用户名: 密码: 验证码:
尘埃空洞及极地中层夏季回声的有关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尘埃空洞在存在于大量的重力以及微重力条件下的尘埃等离子体实验中,其在大多数情况下是射频放电条件下尘埃云非线性演化的结果。大量的实验和理论工作对尘埃空洞形成的线性以及非线性阶段进行了详细的研究。电离在等离子体的维持以及空洞的形成中起着重要的作用,但是对于电离效应对尘埃空洞的形成过程的影响仍然不清楚。
     极地中层夏季回声(Polar Mesosphere Summer Echoes, PMSE)是由于小尺度电子密度结构对雷达波的散射产生的,该小尺度结构是如何产生和长时间维持的以及该回声产生的物理机制一直是科学界感兴趣的问题。
     本文的研究分为两部分:第一部分,首先提出了考虑电离效应的尘埃空洞的理论模型,数值研究了尘埃空洞的形成过程,然后对实验中射频放电鞘层结构进行了数值模拟且应用分子动力学模拟(MD)方法对尘埃空洞的形成进行了模拟。第二部分,研究了小尺度等离子体和带电悬浮颗粒的密度扰动的演化过程以及特殊分布的尘埃云对斜入射电磁波的反射。
     第一章,详细地介绍了尘埃空洞的实验、理论以及计算机模拟研究。着重回顾了在重力和微重力条件下的实验研究以及尘埃空洞形成的稳态以及动态演化理论研究。
     第二章,采用流体模型研究了考虑电离效应的尘埃空洞的形成过程。在合适的参数和初始条件下,数值研究了尘埃空洞的形成过程。结果发现,尘埃空洞在电离率超过某个阈值才能形成。随着电离率的增大,空洞形成所需要的时间减少,空洞的尺寸先增大然后减小。在考虑尘埃对流效应时,还可以得到环状的尘埃空洞分布。
     第三章,首先应用稳态流体模型模拟了射频放电的等离子体鞘层,然后应用MD模拟方法模拟了处于该鞘层中的尘埃空洞的形成过程。结果发现,在鞘层的中心出现了隆起的电势结构,处在鞘层中的尘埃颗粒可以形成实验中观测到的高度对称的圆形以及不规则的空洞结构。
     第四章,概述了PMSE的实验观测以及理论研究。实验观测方面着重介绍了PMSE的多个观测特征以及与该回声发生有关的背景观测。理论方面着重介绍了具有代表性的可能导致PMSE产生的三种机制。
     第五章,应用多极扩散理论研究了PMSE层中小尺寸的等离子体和带电的悬浮颗粒的演化过程,考虑了同时含有电子以及带电悬浮颗粒密度扰动的初始扰动。结果表明,在典型的PMSE观测参数下,小尺度等离子体结构的存在时间尺度是达到小时的量级,在大部分情况下,电子和离子密度呈现反关联,当尘埃颗粒半径超过一定尺寸时,电子和离子密度呈现关联。还进一步得到了在改变相关参数,如扰动幅度、扰动宽度、悬浮颗粒半径以及PMSE发生高度对演化过程的影响。
     第六章,研究了特殊分布的尘埃云对斜入射电磁波的反射,考虑了尘埃颗粒带电效应以及尘埃颗粒带电导致的小尺度等离子体结构对电磁波传播的影响。研究表明,在入射波为P波时,反射系数与入射波频率的平方近似成反比。随着入射角度的增加,发射系数先缓慢增加然后迅速降低。反射系数随尘埃颗粒半径的变化受到线性模转换以及尘埃带电效应的影响。
     第七章,给出了本文研究内容的总结以及展望。
Dust voids exist in a large numbers of dusty plasmas under the conditions of gravity and micro-gravity, which are usually resulted from the dust clouds nonlinear evolution in the rf discharge conditions. There has been much experimental and theoretical interest in the linear and nonlinear stages of dust voids formation. Experimentally, ionization plays import roles in the plasma maintenance and voids formation. However, it is still not clear about the exact role of ionization effect on voids formation.
