纳米ZnO光致发光及超低阈值随机激光材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)为一种宽带隙氧化物半导体,是极有前途的发光材料。本文基于简单的水溶液法,制备出了分散稳定、量子产率高达76%水溶性ZnO蓝光量子点。稳定性来源于量子点表面键合的油酸分子,水溶性起源于量子点表面结合的二乙醇胺(DEA)中的羟基基团。系列对比实验证明强蓝光发射来源于激发的电子与ZnO量子点和油酸形成的ZnO/OA复合物所构成的界面态的辐射复合。
     采用非平衡的溶胶-凝胶路径,首次在亲脂性的PMMA基体中用醋酸锌和氢氧化锂作为原料制备出了均匀分散的ZnO纳米晶。傅立叶红外光谱(FTIR)证明在溶胶-凝胶的反应过程中,PMMA部分酯基水解生成了羧酸离子基团,而后羧酸离子基团通过化学键结合在ZnO纳米晶的表面,其完全消除了ZnO纳米晶的表面缺陷,导致ZnO纳米晶的可见光发射完全淬灭,从而发射出纯的紫外光。
     采用硝酸锌和DEA作为原料,在AOT-CCl4-Water所构建的反胶束模板中制备出了尺寸均一的ZnO纳米结构。研究发现通过[DEA]/[Zn2+]的比可控制ZnO纳米结构的形态和发光性能。利用透射电镜(TEM)原位观察到了反胶束对于ZnO纳米棒生长的模板作用,并证明在反胶束模板的限制作用下,量子棒的生长服从奥斯特瓦尔德熟化机制。
     采用低温水热合成工艺,在Zn2+-三乙醇胺(TEA)-异丙醇(IPA)体系中,通过“取向粘连”机理,生长出了各向同性的单晶ZnO微球。并揭示单晶氧化锌球的形成是一个动力学控制的过程。球形的ZnO单晶发射出强的紫外光和弱的蓝光。
     采用乳液聚合工艺合成了马来酸酐改性的聚苯乙烯微球(m-PS)模板,在此基础上,结合低温水热分解技术,制备了m-PS/ZnO的核壳结构。对m-PS/ZnO核壳结构的生长机理进行了深入研究。在500℃的烧结温度下,有机模板破坏,获得了单晶的ZnO杯。杯状的ZnO单晶发射出强的紫外光和弱的绿光。
     从实验上证明在该反胶束体系中,采用普通的氙灯作为激发源,可以实现超低阀值(抽运功率强度为~μW/cm2)随机激光发射,该随机激光阀值比普通随机激光材料低109数量级。在反胶束中引入发光的ZnO量子点,在相同的抽运强度下,随机激光发射强度可增强3倍。
ZnO is a wide bandgap oxide semiconductor, which is the promising luminescent nanomaterial. Water-soluble ZnO quantum dots (QDs) with strong blue emission (quantum yield of 76%) was synthesized through a simple solution route using oleic acid (OA) as surface modifier. The stability originates from the surface-bonded OA molecules. The water-soluble of such QDs is provided by the hydroxyl groups on their surface come from diethanolamine (DEA). Based on series control experiments, the strong blue emission is suggested to arise from the formation of surface ZnO/oleic acid complexes.
     Uniform ZnO nanoparticles embedded in lipophilic polymethyl methacrylate (PMMA) matrix were prepared in detail with unbalanced sol-gel route. Fourier Transform Infrared (FTIR) confirms partial ester groups of R-COOCH3 in PMMA are hydrolyzed to form carboxylic ion groups during the sol-gel reaction, which chemisorbs on the surface of ZnO nanoparticles to eliminate the surface defects, thus ZnO nanoparticles in PMMA matrix exhibits complete ultraviolet (UV) emissions, while emissions in visible region are fully quenched.
     ZnO nanostructures with uniform size were synthesized by confining the reaction of Zn(NO_3)_2 and DEA in reverse microemulsion system composed with CCl4-AOT-Water. It’s found that the ratio of [DEA]/[Zn~(2+)] is decisive on the morphology and photoluminescence of ZnO nanostructures. The templating role of reverse micelles for producing the ZnO nanostructure is directly observed under TEM. It’s proved the growth of nanorods under the restriction of reverse micelles follows the Ostwald mechanism.
     The isotropic and spherical ZnO were synthesized in Zn~(2+)-TEA-IPA solution with low temperature hydrothermal method based on the oriented attachment (OA) mechanism. The formation of single-crystal ZnO microsphere is a kinetic dominated growth process. ZnO quasi-spheres can emit strong ultraviolet light and weak blue light.
     Maleic anhydride modified PS (m-PS) templet was prepared according to emulsion polymerization process. With the m-PS as core, the m-PS/ZnO core-shell structures were synthesized by a low temperature hydrothermal route. The growth mechanism of the m-PS/ZnO core-shell is investigated intensively. Single-crystal ZnO with hollow and polyhedral structure is obtained after calcination at 500°C. Single crystal cup can emit strong ultraviolet light and weak green light.
     It’s experimentally demonstrated the random laser emission can be realized in reverse microemulsion system with ordinary xenon lump (the pump intensity is~μW/cm~2) in AOT-CCl4-Water system. The pump threshold intensity is 109 magnitudes lower than that in common random laser. By introducing ZnO QDs in reverse micelles, the emission intensity could be 3 times than that of without ZnO QDs under the same pump intensity.
