密度(MVD),各组MVD分别为:PBS 12.8±11.1,Ad-GFP 11.5±1.0,Ad-IL-24 6.0±1.0,Ad-Rz 4.3±0.5,Ad-Rz/IL24 3.5±0.6。(P<0.05)。
     结论腺病毒载体介导的双基因anti-VEGF核酶和IL-24(Ad-Rz/IL24)可显著降低结肠癌HT-29细胞中VEGF的表达和抑制HT-29细胞的生长,可显著减少移植瘤组织的血管生成,并可在一定程度上抑制移植瘤的生长。
Background and Objective: The morbidity of colon cancer is increasing, but the current treatment for colon cancer is still unsatisfactory, especially for relapsed and metastatic patients. VEGF plays a key role in tumor angiogenesis. In general, VEGF is commonly upregulated in colon cancer, and increased VEGF expression and tumor vascularization are correlated with tumor progression and a poor clinical prognosis in colon cancer. The hairpin ribozyme is a small RNA molecule with endoribonuclease activity that exhibits catalytic sequence-specific cleavage of the target RNA and down-regulates the expression of target gene.Mda-7/IL-24 (melanoma differentiation associated gene-7) is a member of the IL-10 subfamily .When expressed at high levels, Mda-7/IL-24 suppresses growth and induces programmed cell death (apoptosis) in a broad spectrum of human cancers, including colon cancer. In contrast, Mda-7/IL-24 does not induce apoptosis in, and has a negligible effect on the growth of, normal cells. In this study, we constructed an adenovirus that simultaneously expresses anti-VEGF hairpin ribozyme and human IL-24 and examined its VEGF expression inhibitory effect and anti-tumor efficacy against human colon cancer HT-29 cells in vitro and in vivo.
     Methods: Designing and synthesizing the double strands DNA which encodes the anti-VEGF hairpin ribozyme according to declared VEGF165 gene sequence from GenBank. These oligonucleotide sequences, which include Bgl II and Sal I linker sites at each end, were inserted into the multiple cloning site (MCS) of the shuttle plasmid pTrack-CMV which harbored an IRES between Sal I and Not I digestion sites and human IL-24 cDNA between Xho I and Xba I sites (previously constructed by the Cell and Molecular Biology Institute of Soochow University). The resultant shuttle vector (pAdTrack-CMV-Rz/IL-24) was linearized by the restriction endonuclease PmeI and subsequently cotransformed into BJ5183 bacterial cells with the adenoviral backbone plasmid (pAdEasy-1). After PacI digestion, the recombinant pAd-Rz/IL-24 plasmid was transfected into human embryonic kidney 293 (QBI-293A) cells with lipofectamine (Sigma; CA) to package the viruses. The constructed adenovirus, Ad-Rz/IL24 ,were amplified in QBI-293A cells. The expression of anti-VEGF hairpin ribozyme and IL-24 mRNA in HT-29 cells were detected by RT-PCR and the inhibitory effect of VEGF expression were tested by Real-time PCR and Elisa. The effect of growth inhibition and apoptosis-inducing of Ad-Rz/IL24 on HT-29 cells were detected by MTT and FCAS. The effect and mechanism of Ad-Rz/IL24 treatment on colon carcinoma in vivo were observed and studied through the HT-29 human colon cancer subcutaneous model in nu/nu mice. The growth inhibition effect of Ad-Rz/IL24 on xenografts was teseted and IL-24, GADD, and VEGF expression in xenograft tumor tissue were detected by Immunohistochemical analysis. The microvessle density (MVD) of the xenograft tumor was determined by CD34 staining.
     Results: The anti-VEGF ribozyme and IL-24 were successfully inserted into the adenoviral vector. The adenovirus of Ad-Rz/IL24 can effectively infect the colon cancer HT-29 cells. Anti-VEGF ribozyme and IL-24 could effectively express in HT-29 cells after treated by Ad-Rz/IL24. Ad-Rz/IL24 could inhibit the expression of VEGF mRNA in HT-29 cells .The relative expression of VEGF mRNA in HT-29 cell treated with Ad-Rz/IL24, Ad-Rz (adenovirue carrying anti-VEGF ribozyme ) or Ad-IL-24 (adenovirue carrying IL-24 )decreased to about (39.0±1.0)%, (45.0±1.0)%, or (91.0±1.0)% of that of PBS control group in HT-29 cells respectively(P<0.05) and the VEGF expression in cells treated with Ad-GFP (vacant vector) was about (122.0±2.0)%. The amount of VEGF protein in the supernatant of Ad-Rz/IL24, Ad-Rz ,Ad-IL-24 ,Ad-GFP or PBS treated cells were 0.37±0.28/million cells, 0.46±0.35/ million cells, 0.56±0.30/ million cells ,0.74±0.13/ million cells ,and 0.81±0.16/ million cells, respectively (P<0.05). MTT assay showed significant growth inhibition for colon cancer cell lines by Ad-Rz/IL-24 or Ad-IL-24 (p<0.05, compared to PBS), while cells treated with Ad-Rz did not show significant growth inhibition (p > 0.05). Ad-Rz/IL-24 treatment induced apoptosis in about (11.0±0.8) % of the cells, which was about twice as much as Ad-IL-24 treatment (The apoptosis induced by Ad-IL-24 is about (5.6±0.3) %). Ad-Rz treatment induced apoptosis in only about (1.8±0.2) % of the cells, but it was still significantly different from both the control and Ad-GFP-treated cells (p <0.05). The growth of xenograft tumors were inhibited to some extent by Ad-Rz/IL24 treatment, but the significance was under borderline (P=0.0619, CMH test, compared to PBS). IL-24 and GADD protein was detected only in the Ad-Rz/IL-24 and Ad-IL-24 treated groups. Ad-Rz/IL24 can significantly inhibit the VEGF expression in xenograft tumor tissue and the MVD of xenograft tumors treated with Ad-Rz/IL24, Ad-Rz ,Ad-IL-24 ,Ad-GFP or PBS were 3.5±0.6, 4.3±0.5, 6.0±1.0, 11.5±1.0 and 12.8±11.1, respectively(P<0.05).
     Conclusion: Dual-gene, anti-VEGF hairpin ribozyme and interleukin-24, mediated by adenovirus(Ad-Rz/IL24) can significantly down-regulate the expression of VEGF in HT-29 cells and inhibit tumor growth of colon cancer HT-29 cells. Forthermore, Ad-Rz/IL24 can significantly inhibit the tumor angiogenesis and inhibit the xenograft tumor growth to some extent in vivo.
引文
1 Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2002: Cancer incidence, mortality and prevalence worldwide, version 2.0. IARC CancerBase No.5. Lyon: IARC Press, 2004.
    