     The polar mesosphere summer echoes (PMSE) are caused by scattering of radar waves from the structures of small scale electron density. It is a long outstanding question in scientific community in how such small scale structure produce, long time be sustained and what the physical mechanism causes the echoes.
     The main research contents of this dissertation are composed of two parts. In the first part, the theoretical model of dust void formation, considering the effect of ionization, is proposed for the fist time and the dust evolution is studied numerically.
     Then, the sheath structure of rf discharge in experiments is investigated by numerical simulation and the void formation in the sheath is researched by molecular dynamics (MD) simulation method. In the second part, the small scale density perturbations of plasma and charged aerosol particles and the reflection of oblique incidence of electromagnetic waves by the special distribution of dust cloud are researched.
     In the first chapter, the experimental, theoretical and computer simulation research of dust voids are reviewed in detail. The experimental study of dust voids under gravity and micro-gravity conditions and the voids formation theories of steady and time evolution are emphasized. In the second chapter, using the fluid model, the dust void formation under the consideration of ionization effect is investigated. Under the appropriate parameters and initial conditions, the voids formation is studied by numerical method. It is shown that dust voids can form only when the ionization rate is larger than the threshold value. With increasing of ionization rate, the time needed for void formation is reduced and the void size increases first and then decreases. When the dust convective term is considered, we can obtain the ring-like dust void.
     In the third chapter, the plasma sheath of the rf discharge is simulated by the steady fluid model, then, in the sheath, the dust void formation is investigated by MD simulation. The results show that there is a potential bump in the center of sheath and high symmetry circular and irregular voids, which are observed in experiments, can form.
     In the fourth chapter, the experimental observation and theoretical study of PMSE are summarized. Many characteristics of PMSE in observations and the background investigations of PMSE occurrences are emphasized. Also, the three representative mechanisms of PMSE production are introduced in detail.
     In the fifth chapter, using the multi-polar diffusion theory, the time evolutions of the small scale plasma and charged aerosol particles perturbations are investigated, considering the initial condition of electron and aerosol particles density perturbations. It is found that, under the typical parameters of PMSE observations, the typical existence time scale of the small scale plasma structures is on an hour order, in the majority cases, the electron and ion densities are anticorrelated, but when the radius of dust particles are larger than the critical value, the electron and ion are correlated. Further, under the varied parameters, such as the amplitude or width of perturbations, the radius of aerosol particles and the altitude of PMSE occurrence, the evolution are also investigated.
     In the sixth chapter, the oblique electromagnetic waves reflected by the special dust-distributing cloud are investigated, with the consideration of dusts charging effect and the small scale plasma structure produced by dust charging in waves’propagation. The results show that, when the P waves are assumed to be the incident waves, the reflection coefficient is inverse proportional to the incidence frequency approximately. With the increase of incidence angle, the reflection coefficient increases slowly first and then decreases quickly. The variation of the reflection coefficient with the radius of dust particles is effected by linear mode conversion and dusts charging effect.
     In the last chapter, the conclusions and perspectives of the dissertation are presented.