引文
[1] Richard F, The Man who dared to think small, Scinece, 1991, 254(29): 1300-1301
    [2] Calvert P, Rough guide to the nanoworld, Nature,1996,383(19):300-301
    [3] In B J, Bai S H, Lee S Y, et al. Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Materials Science Engineering B, 2000, 71(1-3): 301-305
    [4] Wu Y L, Lim C S, Fu S, et al. Surface modifications of ZnO quantum dots for bio-imaging, Nanotechnology, 2007, 18(21): 215604(9 pages)
    [5] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels, Science, 1998, 281 (5385): 2013-2016
    [6] Chan W, Nie S M, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, science, 1998, 281( 5385) :2016-2018
    [7] Johnson J C, Yan H, Yang P, et al. Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides, J. Phys. Chem. B, 2003, 107(34): 8816-8828
    [8] Wiersma D S, Lagendijk A, Light diffusion with gain and random lasers, Physical Review E, 1996, 54(4): 4256-4265
    [9] Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder, Physical Review Letters, 1999, 82(11), 2278-2281
    [10] Guo C X,Fu Z X,Shi C S,Superlinear increase phenomenon of UV luminescence of ZnO film under cathode luminescent excitation,Chinese Journal Luminescence,1998,19:339-341
    [11] Chos M J,Sun Y,fabrication of green and orange photo luminescent undoped ZnO film using spray pyrolysis,Applied Physics Letters,1999,75(18):2761-2764
    [12] Umar A,Kim S H,Kim J H, et al, Structural and optical properties of single-crystalline ultraviolet-emitting needle-shaped ZnO nanowires,Materials Letters,2007,61(27):4954-4958
    [13] Shi J Z,Cao Q X,Wei Y G,et al,ZnO varistor manufactured by composite nano-additives, Materials Science and Engineering,2003,99(1-3):344-347
    [14] Yang H Y, Zhu S K, Pan N, Studying the mechanisms of titanium dioxide asultraviolet-blocking additive for films and fabrics by an improved scheme, Journal of Applied Polymer Science, 2004, 92 (5): 3201-3210
    [15] Nicoll F H, Ultraviolet ZnO laser pumped by an electron beam, Applied Physics Letters, 1966, 9(1): 13-15
    [16] Tang Z K, Ping Y, Wong G K L, et al. Room temperature ultraviolet laser emission from microstructureed ZnO thin films, Nonlinear Optics, 1997, 18(2-4): 355-362
    [17] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature, Applied Physics Letters, 1997, 70(17): 2230-2232
    [18] Service R F, Will UV Lasers Beat the Blues, Science, 1997, 276 (5314): 895-903
    [19] Masuda Y,Kinoshita N,Koumoto K,et a1. Morphology control of ZnO crystalline particles in aqueous solution, Electrochimica Acta,2007,53(1):171-174
    [20] Chatterjee A,Shen C H ,Ganguly A,et a1.Strong room-temperature UV emission of nanocrystal1ine ZnO films derived from a polymeric solution, Chemical Physics Letters, 2004,391:278-382
    [21] Abrarov S M, Yuldashev S U, Lee S B, et al. Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis, Journal of Luminescence,2004,109(1):25-29
    [22] Chakrabarti S,Das D,Ganguli D,et a1.Tailoring of room temperature excitonic emission luminescence in sol-gel zinc oxide-silica nanocomposite films, Thin Solid Films,2003,441(1-2):228-237
    [23] Vanheusden K,Seager C H. Correlation between photo1uminescenc and oxygen vacancies in ZnO phosphors, Applied Physics Letters, 1996, 68(3):403-405.
    [24] Look D C,Reyno1ds D C, Point defect characterization of GaN and ZnO, Materials science and Engineering B, 1999,66(1-3):30-32
    [25] Djuri?i? A B, Choy W C H, Roy V A L, et al. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures, Advanced Functional Materials, 2004, 14(9): 856-864
    [26] Segawa Y, Ohtomo A, Growth of ZnO thin film by laser MBE Lasing of exciton at room temperature, Physica Status Solidi B, 1997, 202: 669-672.