    2 Okuno K. Surgical treatment for digestive cancer. Current issues - colon cancer. Dig Surg. 2007,24:108-114.
    
    3 Yang L, Parkin DM, Ferlay J, et al. Estimates of Cancer Incidence in China for 2000 and Projections for 2005.Cancer Epidemiol Biomarkers Prev. 2005,14: 243-250.
    
    4 Compton CC, Frederick LG The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin. 2004,54:295-308.
    
    5 Maruta M, Kotake K, Maeda K. Colorectal cancer in Japan. Rozhl Chir. 2007,86:618-21.
    
    6 Bert V, Kenneth K. Cancer genes and the pathways they control. Nature medicine. 2004, 10: 789-799.
    
    7 Melero I, Martinez-Forero I, Dubrot J, et al. Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin Cancer Res. 2009,15:1507-1509.
    
    8 Kim TS, Lee BC, Kim E, et al. Gene transfer of AIMP1 and B7.1 into epitope-loaded, fibroblasts induces tumor-specific CTL immunity, and prolongs the survival period of tumor-bearing mice. Vaccine. 2008,26:5928-34.
    
    9 Brenner MK. Developing T-cell therapies for cancer in an academic setting. Adv Exp Med Biol.2008,610: 88-99.
    
    10 Staples OD, Steele RJ, Lain S. p53 as a therapeutic target. Surgeon. 2008, 6: 240-243.
    
    11 Friday BB, Adjei AA. K-ras as a target for cancer therapy. Biochim Biophys Acta.2005, 25:127-144.
    
    12 Mita AC,Mita MM, Nawrocki ST, et al. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008,14:5000-5005.
    
    13 Majer M, Akerley W, Kuwada SK.Oncologists' current opinion on the treatment of colon carcinoma. Anticancer Agents Med Chem. 2007,7:492-503.
    