引文
[1] H. Alfven, On the Origin of Solar System, Clarendon Press, Oxford, UK (1954)
    [2] Jr. L. Spitzer, Physical Processes in the Interstellar Medium, Wiley, New York (1978)
    [3] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol: Institute of Physics, London (2002)
    [4] S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas, Imperial College Press, London (2005)
    [5] S. V. Vladimirov, V. V. Yaroshenko and G. E. Morfill, Phys. Plasmas. 13, 030703 (2006)
    [6] A. V. Ivlev and G. E. Morfill, Phys. Rev. E. 63, 016409 (2000)
    [7] K. Qiao and T. W. Hyde, Phys. Rev. E. 71, 026406 (2005)
    [8] Zheng-Xiong Wang, Yue Liu, Jin-Yuan Liu, and Xiaogang Wang, Phys. Plasmas. 12, 014505 (2005)
    [9] Yang-fang Li, J. X. Ma, and De-long Xiao, Phys. Plasmas. 11, 11 (2004)
    [10] B. Eliasson, and P. K. Shukla, Phys. Rev. E. 69, 067401 (2004)
    [11] F. Melandso, and P. K. Shukla, Planet. Space Sci. 43, 635 (1995)
    [12] D. Samsonov, J. Goree, and Z. W. Ma, Phys. Rev. Lett. 83, 3649 (1999)
    [13] A. Melzer, S. Nunomura, and D. Samsonov, et,al., Phys. Rev. E. 62, 4162 (2000)
    [14] Yinhua Chen, Ge Wang, and M. Y. Yu, Planet. Space Sci. 51, 81 (2003)
    [15] Huang Feng, Ye Maofu, Wang Long, and Liu Yanhong, Plasma Sci. Technol. 9, 1 (2007)
    [16] G. Praburam and J. Goree, IEEE Trans. Plasma Sci. 24, 3813 (1996)
    [17] G. Praburam and J. Goree, Phys. Plasmas. 3, 1212 (1996)
    [18] D. Samsonov and J. Goree, Phys. Rev. E. 59, 1047 (1999)
    [19] R. P. Dahiya, G. V. Paeva, W. W. Stoffels, G. M. W. Kroesen, K. Avinash, and A. Bhattacharjee, Phys. Rev. Lett. 89, 125001 (2002)
    [20] G. V. Paeva, W. W. Stoffels, R. P. Dahiya, E. Stoffels, and G. M. W. Kroesen, Third International Conference on the Physcis of Dusty Plasma, American Institute of Physics. (2002)
    [21] R. Vrancken, G. V. Paeva, G. M. W. Kroesen, and W. W. Stoffels, Plasma Sources Sci. Technol. 14, 509 (2005)
    [22] A. Melzer, A. Homann, A. Piel, V. A. Schweigert, and I. V. Schweigert, Seventh Workshop, The American Institute of Physics. (1998)
    [23] M. Mikikian and L.Boufendi, Phys Plasmas. 11, 3733 (2004)
    [24] M. Mikikian, M. Cavarroc, N. Chaumeix, L. Boufendi, Proc. 31st EPS Conf. on Plasma Phys.(London), 28G, O-2.13 (2004)
    [25] M. Mikikian, L. Couedel, M. Cavarroc, Y. Tessier, and L. Boufendi, New J. Phys. 9, 268, (2007)
    [26] M. Mikikian, L. Couedel, M. Cavarroc, Y. Tessier, and L. Boufendi, Proc. 34st EPS Conf. on Plasma Phys.(Warsaw), 31F, P-5.053 (2007)
    [27] P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009)
    [28] E. Thomas, K. Avinash, and R. L. Merlino, Phys. Plasma. 11, 1770 (2004)
    [29] I. Stefanovi?, C. Scharwitz, E. Kova?evi?, J. Berndt, and J. Winter, IEEE Trans. Plasma Sci. 36, 1018 (2008)