    [27] Wang R C, Liu C P, Huang J L, et al., ZnO symmetric nanosheets integrated with nanowalls, Applied Physics Letters, 2005, 87: 053103(3 page)
    [28] Ng H T, Chen B, Li J, et al. Optical properties of single-crystalline ZnO nanowireson m-sapphire, Applied Physics Letters, 2003, 82(13): 2023-2025
    [29] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, 1996, 79(10): 7983-7990
    [30] Bahnemann D W, Karmann C, Hoffmann M R, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study,J. Phys. Chem. 1987, 91(14): 3789-3798
    [31] Yang Q, Tang K, Zuo J, et al. Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route, Applied Physics A, 2004, 79(8): 1847-1851
    [32] Baek S, Song J, Lim S. Improvement of the optical properties of ZnO nanorods by Fe doping, Physica A-Condensed Matter, 2007, 399(2):101-104
    [33] Lin B, Fu Z, Jia Y, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, 2001, 79(7): 943-945
    [34] Zhang S B, Wei S H, Zunger A, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Physical Review B, 2001, 63: 075205(7 pages)
    [35] Garces N Y, Wang L, Bai L, et al. Role of copper in the green luminescence from ZnO crystals, Applied Physics Letters, 2002, 81(4): 622-624
    [36] Greene L E, Law M, Goldberger J, et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angewandte Chemie International Edition, 2003, 115(26): 3031-3034
    [37] Li D, Leung Y H, Djuri?i? A B, et al. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Applied Physics Letters, 2004, 85(9):1601-1603
    [38] Mo C M, Li Y H, Liu Y S, et al. Journal of Applied Physics, 1998,83(8):4389-4391
    [39] Heo Y W, Norton D P, Pearton S J, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, Journal of Applied Physics, 2005, 98: 073502(6 pages)
    [40] Fan H J, Scholz R, Kolb F M, et al. Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals, Applied Physics Letters, 2004, 85(18): 4142-4144
    [41] Fan H J, Scholz R, Kolb F M, et al. On the growth mechanism and opticalproperties of ZnO multi-layer nanosheets, Applied Physics A, 2004, 79(8): 1895-1900
    [42] Liu X, Wu X, Cao H, et al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics, 2004, 95(6): 3141-3147
    [43] Cross R B M, Souza M M D, Narayanan E M S, Nanotechnology 2005, 16: 2188-2192
    [44] Kwok W M, Leung Y H, Djuri?i? A B, et al. Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles, Applied Physics Letters, 2005, 87: 093108(3 pages)
    [45] Lauer R B, The I.R. photoluminescence emission band in ZnO, Journal of Physics and Chemistry Solids, 1973, 34(2): 249-253
    [46] Gomi M, Oohira N, Ozaki K, et al. Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles, Japanese Journal of Applied Physics, 2003, 42: 481-485
    [47] Xiong H M, Wang Z D, Xia Y Y, et al. Polymerization Initiated by Inherent Free Radicals on Nanoparticle Surfaces: A Simple Method of Obtaining Ultrastable (ZnO)Polymer Core–Shell Nanoparticles with Strong Blue Fluorescence, Advanced Materials, 2006, 18: 748-751
    [48] Wu R, Yang Y, Cong S, et al. Fractal dimension and photoluminescence of ZnO tetrapod nanowhiskers, Chemical Physics Letters, 2005, 406(4-6): 457-461
    [49] Wang L, Zhang X, Zhao S, et al. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives, Applied Physics Letters, 2005, 86, 024108(3 pages)
    [50] van Dijken A,Meulenkamp E A,Vanmaekelbergh D.et a1.Identification of the transition responsible for the visible emission in ZnO using quantum size effects, Journal of Luminescence,2000,90(3-4):123-128
    [51] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation, Journal of Physical Chemistry B, 2000, 104(8): 1715-1723
    [52] van Dijken A, Makkinje J, Meijerink A. The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles, Journal ofLuminescence, 2001, 92(4): 323-328
    [53] Eric A. Meulenkam P, Synthesis and Growth of ZnO Nanoparticles, Journal of Physics Chemistry, 1998,102(29):5566-5572
    [54] Ohenberger G,Tomamdl G,Sol-gel processing of varistor powders ,Journal of Material Research,1992,7(3): 546-548
    [55] Mondelners D,Vanhoyland C,Vanden R H,et al,Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method,Material Research Bulletin,2002,37(5):901-914
    [56] Singhal M,Chhabra V,Kang P,et al,Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol at microemulsion , Material Research Bulltin,1997,32(2):239-247
    [57] Daisuke K , Hideai S , Takeshi K,etal, Synthesis of ZnO particles by ammonia-catalyzed hydrolysis of zinc dibutoxide in nonionic reversed micelles, Langmuir,2000,16(9):4086-4089
    [58] Syzuki T , Mocormick P G , Synthesis and characterization of poly(vinylpyrrolidone)- modied zinc oxide nanoparticles,Material Science,2000,343-346:383-388
    [59] En D,Jiao X L,Cheng G,Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Communications,2000,113(6):363- 366
    [60] Mukherjee B, Ravishankar N,A novel solvothermal method for nanoparticle thin films and coatings,Nanotechnology, 2007, 18(2): 025603(9 pages)
    [61] Dang Z M,Fan L Z,Zhao S J,et al.,Preparation of nanosized ZnO and dielectric properties of composites filled with nanosized ZnO,Materials Science and Engineering B,2003,99(1-3):386-389
    [62] Wang L, Muhammed M, Synthesis of zinc oxide nanoparticles with controlled morphology, Journal of Material Chemical,1999,9(11):2871-2878
    [63] Clark B L, Keszler D A, Hydrothermal dehydration of precipitates: Convenient synthesis method for solids Inorganic Chemistry, 2001, 40(8): 1724-1725
    [64] Wiersma D, The smallest random laser, Nature, 2000, 406(13): 132-133
    [65] Wiersma D S, Bartolini P, Lagendijk A, et al. Localization of light in a disordered medium, Nature, 1997, 390(6661):671-673
    [66] Letokhov V S, Quantum statistics of multiple-mode emission of an atomicensemble, Soviet Physics Uspekhi, 1968, 26: 1246-1251
    [67] Lawandy N M, Balachandran R M, Gomes A S L, et al. Laser action in strongly scattering media,Optics and Photonics News, 1994 , 5(6): 340
    [68] Cao H, Review on latest developments in random lasers with coherent feedback, J. Phys. A: Math. Gen, 2005, 38: 10497-10535
    [69] Wu J L,Study of ZnO Nanoscale Laser with Near Ultraviolet Wavelength, Vacuum Electronics, 2005,6: 1-7
    [70] Cao H, Lasing in random media,Waves in Random Media,2003, 13: R1-R39
    [71] Soest G van, Tomita M, Lagendijk A. et al. Amplifying volume in scattering media, Optics Letters, 1999, 24: 306-308
    [72] Ling Y,Cao H,Burin A L, et. al.Investigation of random lasers with resonant feedback, Physical Review A,2001,64(6):063808/1-063808/8
    [73]王宏,刘劲松,随机激光器的理论与研究现状,物理,2003,32(4):235-241
    [74]陈雷,楼祺洪,王之江,纳米随机激光,光学与光电技术,2003,1(3):5-8
    [75] Huynh W U, Dittmer J J, Alivisatos A P, Hybrid nanorod-polymer solar cells, Science, 2002, 295 : 2425-2247
    [76] Michalet X, Pinaud F, Lacoste T D, et al. Properties of fluorescent semiconductor nanocrystals and their application to biogical labeling, Single Molecular, 2001, 2(4): 261-276
    [77] Chan W, Nie S, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection , Science ,1998, 281(5385): 2016-2018.