    14 Khan AU.Ribozyme: a clinical tool. Clin Chim Acta .2006,367 : 20-27.
    
    15 Li YL, Vergne J, Torchet C, et al. In vitro selection of adenine-dependent ribozyme against Tp12/Cot oncogene.FEBS Journal.2009,276:303-314.
    16 Fickenscher H,Hor S,Kupers H,et al.The interleukin-10 family of cytokines.Trends Immunol.2002,23:89- 96.
    17 Fisher PB,Sarkar D,Lebedeva IV,et al.Melanoma differentiation associated gene-7/interleukin-24(mda-7/IL-24):novel gene therapeutic for metastatic melanoma.Toxicol Appl Pharmacol.2007,224:300-307.
    18 Sunil C,R.Bryan S,Suhendan E.et al.MDA-7/IL-24 is a unique cytokine-tumor suppressor in the IL-10 family.International Immunopharmacology.2004,4:649-667.
    19 Gupta P,Su Z Z,Lebedeva IV,et al.mda-7/IL-24:Multifunctional cancer-specific apoptosis-inducing cytokine.Pharmacology & Therapeutics.2006,111:596-628.
    1 Yokoi K,Thaker PH,Yazici S,et al.Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Research.2005,65:3716-3725
    2 Saad RS,Liu YL,Nathan G,et al.Endoglin(CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer.Mod Pathol.2004,17:197-203
    3 Alexandra G,Efthimios S,Michael I K.Angiogenesis in Colorectal Cancer:Prognostic and Therapeutic Implications.Am J Clin Oncol.2006,29:408-417
    4 Takebayashi Y,Aklyama S,Yamada K,et al..Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma.Cancer.1996,78:226-231
    5 Vermeulen PB,Van den Eynden GG,Huget P,et al.Prospective study of intratumoral microvessel density,p53 expression and survival in colorectal cancer.Br J Cancer.1999,79:31 6-322
    6 Joseph W C,Yaroslav I K,Martha J F.Functional Analysis of Hairpin Ribozyme Active Site Architecture.J Biol Chem.2007,282:13498-13507
    7 Frumovitz M,Sood AK.Vascular endothelial growth factor(VEGF) pathway as a therapeutictarget in gynecologic malignancies.Gynecologic Oncology.2007,104:768-778
    8 Beger C,Kruger M,Wong F.Ribozyme in cancer gene therapy.In:Lattime EC,Gene Therapy of Cancer,2nd ed.Health Science Asia,Elsevier Science.2002:p95-108
    9 金明,严瑞兰,赵君庸,等.抗人VEGF发夹状核酶基因的合成、克隆、表达及活性鉴定.第四军医大学学报.2000,21:1421-1423
    10 Symons R H.Small catalytic RNAs.Ann Rev Biochem.1992,61:641-671
    11 Tanaka T,Inui O,Dohi N,et al.Is you ribozyme design really correct? a proposal of simple single turnover competition assay to evaluate ribozymes.Biosci Biotechnol Biochem.2001,65:1636-1644
    12 Hampel A,Nesbitt S,Tritz R.et al.The hairpin ribozyme methods:a companion to meth.Enzymol.1993,5:37-42
    13 Berzal-Herranz A,Joseph S,Chowrira BM,et al.Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme.The EMBO Journal.1993,12:2567-2574
    14 Ferre-D'Amare AR.The hairpin ribozyme.Biopolymers 2004,73:71-78
    15 Pinard R,Hampel KJ,Heckman JE,et al.Functional involvement of G8 in the hairpin ribozyme cleavage mechanism.The EMBO Journal.2001,20:6434-6422
    16 Wilson TJ,Ouellet J,Zhao ZY,et al.Nucleobase catalysis in the hairpin ribozyme.RNA.2006,12:980-987
    17 Rupert PB,Massey AP,Sigurdsson ST,et al.Transition state stability by a catalytic RNA.Science.2002,298:1421-1424
    18 Earnshaw D J,Gait M J.Progress toward the structure and therapeutic use of the hairpin ribozyme.Antisense,nucleic acid drug Dev.1997,7:403-411
    19 Anderson P,Monforte J,Tritz R,et al.Mutagenesis of the hairpin ribzyme.Nucleic Acids Res.1994,22:1096-1100
    20 Pe'rez-Ruiz M,Barroso-delJesus A,Berzal-Herranz Al.Specificity of the Hairpin Ribozyme,The Journal of Biological Chemistry.1999,274:29376-29380
    21 严瑞兰,钱新华,辛晓燕等.抗VEGF发夹状核酶基因抑制VEGF表达及卵巢癌细胞增殖的实验研究.癌症2002,21:39-44
    22 严瑞兰,辛晓燕,金明,等.抗血管内皮生长因子发夹状核酶基因抑制卵巢癌移植瘤生长的实验研究.中华妇产科杂志2002,37:683-686
    1 Brand K,Arnold W,Bartels T,e al.Liver-associated toxicity of the HSV-tk/GCV approach and adenoviral vectors.Cancer Gene Ther,1997,4:9-16
    2 Raper S E,Yudkoff M,Chirmule N,et al.A pilot study of in vivo liver-directed Gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency.Hum.Gene Ther,2002,13:163- 175
    3 Vlachaki M T,Hernandez-Garcia A,Ittmann M,et al.The impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model.Mol.Ther,2002,6:342-348
    4 He TC,Zhou SB,Costa LT,et al.A simplified system for generating recombinant adenoviruses.Proc.Natl.Acad.Sci.USA,1998,5:2509-2514
    5 La CM,Lai Y KY,Elizabeth RP..Adenovirus and adeno-associated virus vectors.DNA and cell biology,2002,21:895-913
    6 Shenk T.in Fields Virology.Fields BN.Lippincott Philadelphia,1996,pp2111-2148.
    7 Horwitz M S.in Fields Virology.Fields BN.Lippincott Philadelphia,1996,pp.2149-2171
    8 周正任.医学微生物.第6版.北京:人民卫生出版社2005,p269-27:
    9 Zhao L,Dong A,Gu J,et al.The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer.Cancer gene therapy,2006,13:1011-1022
    10 Irie A,Matsumoto K,Anderegg B,et al.Growth inhibition efficacy of an adenovirus expressing dual therapeutic genes,wild-type p53,and anti-erbB2 ribozyme,against human bladder cancer cells.Cancer Gene Therapy,2006,13:298-305
    11. Swisher SG, Roth JA, Komaki R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin. Cancer Res, 2003,9:93- 101
    