    [30] G. E. Morfill, H. M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999)
    [31] A. Nefedov,G.Morfill, V. Fortov, H. Thomas, H. Rothermel, T. Hagl, A. Ivlev, M.Zuzic, B. Klumov, A. Lipaev et al., New J. Phys. 5, 33.1 (2003)
    [32] M. Mikikian, L. Boufendi, A. Bouchoule, H. Thomas, G. Morfill, A. Nefedov, V. Fortov, and the PKE-Nefedov team, New J. Phys, 5, 19.1 (2003)
    [33] M. Cavarroc, M. Mikikian, Y. Tessier, and L. Boufendi, Phys. Rev. Lett. 100, 045001, (2008)
    [34] A. I. Ivlev, M. Kretschmer, M. Zuzic, G. E. Morfill, H. M. Rothermel, H. Thomas, V. E. Fortov, V. I. Molotkov, A. P. Nefedov, A. M. Lipaev, O. F. Petrov, Yu. M. Basturin, A. I. Ivanov, and J. Goree, Phys. Rev. Lett. 90, 055003 (2003)
    [35] M. Kretschmer, S. A. Khrapak, S. K, Zhdanov, H. M. Thomas, G. E. Morfill, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, A. I. Ivanov, and M. V. Turin, Phys. Rev. E. 71, 056401 (2005)
    [36] A. M. Lipaev, S. A. Khrapak, V. I. Molotkov. G. E. Morfill, V. E. Fortov, A. V. Ivlev, H. M. Thomas, A. G. Khrapak, V. N. Naumkin, A. I. Ivanov, S. E. Tretschev, and G. I. Padalka, Phys. Rev. Lett. 98, 265006 (2007)
    [37] F. Huang, M. Ye, L. Wang, and N. Jiang, Chin. Phys. Lett. 21, 121 (2004)
    [38] F. Huang, M. Ye, and L. Wang, Chin. Sci. Bull. 49, 2575 (2004)
    [39] F. Huang, M. Ye, L. Wang, and N. Jiang, Plasma Sci. Technol. 6, 6 (2004)
    [40]黄峰,叶茂福,王龙,科学通报. 49, 2150 (2004)
    [41]吴静,张鹏云,宋巧丽,张家良,王德真,物理学报. 10, 4794, (2005)
    [42] J. Goree, G. E. Morfill, V. N. Tsytovich, and S. V. Vladimirov, Phys. Rev. E. 59, 7055 (1999)
    [43] V. N. Tsytovich, S. V. Vladimirov, G. E. Morfill, and J. Goree, Phys. Rev. E. 63, 056609 (2001)
    [44] V. N. Tsytovivh, Plasma Phys. Rep. 26, 712 (2000)
    [45] V. N. Tsytovich, Phys. Scr. T89, 89 (2001)
    [46] V. N. Tstytovich, G. E. Morfill, U. Konopka, and H. Thomas, New J. Phys. 5, 66.1 (2003)
    [47] V. N. Tsytovich, S. V. Vladimirov, and G. E. Morfill, Phys. Rev. E. 70, 066408 (2004)
    [48] S. V. Vladimirov, V. N. Tsytovich, and G. E. Morfill, Phys. Plasmas, 12, 052117 (2005)
    [49] X. Zheng, B. Gan, Z. Hu, F. Huang, G Shi, and Y. Chen, Phys. Plasmas. 15, 073702 (2008)
    [50] X. Zheng, Y. Chen, Z. Hu, G. Wang, and F. Huang, Phys. Plasma, 16, 023701 (2009)
    [51] A. A. Mamun and P. K. Shukla, and R. Bingham, Phys. Lett. A. 298, 179 (2002)
    [52] J.-L. Dorier, Ch. Hollenstein, and A. A. Howling, J. Vac. Sci. Technol. A 13, 918 (1995)
    [53] C. Franck, and T. Klinger, Phys. Plasmas. 8, 4271 (2001)
    [54] H. Schamel, J. Plasma Phys. 14, 905, (1972)
    [55] D. Jovanovi? and P. K. Shukla, Phys. Lett. A. 308, 369 (2003)
    [56] A. A. Mamun and P. K. Shukla, Phys. Plasmas. 11, 1757 (2004)