    [78] Gaponik N, Radtchenko I L, Sukhorukov G B, et al. Rogach. Luminescent polymer microcapsules addressable by a magnetic field, Langmuir, 2004, 20: 1449-1452
    [79] Gerion D, Pinaud F, Williams S C, et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated Cdse/Zns Semiconductor Quantum Dots, Journal of Physical Chemistry B, 2001, 105: 8861-8871
    [80] Hines M A, Guyot-Sionnest P, Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals, Journal of Physical Chemistry, 1996, 100: 468-473
    [81] Kwon K W, Shim M, g-Fe2O3II-VI Sulfide Nanocrystal Heterojunctions, Journal of American Chemical Society, 2005, 127(29): 10269-10275
    [82] Zhang C, O'Brien S, Balogh L, Comparison and stability of CdSe nanocrystalscovered with amphiphilic poly(amidoamine) dendrimers, Journal of Physical Chemistry B, 2002, 106: 10316-10321
    [83] Dabbousi B O, Rodriguez V J, Mikulec F V, et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475
    [84] Talapin D V, Rogach A L, Kornowski A, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-trioctylphosphine Oxide-Trioctylphospine Mixture,Nano Letters, 2001, 1(4): 207-211
    [85] Peng Z A, Peng X G, Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 2001, 123(1): 183-184
    [86] Reiss P, Bleuse J, Pron A, Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion. Nano Letters, 2002, 2(7): 781-784
    [87] Celik A, Comelekoglu U, Yalin S, A study on the investigation of cadmium chloride genotoxicity in rat bone marrow using micronucleus test and chromosome aberration analysis. Toxicology and Industrial Health, 2005, 21(10): 243-248
    [88] Monticone S, Tufeu R, Kanaev A V, Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. Journal of Physical Chemistry B, 1998, 102(16): 2854-2862
    [89] Wood A, Giersig M, Hilgendorff M, et al. Size effects in ZnO: The cluster to quantum dot transition. Australian Journal of Chemistry, 2003, 56(10): 1051-1057
    [90] Hung C H, Whang W T, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films. Journal of Materials Chemistry, 2005, 15(2): 267-274
    [91] Xiong H M , Liu D P, Xia Y Y, et al. Polyether-grafted ZnO nanoparticles with tunable and stable photoluminescence at room temperature. Chemical materials, 2005, 17(12): 3062-3064
    [92] Liu D P, Li G D, Su Y, et al. Highly Luminescent ZnO Nanocrystals Stabilizied By Ionic-Liquid Components. Angewandte Chemie International Edition, 2006, 45: 7370-7373
    [93] ldana J, Lavelle N, Wang Y J, et al. Size-dependent dissociation pH of thiolateligands from cadmium chalcogenide nanocrystals. Journal of the American Chemical Society, 2005, 127(8): 2496-2504
    [94] Kim S, Bawendi M G, Oligomeric Ligands for luminescent and stable nanocrystal quantum dots. Journal of the American Chemical Society, 2003, 125(48): 14652-14653
    [95] Balazs A C, Emrick T, Russell T P, Nanoparticle Polymer Composites: Where Two Small Worlds Meet, Science, 2006, 314(5802): 1107-1110
    [96] Bauermann L P, Bill J, Aldinger F, Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature, Journal of Physical Chemistry B, 2006, 110(11): 5182-5185
    [97] Liu J F, Li Y D, Synthesis and Self-Assembly of Luminescent Ln3+-Doped LaVO4 Uniform Nanocrystals, Advanced Materials, 2007, 19: 1118-1122
    [98] S?derlind F, Pedersen H, Petoral R M, et al. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids, Journal of Colloid and Interface Science, 2005, 288(1): 140-148
    [99] Wang Z J, Zhang H M, Zhang L G, et al. Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction, Nanotechnology, 2003, 14: 11-15
    [100] Zondervan R, Kulzer F, Kol'chenko M A, et al. Photobleaching of Rhodamine 6G in Poly(vinyl alcohol) at the Ensemble and Single-Molecule Levels , Journal of Physical Chemistry A, 2004, 108(10): 1657-1665
    [101] Chittofrati A, Matijevi? E, Uniform Particles of Zinc Oxide of Different Morphologies, Colloids and Surfaces 1990, 48: 65-67
    [102] Fu Y S, Du X W, Sun J, et al. Single-Crystal ZnO Cup Based on Hydrothermal Decomposition Route, Journal of Physical Chemistry, 2007, 111(10): 3863-3867
    [103] Vergés M A, Mifsud A, Serna C J, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society-Faraday Transactions, 1990, 86: 959-963
    [104] Monticone S, Tufeu R, Kanaev A V, Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles, Journal of Physical Chemistry B, 1998, 102: 2854-2862
    [105] Kayanuma Y, Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape, Physical Review B, 1988,38(14) : 9797-9805
    [106] Yang C L, Wang J N, Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots, Journal of Applied Physics, 2001, 90(9): 4489-4493
    [107] Armes S P, Maeda S, Gill M, Inorganic/organic hybrid materials: conducting polymer-silicananocomposite particles, Ploymer Material science and technology, 1994, 70: 352-353
    [108] Gabrielson L,Edirisinghe M,On the dispersion of fine ceramic powders in polymers, Journal of Material Science Letter,1996,15(3):1105-1107
    [109] Tao S,Juan M,High Performance polyproplylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts, Advanced Materials,2002,14(2):128 - 130.