    12 Roy I, Holle L, Song W, et al. Efficient translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res, 2002,22:3185-3189
    
    13 Anderson SC, Johnson DE, Engler H, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of recombinant adenovirus. Clin. Cancer Res, 1998,4 :1649-1659
    
    14 Russell WC. Update on adenovirus and its vectors. J. Gen. Virol, 2000, 81:2573- 2604.
    
    15 Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther, 1999, 6:113-138
    
    16 Baird SD, Turcotte M, Korneluk RG, et al. Searching for IRES. RNA, 2006, 12:1755-1785
    
    17 Morgan RA, Couture L, Elroy-Stein, et al. Retroviral vectors containing putative internal ribosome entry sites :development of a polycistronic gene transfer system and applications to human gene therapy . Nucleic Acids Res, 1992,20 :1293 - 1299
    1 Yokoi K,Thaker PH,Yazici S,et al.Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model.Cancer Research,2005,65:3716-3725
    2 Schalk J AC,Vries C GJCA,Orzechowski T JH,et al.A rapid and sensitive assay for detection of replication-competent adenoviruses by a combination of microcarrier cell culture and quantitative PCR.Journal of Virological Methods,2007,145:89-95
    3 Zhu J,Grace M,Casale J,et al.Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector.Hum Gene Ther,1999,10:113-121
    4 Hurwitz H,Fehrenbacher L,Novotny W,et al.Bevacizumab plus irinotecan,fluorouracil,and leucovorin for metastatic colorectal cancer.The new England journal of medicine,2004,350:2335-2342
    5 Symons R H.Small catalytic RNAs.Ann.Rev.Biochem,1992,61:641-671
    6 Tanaka T,Inui O,Dohi N,et al.Is you ribozyme design really correct? a proposal of simple single turnover competition assay to evaluate ribozymes.Biosci Biotechnol.Biochem,2001,65:1636-1644
    7 Huang EY,Madireddi MT,Gopalkfishnan RV,et al.Genomic structure,chromosomal localization and expression profile of a novel melanoma differentiation associated (mdm-7) gene with cancer specific growth suppressing and apoptosis inducing properties.Oncogene,2001,20:7051-7063
    8 Su ZZ,Madireddi MT,Lin JJ,et al.The cancer growth suppressor gene mda-7selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice.Proc Natl Acad Sci USA,1998,95:14400-14405
    9 Saeki T,Mhashilkar A,Chada S,et al.Tumor-suppressive effects by adenovirus mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro.Gene Therapy,2000,7:2051-2057
    10 Zhao L,Dong A,Gu J,et al.The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer.Cancer gene therapy,2006,13:1011-1022
    11 Lebedeva IV,Sauane M,Gopalkrishnan RV,et al.mda-7/IL-24:exploiting cancer's Achilles' heel.Mol.Ther,2005,11:4-18
    12 Graber TE,Holcik M.Cap-independent regulation of gene expression in apoptosis.Mol Biosyst,2007,3:825-834
    13 Gonzalez-Herrera IG,Prado-Lourenco L,Teshima-Kondo S,et al.IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse.Biochem Soc Trans,2006,34:17-21
    14 Dias S,Hattori K,Zhu Z,et al.Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration.J Clin Invest,2000,106:511-521
    15 Green AM,Steinmetz ND.Monitoring apoptosis in real time.Cancer J,2002,8:82-92
    16 Hanshaw RG,Smith BD.New reagents for phosphatidylserine recognition and detection of apoptosis.Bioorg Med Chem,2005,13:5035-5042
    17 Fadeel B.Plasma membrane alterations during apoptosis:role in corpse clearance.Antioxid Redox Signal,2004,6:269-275
    18 Bauerschmitz GJ,Barker SD,Hemminld A.Adenoviral gene therapy for cancer:from vectors to targeted and replication competent agents.Int J Oncol,2002,21:1161-1174
    19 Biederer C,Ries S,Brandts CH,et al.Replication-selective viruses for cancer therapy.J Mol Med,2002,80:163-175
    20 Everts B, van der Poel HG Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther, 2005,12:141-161
    