    [57] A. A. Mamun and P. K. Shukla, J. Plasma Phys. 71, 143 (2005)
    [58] M. Tribeche, K. Aoutou, and T. H. Zerguini, Phys. Plasmas. 12, 032305 (2005)
    [59] M. Tribeche, L. A. Gougam, S. Griba, and T. H. Zerguini, J. Plasma Phys. 73, 575 (2007)
    [60] K. Avinash, Phys. Plasmas. 8, 2601 (2001)
    [61] B. M. Annaratone, S. A. Khrapak, P. Bryant, G. E. Morfill, H. Rothermel, H. M. Thomas, M. Zuzic, V. E. Fortov, V. I. Molotkov, A. P. Nefetov, S. Krikalev, and Yu. P. Semenov, Phys. Rev. E. 66, 056411 (2002)
    [62] G. Gozadinos, A. V. Ivlev, and J. P. Boeuf, New J. Phys. 5, 32.1 (2003)
    [63] N. D’Angelo, Phys. Plasmas. 4, 3422 (1997)
    [64] N. D’Angelo, Phys. Plasmas. 5, 3155 (1998)
    [65] K. Avinash, Phys. Plasmas. 8, 351 (2001)
    [66] X. Wang, A. Bhattacharjee, S. K. Gou, and J. Goree, Phys. Plasma. 8, 5018 (2001)
    [67] K. Avinash, A. Bhattacharjee, and S. Hu, Phys. Rev. Lett. 90, 075001 (2002)
    [68] A. Bhattacharjee, C. S. Ng, K. Avinash, S. Hu, and Z. W. Ma, Fourth International Conf. on the Physics of Dusty Plasmas, American Institute of Physics, (2005)
    [69] C. S. Ng, A. Bhattacharjee, S. Hu, Z. W. Ma, and K, Avinash, Plasma Phys. Control. Fusion. 49, 1583 (2007)
    [70] Y. Liu, S. Mao, Z. Wang, and X. Wang, Phys. Plasmas. 13, 064502 (2006)
    [71] Y. Liu, Y. Song, and Z. Wang, Phys. Plasmas. 14, 094501 (2007)
    [72] E. Nebbat, R. Annou, and R. Bharuthram, Phys. Plasma. 14, 093702 (2007)
    [73] M. R. Akdim and W. J. Goedheer, Phys. Rev. E. 65, 015401 (2001)
    [74] M. R. Akdim and W. J. Goedheer, Phys. Rev. E. 67, 066407 (2003)
    [75] Y. H. Liu, Z. Y. Chen, M. Y. Yu, L. Wang, and A. Bogaerts, Phys. Plasmas. 13, 052110 (2006)
    [76] Y. H. Liu, Z. Y. Chen, M. Y. Yu, and A. Bogaerts, Phys. Rev. E. 74, 056401 (2006)
    [77] Y. H. Liu, L. Y. Chew, and M. Y. Yu, Phys. Rev. E. 78, 066405 (2008)
    [78] Y. Zhang, X. Wang, and J. Liu, Phys. Rev. E. 78, 016405 (2008)
    [79] B. V. R. Tata, E. Yamahara, P. V. Rajamani, and N. Ise, Phys. Rev. Lett. 78, 2660 (1997)
    [80] H. J. Rood, Ann. Rev. Astron. Astrophys. 26, 245 (1988)
    [81] M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992)
    [82] M. D. Kilgore, J. E. Daugherty, R. K. Porteous, and D. B. Graves, J. Appl. Phys. 73, 7195 (1993)
    [83] J. E. Daugherty et al., J. Appl. Phys. 72, 3934 (1992)
    [84] J. E. Daugherty, and D. B. Graves, J. Appl. Phys. 78, 2279 (1995)
    [85] J. E. Daugherty, R. K. Porteous, and D. B. Graves, J. Appl. Phys. 74, 4 (1993)
    [86] S. A. Khrapak, A. V. Ivlev. G. E. Morfill, and H. M. Thomas, Phys. Rev. E. 66, 046414 (2002)
    [87] S. A. Khrapak, A. V. Ivlev, S. K. Zhdanov, and G. E. Morfill, Phys. Plasmas. 12, 042308 (2005)
    [88] S. A. Khrapak and V. V. Yaroshenko, Phys. Plasmas. 10, 4616 (2003)