    [110] Masami O,Satoshi M,Hideyuki T,etal, Synthesis and structure of smectic clay/ poly(methyl methacrylate)and clay/ polystyrene nanocomposites via in situ interalative polymerization,Polymer,2000,41(10):3887-3890
    [111] Lipatov Y S,Kosyanchuk L V,Nesterov A E,et al, Filler effect on polymerization kinetics and phase separation in polymer blends formed in situ, Polymer International,2003,52:664-669
    [112] Valter C,Cinzia D V, Nanostructured hybrid materials from aqueous polymer dispersion, Advances in Colloid and Interface Science,2004,108:167-185
    [113] Premachandran R , Banerjee S , John V T , The Enzymatic Synthesis of Thiol-Containing Polymers to Prepare Polymer-CdS Nanocomposites, Chemistry of Materials,1997,9(6):1342-1347
    [114] Wang J, Montville D, Gonsalves K E, Synthesis of polycarbonate-co-poly (p-ethylphenol) and CdS nanocomposites, Journal of Applied Polymer Science,1997, 72(14):1851-1868
    [115] Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconducting oxides, Science, 2001, 291: 1947-1949
    [116] Liu Z F, Jin Z G, Li W, et al. Preparation of ZnO porous thin films by sol–gel method using PEG template, Materials Letters, 2005, 59(28): 3620-3625
    [117] Monticone S, Tufeu R, Kanaev A V, Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles, Journal of Physical Chemistry B, 1998,102(16): 2854-2862
    [118] Huang M H, Wu YY, Feick H, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Advanced Materials 2001, 13(2): 113-116
    [119] Tong Y H, Liu Y C, Lu S X, et al. Journal of Sol-Gel Science and Technology, 2004, 30: 157-161.
    [120] Fonoberov V A, Balandin A A, Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes, Applied Physics Letters, 2004, 85(24): 5971-5973
    [121] Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, Journal of Applied Physics, 1999, 85(5): 2861-2865
    [122] Wong E M, Searson P C, ZnO quantum particle thin films fabricated by electrophoretic deposition, Applied Physics Letters, 1999, 74(20): 2939-2941
    [123] Guo L, Yang S, Yang C, et al. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Applied Physics Letters, 2000, 76(20): 2901-2903
    [124] Mahamuni S, Bendre B S, Leppert V J, et al 1996 Nanostructured Mater. 7 659
    [125] Borgohain K, Mahamuniy S, Luminescence behaviour of chemically grown ZnO quantum dots, Semiconductor Science and Technology, 1998, 13: 1154-1157
    [126] Gu L, Yang S, Yang C, et al. Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles, Chemistry of Materials, 2000, 12(8): 2268-2274
    [127] Tong Y H, Liu Y C, Lu S X, et al. The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral, Journal of Sol-gel Science and Technology, 2004, 30: 157-161
    [128] Yang C L, Wang J N, Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots, Journal of Applied Physics, 2001, 90(9): 4489-4493
    [129] Abdullah M, Morimot T, Okuyama K, Generating Blue and Red Luminescence from ZnO/Poly(ethylene glycol) Nanocomposites Prepared Using an In-Situ Method, Advanced functional materials, 2003, 13(10): 800-804
    [130] Sui X M, Shao C L, Liu Y C.Photoluminescence of polyethylene oxide-ZnOcomposite eletrospun fibers, Polymer, 2007, 48 (6): 1459-1463
    [131] Joo J, Kwon S G, Yu J H, et al. Synthesis of ZnO Nanocrystals with Cone, Hexagonal Cone, and Rod Shapes via Non-Hydrolytic Ester Elimination Sol-Gel Reactions, Advanced Materials, 2005, 17(15): 1873-1877
    [132] He J H, Lin Y H, McConney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization, Journal of Applied Physics, 2007, 102(8): 084303(4 pages)
    [133] Chang M, Cao X L, Zeng H B, et al. Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification, Chemical Physics Letters, 2007, 446(4-6): 370-373
    [134] Cozzoli P D,Curri M L, Agostiano A,ZnO Nanocrystals by a Non-hydrolytic Route: Synthesis and Characterization, Journal of Physical Chemistry B, 2003, 107(20): 4756-4762
    [135] Bodas D S, Gangal S A, Structural characterization of sputtered PMMA in argon plasma , Materials Letters, 2005, 59(23): 2903-2907
    [136] Khrenov V, Klapper M, Koch M, et al. Surface Functionalized ZnO Particles Designed for the Use in Transparent Nanocomposites, Macromolecular Chemistry and Physics, 2005,206(1): 95-101
    [137] Shim J W, Kim J W, Han S H, et al. Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207(1-3): 105-111
    [138] Rajendran S, Uma T, Effect of ceramic oxide on PMMA based polymer electrolyte systems, Materials Letters, 2000, 45(3-4): 191-196
    [139] Vollath D, Szabo DV and Schlabach S, Oxide/polymer nanocomposites as new luminescent materials, Journal of Nanoparticle Research, 2004, 6(2): 181-191
    [140] Vu-Khanh T, Sanschagrin B, Fisa B, Fracture of mica-reinforced polypropylene: Mica concentration effect, Polymer Composites, 1985, 6(4): 249-260
    [141] Tokumoto M S, Briois V, Preparation of ZnO Nanoparticles: Structural Study of the Molecular Precursor, Journal of Sol-gel Science and Technology, 2003, 26(1-3): 547-551
    [142] Sakohara S, Ishida M, Anderson M A, Visible Luminescence and SurfaceProperties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate, Journal of Physical Chemistry B, 1998,102(50): 10169-10175