    21 Zhu JD, Grace M, Casale J, et al. Characterization of Replication-Competent Adenovirus Isolates from Large-Scale Production of a Recombinant Adenoviral Vector, Human Gene Therapy, 1999,10:113-121
    1 金丕焕.医用统计方法,上海:复旦大学出版社,第1版(1993):P489
    2 Krajewska M,Krajewski S,Epstein JI,et al.Immunohistochemical analysis of bcl-2,bax,bcl-X,and mcl-1 expression in prostate cancers.Am J Pathology,1996,148:1567-1576
    3 Pathan N,Marusawa H,Krajewska M,et al.TUCAN,an anti apoptotic caspase-associated recruitment domain family protein overexpressed in cancer.The journal of biological chemistry,2001,276:32220-32229
    4 Krajewska M,Kim H,Kim C,et al.Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers.Clin Cancer Res,2005,11:5451-5461
    5 Vermeulen PB,Gaspadni G.,Fox S B,et al.Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours.European Journal of Cancer,2002,38:1564-1579
    6 Suhonen KA,Anttila MA,,et al Sari MS.Quantification of angio- genesis by the Chalkley method and its prognostic significance in epithelial ovarian cancer.European journal of cancer,2007,43:1300-1307
    7 Netto GC,Bleil CB,Hilbig A,et al.Immunohisto-chemical evaluation of the microvascular density through the expression of TGF-b(CD 105/endoglin) and CD 34receptors and expression of the vascular endothelial growth factor(VEGF) in oligodendrogliomas.Neuropathology,2008,28:17-23
    8 Fmmovitz M,Sood AK.Vascular endothelial growth factor(VEGF) pathway as a therapeutic target in gynecologic malignancies.Gynecologic Ontology,2007,104:768-778
    9 Hurwitz H,Fehrenbacher L,Novotny W,et al.Bevacizumab plus irinotecan,fluorouracil,and leucovorin for metastatic colorectal cancer.N Engl J Med,2004,350:2335-2342
    10 Xu L,Yoneda J,Herrera C,et al.Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases.Int J Oncol,2000,16:445-454
    11 Wedge SR,Ogilvie DJ,Dukes M,et al.ZD6474 inhibits vascular endothelial growth factor signaling,angiogenesis,and tumor growth following oraladministration.Cancer Res,2002,62:4645-4655
    12 Kuenen BC,Rosen L,Smit EF,et al.Dose-finding and pharmacokinetic study of cisplatin,gemcitabine,and SU5416 in patients with solid tumors.J Clin Oncol,2002,20:1657-1667
    13 F D A.Important Drag Warning--Bevacizumab.In;2004
    14 Gordon MS,Cunningham D.Managing patients treated with bevacizumab combination therapy.Ontology,2005,69(Suppl 3):25-33
    15 Gupta P,Su ZZ,Lebedeva IV,et al.mda-7/IL-24:Multifunctional cancer-specific apoptosis-inducing cytokine.Pharmacology & Therapeutics,2006,111:596 - 628
    16 Liebermann DA,Hoffman B.Myeloid differentiation(MyD)/growth arrest DNA damage(GADD) genes in tumor suppression.Immunity and inflammation.Leukemia,2002,16:527-5241
    17 Grishin AV,Azhipa O,Semenov I,et al.Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis Proc.Natl.Acad.Sci.USA,2001,98:10172-10177
    18 Smith ML,Chen IT,Zhan Q,et al.Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen.Science,1994,266:1376-1380
    19 Vairapandi M,Balliet A G.,Fomace A J,et al.The differentiation primary response gene MyD118,related to GADD45,encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1.Oncogene,1996,12:2579-2594
    20 Ubeda M,Vallejo M,Habener J F.CHOP/GADD153 and methionyl-tRNA synthetase (MetRS) genes overlap in a conserved region that controls mRNA stability Mol.Cell Biol,1999,19:7589-7599