    [143] Pandiarajan S, Umadevi M, Sasirekha V, et al. FT-IR and FT-Raman spectral studies of bis(L-proline) hydrogen nitrate and bis(L-proline) hydrogen perchlorate, Journal of Raman Spectroscopy, 2005, 36(10): 950-961
    [144] Tannenbaum R, King S, Lecy J, et al. Infrared Study of the Kinetics and Mechanism of Adsorption of Acrylic Polymers on Alumina Surfaces, Langmuir, 2004, 20(11): 4507-4514
    [145] Boukari H, Lin J S, Harris M T, Probing the Dynamics of the Silica Nanostructure Formation and Growth by SAXS, Chem. Mater. 1997, 9(11): 2376-2384
    [146] Meulenkamp E A, Synthesis and Growth of ZnO Nanoparticles, Journal of Physical Chemistry B, 1998 102(29): 5566-5572
    [147] Cozzoli P D, Curri M L, Agostiano A, ZnO Nanocrystals by a Non-hydrolytic Route: Synthesis and Characterization, Journal of Physical Chemistry B, 2003, 107(20): 4756-4762
    [148] Srinivasan R, Braren B, Casey KG, Ultraviolet laser ablation and. decomposition of organic materials, Pure and Applied Chemistry, 1990, 62(8):1581-1584
    [149] Kim S W, Fujita S, Fujita S, Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition, Applied Physics Letters, 2002, 81(26): 5036-5038
    [150] Brus L E, Journal of Physical Chemistry, Electronic wave functions in semiconductor clusters: experiment and theory, 1986, 90(12): 2555-2560
    [151] Boutnnet M,Kizling J,Stenius P,et al. Colloids Surf.,1982, 5: 209
    [152] Pileni M P,Reverse Micelles as Microreactors, Journal of Physical Chemistry,1993, 97(27): 6961-6973
    [153] Kortan A R,O·pila R L,Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. ,1990, 112(4): 1327-1332
    [154] Yamaki T,Maeda H,Kusakabe K,et al. Control of the pore characteristics of thin alumina membranes with ultrafine zirconia particles prepared by the reversed micelle method,1993, Journal of Membrane Science,85(2) : 167-173
    [155] Kazuhiko K,Kon-no K,Ayao K,Dispersion stability of nonaqueous calciumcarbonate dispersion prepared in water core of W/O microemulsion, Jouenal of Colloid and Interface Science,1987, 115,579-582
    [156] Levy L,Hochepied J F,Pileni M P,Control of the Size and Composition of Three Dimensionally Diluted Magnetic Semiconductor Clusters, Journal of physical chemistry,1996, 100(47),18322-18326
    [157] Arturo M,Quintela L,Rivas J,Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles, Journal of Colloid Interface Science,1993, 158(2) : 446-451
    [158] Zhang J, Sun L D, Pan HY, et al. ZnO nanowires fabricated by a convenient route,New Journal of Chemistry, 2002, 26: 33-34
    [159] Ahmad T, Vaidya S, Sarkar N, et al. Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO, Nanotechnology 2006, 17: 1236-1240
    [160] Zhang J, Sun L D, Jiang X C, et al. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system, Crystal Growth & Design 2004, 4(2): 309-313
    [161] Kaneko D, Shouji H, Kawai T, et al. Synthesis of ZnO particles by ammonia-catalyzed hydrolysis of zinc dibutoxide in nonionic reversed micelles, Langmuir 2000, 16(9): 4086-4089
    [162] Chang H J, Lu C Z, Wang YS, et al. Optical properties of ZnO nanocrystals synthesized by using sol-gel method, Journal of the Korean Physical Society, 2004, 45(4): 959-962
    [163] Simpson J C,Cordaro J F.Defect clusters in zinc oxide, Journal of Applied Physics, 1990, 67(11):6760-6763
    [164] Sue K,Kimura K,Murata K J,et a1.Hydrothermal Synthesis of Zinc Oxide Crystals in Homogeneous Mixture of Carbon Dioxide, Hydrogen, and Water, Chemistry Letters,2004, 33(6):708-709
    [165] Yamamoto T,Wada Y,Miyamoto H,et a1.A Novel Method for the Preparation of Green-photoluminescent Zinc Oxide by Microwave-assisted Carbothermal Reduction, Chemistry Letters,2004,33(3):246-247
    [166] Zhang W X, Yanagisawa K, Hydrothermal synthesis of ZnO long fibers, Chemistry Letters, 2005, 34(8): 1170-1171
    [167] Gao P, Ying C, Wang S Q, et al. Low temperature hydrothermal synthesis of ZnOnanodisk arrays ultilizing self-assembly of surface molecules at solid-liquid interfaces, Journal of nanoparticles Research, 2006, 8(1): 131-136
    [168] Zhang H, Yang D R, Ji Y J, et al. Low temperature synthesis of flowerlike ZnO nanoparticles by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B, 2004, 108(13): 3955-3958
    [169] Zheng Y Q, Shi E W, Li W J, et al. Formation of zirconia polymorphs under hydrothermal conditions, Science in China (E), 2002, 35: 273-281
    [170] Roosen A R, Carter W C, Simulations of Microstructural Evolution: Anisotropic Growth and Coarsening, Physica A, 1998, 261(1-2): 232-247
    [171] Matijevic E, Preparation and properties of uniform size colloids, Chemistry of Materials, 1993, 5(4): 412-416
    [172] Sun Y G, Yin Y D, Mayers B B, et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone), Chemistry of Materials, 2002, 14(11): 4736-4745
    [173] Caswell K K, Bender C M, Murphy C J, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Lett., 2003, 3(5): 667-669
    [174] Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science, 2000, 289: 751-754
    [175] Penn R L, Banfield J F, American Mineralogist, Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2, 1998, 83(9-10): 1077-1082.