    21 Zhan Q,Lordm K A,Alamo I,et al.The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol,1994,14:2361-2371
    22 Sarkar D,Su ZZ,Lebedeva IV,et al,Mda-7(IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated over expression of the GADD family of genes by means of p38 MAPK.PNAS,2002,99:10054-10059
    23 Sauane M,Gopalkrishnan RV,Lebedeva I,et al,Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways.Journal of cellular physiology,2003,196:334-345
    24 Frumovitz M,Sood AK.Vascular endothelial growth factor(VEGF) pathway as a therapeutictarget in gynecologic malignancies.Gynecologic Oncology,2007,104:768-778
    25 Jain RK.Normalizing tumor vasculature with anti-angiogenic therapy:a new paradigm for combination therapy.Nat Med,2001,7:987-989
    26 Hicldin DJ,Ellis LM.Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis Journal clinical ontology.2005,23:1011-1027
    1 Fisher PB,Prignoli DR,Hermo JH,et al.Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.Interferon Res,1985,5:11 -22
    2 Jiang H,Lin JJ,Su ZZ,et al.Subtraction hybridization identifies a novel melanoma differentiation associated gene,mda-7,modulated during human melanoma differentiation,growth and progression.Oncogene,1995,11:2477 - 2486
    3 Jiang H,Lin J,Su ZZ,et al.The melanoma differentiation-associated gene mda-6,which encodes the cyclin-dependent kinase inhibitor p21,is differentially expressed during growth,differentiation and progression in human melanoma cells.Oncogene,1995,10:1855-1864
    4 Madireddi MT,Dent P,Fisher PB.Regulation of mda-7 gene expression during human melanoma differentiation.Oncogene,2000,19:1362-1368
    5 Eric YH,Malavi TM,Rahul VG,.et al.Genomic structure,chromosomal localization and expression profile of a novel melanoma differentiation associated(Mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.Oncogene,2001,20,7051-7063
    6 Gupta P,Su ZZ,Lebedeva IV,et al.mda-7/IL-24:Multifunctional cancer-specific apoptosis-inducing cytokine.Pharmacology & Therapeutics 2006,111:596-628
    7 Fickenseher H.,Hor S.,Kupers H.,et al.The interleukin-10 family of cytokines.Trends Immunol,2002,23:89- 96
    8 Kotenko SV.The family of IL-10-related cytokines and their receptors:related,but to what extent? Cytokine Growth Factor Rev,2002,13:223-240
    9 Wang M,Tan Z,Zhang R,et al.Interleukin 24(MDA-7/MOB-5) signals through two heterodimeric receptors,IL-22R1/IL-20R2 and IL-20R1/IL-20R2.J Biol Chem,2002,277:7341-7347
    10 Pestka S,Krause CD,Sarkar D,et al.Interleukin-10 and related cytokines and receptors.Annu Rev Immunol,2004,22:929- 979
    11 Dumoutier L,Leemans C,Lejeune D,et al.Cutting edge:STAT activation by IL-19,IL-20 and mda-7 through IL-20 receptor complexes of two types.J Immunol,2001,167:3545-3549
    12 Sauane M,Gopalkrishnan RV,Lebedeva IV,et al.Mda-7/IL-24 induces apoptosis of diverse cancer cell lines through JAK/STAT-independent pathways.J Cell Physiol,2003,196:334-345
    13 Sauane M,Lebedeva IV,Su ZZ,et al.Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways.Cancer Res,2004,64:2988-2993
    14 Dent P,Yacoub A,Fisher P B,et al.MAPK pathways in radiation responses.Oncogene,2003,22:5885- 5896