    [176] Chemseddine A, Moritz T, Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization, European Journal of Inorganic Chemistry, 1999, 1999(2): 235-245
    [177] Lou X W, Zeng H C, Complex -MoO3 Nanostructures with External Bonding Capacity for Self-Assembly, Journal of the American Chemical Society 2003, 125(9): 2697-2704
    [178] Penn R L, Stone A T, Veblen D R, Defects and Disorder: Probing the Surface Chemistry of Heterogenite (CoOOH) by Dissolution Using Hydroquinone and Iminodiacetic Acid, Journal of Physical Chemistry B, 2001, 105(20): 4690-4697
    [179] Penn R L, Banfield J F, Imperfect Oriented Attachment:Dislocation Generation inDefect - Free Nanocrystals, Science, 1998, 281: 969-971
    [180] Scharrer M, Wu X, Yamilov A, et al. Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition, Applied Physics Letters, 2005, 86: 151113(3 pages)
    [181] Wang RC, Liu C P, Huang J L, et al. ZnO symmetric nanosheets integrated with nanowalls, Applied Physics Letters, 2005, 87: 053103(3 pages)
    [182] Yao K X, Sinclair R, Zeng H C, Symmetric Linear Assembly of Hourglass-like ZnO Nanostructures, Journal of Physical Chemistry C, 2007, 111(5) 2032-2039
    [183] Mo M S, Yu J C, Zhang L Z, et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres, Advanced Materials, 2005, 17(6): 756-760
    [184] Tian Z R R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures, Nature Materials, 2003, 2: 821-826
    [185] Holms J, Johnston K P, Doty R C, et al. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires, Science, 2000, 287: 1471-1473
    [186] Duan X, Huang Y, Agarwal R, et al. Single nanowire electrically driven lasers, Nature, 2003, 421: 241-245
    [187] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, 292: 1897-1899
    [188] Wang Z, Qian X F, Yin J, et al. Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route, 2004, Langmuir, 20(8): 3441-3448
    [189] Wei A, Sun X W, Xu C X, et al. Growth mechanism of tubular ZnO formed in aqueous solution, Nanotechnology, 2006, 17: 1740-1744
    [190] Peng Y, Xu A W, Deng B, et al. Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks, Journal of Physical Chemistry B, 2006, 110 (7): 2988-2993
    [191] Xie R G, Li D S, Zhang H, et al. Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns, Journal of Physical Chemistry B, 2006, 110 (39):19147-19153
    [192] Liu J P, Huang X T, Sulieman K M, et al. Solution-Based Growth and OpticalProperties of Self-Assembled Monocrystalline ZnO Ellipsoids, Journal of Physical Chemistry B, 2006, 110 (39): 10612-10618
    [193] Wang H H, Xie, C S, Zeng D W, ZnO microspheres self-assembled by hexagonal nanoplates, Chemistry Letters, 2005, 34 (2): 260-261
    [194] Ma Z X, Han Y X, Zheng L X, Mining & Metallurgy, 2004, 13 (2): 50-52
    [195] Bohnsack G, Bunsen-Ges B, The dissolution of zinc metal and the solubility of zinc hydroxide determined by measurements of the electrical conductivity in the zinc-water system, Ber. Bunsenges. Phys. Chem, 1988, 92 (7):803-813
    [196] C?lfen H, Mann S, Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures, Angewandte Chemie International Edition,2003, 42 (21): 2350-2365
    [197] Park J, Privman V, Matijevi? E, Model of Formation of Monodispersed Colloids, Journal of Physical Chemistry B, 2001, 105(47):11630-11635
    [198] Spanhel L, Anderson M A, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society 1991,113 (8): 2826-2833
    [199] Stumm W, Chemistry of the solid-water interface, John Wiley & Sons, New York, 1992.
    [200] Ribeiro C, Lee E J H, Giraldi T R, et al. Study of Synthesis Variables in the Nanocrystal Growth Behavior of Tin Oxide Processed by Controlled Hydrolysis, Journal of Physical Chemistry B, 2004, 108(40): 15612-15617
    [201] Zhang Z, Sun H, Shao X, et al. Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures, Advanced Materials, 2005, 17(1): 42-47
    [202] Choi K S, Lichtenegger H C, Stucky G D, et al. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces, Journal of the American Chemical Society 2002, 124 (42): 12402-12403
    [203] Shen G. Z, Bando Y, Liu B D, et al. Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process, Advanced Functional Materials, 2006, 16 (3): 410-416
    [204] Scharrer M, Wu X, Yamilov A, et al. ZnO symmetric nanosheets integrated with nanowalls, Applied Physics Letters, 2005, 86, 151113(3 pages)
    [205] Jiang P, Bertone J F, Colvin V L, A Lost Wax Approach to Monodisperse Colloids and Their Crystals, Science, 2001, 291(5503), 453-457
    [206] Kidambi S, Dai J H, Bruening M L, Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers, Journal of the American Chemical Society 2004, 126(9): 2658-2659
    [207] Wang Y, Cai L, Xia Y, Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles, Advanced Materials, 2005, 17(4): 473-477
    [208] Caruso F, Nanoengineering of Particle Surfaces, Advanced Materials, 2001, 13(1): 11-12
    [209] Giersig M, Liz-Marzan L M, Ung T,et al. Chemistry of nanosized silica-coated metal particles-EM study, Physical Chemistry, 1997, 101: 1617-1620
    [210] Kawahashi N, Matijevic E, Preparation of hollow spherical particles of yttrium compounds, Journal of Colloid and Interface Science, 1991,143(1): 103-110
    [211] Imhof A, Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells, Langmuir, 2001, 17(12): 3579-3585
    [212] Tissot I, Reymond J P, Lefebvre F, et al. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chemistry of Materials, 2002, 14(3): 1325-1331
    [213] Bruinsma P J, Kim A Y, Liu J, et al. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres, Chemistry of Materials, 1997, 9(11): 2507-2512
    [214] Rana R K, Mastai Y, Gedanken A, Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles, Advanced Materials, 2002, 14(19): 1414-1418
    [215] Wendland M S, Zimmerman S C, Synthesis of Cored Dendrimers, Journal of the American Chemical Society 1999, 121(6): 1389-1390
    [216] Jiang Z Y, Xie Z X, Zhang X H, et al. Synthesis of single-crystalline ZnO polyhedral submicrometer-Sized hollow beads using laser-assisted growth with ethanol droplets as soft templates, Advanced Materials, 2004, 16: 904-907
    [217] Fan H J, Scholz R, Kolb F M, et al. Growth mechanism and characterization of zinc oxide microcages, Solid State Communications, 2004, 130: 517-521
    [218] Duan J X, Huang X T, Wang E K, et at. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process, Nanotechnology, 2006, 17: 1786-1790
    [219] Neves M C, Trindade T, Timmons A M B, et al. Synthetic hollow zinc oxide microparticles, Materials Research Bulletin, 2001, 36: 1099-1108
    [220] Matijevi? E, Monodispersed metal (hydrous) oxides: a fascinating field of colloid science, Account of Chemical Research, 1981,14(1): 22-29
    [221] Wang P H, Pan C Y, Preparation of styrene/methacrylic acid copolymer microspheres and their composites with metal particles, Colloid and Polymer Science, 2000, 278(6) : 581-586
    [222] Du X W, Fu Y S, Sun J, et al. Complete UV emission of ZnO nanoparticles in a PMMA matrix, Semicondutor Science Technology, 2006, 21: 1202-1206
    [223] Khishinuma A S, A new materials processing_hydrothermal processing, Bull. Mater. Sci. 1995, 18(6), 811-818
    [224] Zhong W Z, Liu G Z, Growth Units and Formation Mechanisms of the Crystals under Hydrothermal Conditions, Sci. China (B), 1994, 24: 394
    [225] Schreiber F, Structure and growth of self-assembling monolayers, Progress in Surface Science, 2000, 65:151-256
    [226] Brito S L M, Gouvea D, Ganzella R, Study on polyacrylate adsorption in a commercial varistor system: characterization of the physical-chemistry properties, Ceramica, 2005, 51(317): 30-36
    [227] Mo M S, Yu J C, Zhang L Z, et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres, Advanced Materials, 2005, 17(6): 756-760
    [228] Li W J, Shi E W, Zhong W Z, et al. Growth Mechanism and Growth Habit of Oxide Crystals, Journal of Crystal Growth, 1999, 203: 186-196
    [229] Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects, Nuclear Instruments and Methods in Physics Research B, 2003, 199: 286-290
    [230] Lawandy N M, Balachandran A M, Gomes A S L, et al. Laser action in stronglyscattering media,Nature ,1994, 368(6470): 436-438
    [231] Anni M, Lattante S, Cingolani R, et al. Far-field emission and feedback origin of random lasing in oligothiophene dioxide neat films, Applied Physics Letters, 2003, 83(14): 2754-2756
    [232] Polson R C, Vardeny Z V, Random lasing in human tissues, Applied Physics Letters, 2004, 85 (7): 1289-1291
    [233] Cao H,Zhao Y G,Ong H C, et a1.Far-field characteristics of random lasers, Physical Review B,1999,59:15107-15111
    [234] Berger G A, Kempe M, Genack A Z, Dynamics of stimulated emission from random media, Physical Review E, 1997, 56: 6118-6122
    [235] Zhang Z Q, Light amplification and localization in randomly layered media with gain, Physical Review B, 1995, 52(11): 7960-7964
    [236] Ethayaraja M, Dutta K, Muthukumaran D, et al. Nanoparticle formation in water-in-oil microemulsions: Experiments, mechanism, and Monte Carlo simulation, Langmuir, 2007, 23(6): 3418-3423
    [237] Molina P G, Silber J J, Correa N M, et al. Electrochemistry in AOT Reverse Micelles. A Powerful Technique To Characterize Organized Media, Journal of Physical Chemistry C, 2007, 111(11): 4269-4276
    [238] Olesik S V, Miller C J, Critical micelle concentration of AOT in supercritical alkanes, Langmuir, 1990, 6(1), 183-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700