    15 Sarkar D,Su ZZ,Lebedeva IV,et al,Mda-7(IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated over- expression of the GADD family of genes by means of p38 MAPK.PNAS,2002,99:10054-10059
    16 Fisher PB,Sarkar D,Lebedeva IV,et al.Melanoma differentiation associated gene-7/interleukin-24(mda-7/IL-24):Novel gene therapeutic for metastatic melanoma.Toxicology and Applied Pharmacology,2007,224:300-307
    17 Vandenbroeck K,Alloza I,Brehmer D,et al.Theconserved helix C region in the superfamily of interferon-g/interleukin-10-related cytokines corresponds to a highaffinity binding site for the HSP70 chaperone DnaK.J Biol Chem,2002,277:25668-25676
    18 Fisher PB.Is mda-7/IL-24 a 'magic bullet' for cancer? Cancer Res,2005,65:10128-10138
    19 Gupta P,Walter MR,Su ZZ,et al.BiP/GRP78 Is an Intracellular Target for MDA-7/IL-24 induction of cancer-specific apoptosis.Cancer Res,2006,66:8182-8191
    20 Walsh G,Jefferis R.Post-translational modifications in the context of therapeutic proteins.Nat Biotechnol,2006,24:1241-1245
    21 Hammond C,Helenius A.Quality control in the secretory pathway.Curr Opin Cell Biol,1995;7:523-529
    22 Helenius A.How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum.Mol Biol Cell,1994,5:253-265
    23 Ellgaard L,Molinari M,Helenius A.Setting the standards:quality control in the secretory pathway.Science,1999,286:1882-1888
    24 Sauane M,Gupta P,Lebedeva IV,et al.N-Glycosylation of MDA-7/IL-24 is dispensable for tumor cell-specific apoptosis and 'Bystander' antitumor activity.Cancer Res,2006,66:11869-11877
    25 Dahlmann B.Proteasomes.Essays Biochem,2005,41:31-48
    26 Murata S.Multiple chaperone-assisted formation of mammalian 20S proteasomes.IUBMB Life,2006,58:344-348
    27 Reinstein E,Ciechanover A.Narrative review:protein degradation and human diseases:the ubiquitin connection.Ann Intern Med,2006,145:676-684
    28 Gopalan B,Shanker M,Scott A,et al.MDA-7/IL-24,a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system,and inhibition of MDA-7/IL-24 degradation enhances the antitumor activityCancer Gene Therapy,2008,15:1-8
    1 Senger DR,Galli S J,Dvorak AM,et al:Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science,1983,219:983-985
    2 Leung DW,Cachianes G,Kuang WJ,et al.Vascular endothelial growth factor is a secreted angiogenie mitogen.Science,1989,246:1306-1309
    3 Houck K.The vascular endothelial growth factor family:Identification of a fourth molecular species and characterization of alternative splicing of RNA.Mol endocrinol 1991,5:1806-1814
    4 Frumovitz M,Sood AK.Vascular endothelial growth factor(VEGF) pathway as a therapeutictarget in gynecologic malignancies.Gynecologic Oncology,2007,104:768-778
    5 Dvorak HF.Vascular permeability factor/vascular endothelial growth factor:A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy.J Clin Oncol,20:4368-4380,2002
    6 Carmeliet P,Moons L,Luttun A,et al.Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions.Nat Med,2001,7:575-583
    7 Karkkainen MJ,Haiko P,Sainio K,et al.Vacular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.Nat Immunol,2004,5:74-80
    8 Ogawa S,Oku A,Sawano A,et al:A novel type of vascular endothelial growth factor,VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitoticactivity without heparin-binding domain. J Biol Chem, 1998,273: 31273-31282
    
    9 Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis Journal clinical oncology, 2005,23:1011-1027
    
    10 Dvorak HF, Brown LF, Detmar M, et al:Vascular permeability factor/vascular endothelial growth factor,microvascular hyperpermeability,and angiogenesis. Am J Pathol, 1995,146:1029-1039
    
    11 Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 2002,20:4368-4380
    
    12 Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 2002,1:219-227
    
    13 Dias S, Hattori K, Zhu Z et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest, 2000,106:511-521
    
    14 Barleon B, Sozzani S, Zhou D, et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 1996, 87:3336-3343
    
    15 Gerber HP, Ferrara N. The role of VEGF in normal and neoplastic hematopoiesis. J Mol Med,2003,81:20-31
    
    16 Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. Am J Health-Syst Pharm, 2004,61 (Suppl 5): s4-s11
    
    17 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature, 2000, 407:249-257
    
    18 Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med, 2001,7: 987-989
    
    19 Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst,1990,82:4-6
    20 Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet ,2000,355:1688-1691
    
    21 Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal Vasculogenesis in physiological and pathological neovascularization. Circulation Res ,1999, 85,221-228
    
    22 Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow derived endothelial progenitor cells. EMBO J, 1999,18,3964-3972
    
    23 Pezzella F, Pastorino U, Tagliabue E, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol, 1997, 151: 1417-1423
    
    24 Pezzella F, Di Bacco A, Andreola S, et aLAngiogenesis in primary lung cancer and lung secondaries. Eur J Cancer, 1996,32: 2494-2500
    
    25 Vermeulen PB, Colpaert C, Salgado R, et al. Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol, 2001,195: 336-342
    
    26 Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene ,1999,18: 5356-5362
    
    27 Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999,155:739-752
    
    28 Chang YS, Di Tomaso E, McDonald DM, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci, 2000, 97:14608-14613
    
    29 Manley PW, Martiny-Baron G, Schlaeppi JM, et al. Therapies directed at vascular endothelial growth factor. Expert Opin Investig Drugs, 2002,11:1715-1736
    
    30 Takahashi Y, Kaitadai Y, Bucana CD,et al. Expression of vascular endothelial growth factor and its receptor,KDR, correlates with vascularity,metastasis and proliferation of human colon cancer. Cancer Res,1995, 55:3964-3968
    
    31 Saclarides TJ, Speziale NJ, Drab E, et al. Tumor angiogenesis and rectal carcinoma. Dis Colon Rectum,1994,37:921-926.
    
    32 Lindmark G, Gerdin B, Sundberg C, et al. Prognostic significance of the microvascular count in colorectal cancer. J Clin Oncol,1996;14:461-466.
    
    33 Takebayashi Y, Aklyama S, Yamada K, et al. Angiogenesis as an unfavorable prognostic factor in human colorectal carcinoma. Cancer, 1996,78:226 -231
    
    34 Vermeulen PB, Gasparini G, Fox SB, et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer, 1996,32 : 2474-2484
    
    35 Vermeulen P B, Gasparini G, Fox SB et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. European Journal of Cancer, 2002,38: 1564-1579
    
    36 Saad RS, Liu YL, Nathan G, et al. Endoglin (CD 105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol, 2004,17:197-203
    
    37 Alexandra G, Efthimios S, Michael IK. Angiogenesis in Colorectal Cancer: Prognostic and Therapeutic Implications. Am J Clin Oncol, 2006,29: 408-417
    
    38 Giatromanolaki A, Sivridis E, Koukourakis M I. Tumour angiogenesis:vascular growth and survival. APMIS, 2004,112: 431- 440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700