    [89] S. A. Khrapak, A. V. Ivlev, G. E. Morfill, H. M. Thomas, S, K. Zhdanov, U. Konopka, M. H. Thoma, and R. A. Quinn, Phys. Plasmas. 10, 4579 (2003)
    [90] S. Hamaguchi, R. T. Farouki, Phys. Rev. E. 49, 4430 (1994)
    [91] I. Denysenko, M. Y. Yu, L. Stenflo, and S. Xu, Phys. Plasmas. 12, 042102 (2005)
    [92] I. Denysenko, M. Y. Yu, L. Stenflo, and S. Xu, Phys. Rev. E. 72, 066405 (2005)
    [93] A. V. Ivlev, S. A. Khrapak, S. K. Zhadanov, and G. E. Morfill, Phys. Rev. Lett. 92, 205007 (2004)
    [94] V. N. Tsytovich, U. de Angelis, A. V. Ivlev, G. E. Morfill, and S. A. Khrapak, Phys. Plasmas 12, 112311 (2005)
    [95] J. X. Ma, J.-Y. Liu, and M. Y. Yu, Phys. Rev. E. 55, 4627 (1997)
    [96] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Wiley, New York (1997)
    [97] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Second Edition), Cambridge University Press, Cambridge (2004)
    [98] L. Verlet, Phys. Rev. 159, 98 (1967)
    [99] R. W. Honeycutt, Methods in Computational Physics. 9, 136 (1970)
    [100] W. C. Swope, H. C. Anderson, P. H. Berens, K. R. Wilson, J. Chen. Phys. 76, 637 (1982)
    [101] D. Beeman, J. Comput. Phys. 20, 130 (1976)
    [102] A. Rahman, Phys. Rev. A. 136, 405 (1964)
    [103] J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, Naval Research Laboratory Memorandum Report No. 6410-93-7192, (1993)
    [104] J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973)
    [105] D. L. Book, J. P. Boris, and K. Hain, J. Comput. Phys. 18, 248 (1975)
    [106] J. P. Boris and D. L. Book, J. Comput. Phys. 20, 397 (1976)
    [107] V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Usp. Fiz. Nauk. 174, 495 (2004)[Phys. Usp. 47, 447 (2004)]
    [108] E. C. Whipple, Rep. Prog. Phys. 44, 1197 (1981)
    [109] F.-J. Lübken, J. Geophys. Res. 104, 9135 (1999)
    [110] C. Seele and P. Hartogh, Geophys. Res. Lett. 26, 1517 (1999)
    [111] R. J. Leslie, Nature. 33, 245 (1885)
    [112] O. Jesse, Met. Zeit. 2, 311 (1885)
    [113] W. L. Ecklund and B. B. Balsley, J. Geophys. Res. 86, 7775 (1981)
    [114] J. R?ttger, C. L. Hoz, M. C. Kelley, U.-P. Hoppe, and C. Hall, Geophys. Res. Lett. 15, 1353 (1988)
    [115] U.-P. Hoppe and T. L. Hansen, Ann. Geophys. 6(2), 181 (1988)
    [116] M. Rapp and F.-J. Lubken, Atmos. Chem. Phys. 4, 2601 (2004)
    [117] P. Czechowsky, R. Ruster, and G. Schmidt, Geophys. Res. Lett. 6, 459 (1979)
    [118] T. Sao, Radar Principles, in: Handbook for MAP, 30, 19 (1989)
    [119] V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, Isr. Program for Sci. Transl., Jerusalem, (1971)
    [120] R. F. Woodman and A. Guillen, J. Atmos. Sci. 31, 493 (1974)
    [121] B. B. Balsley, W. L. Ecklund and D. C. Fritts, J. Atmos. Sci. 40, 2451 (1983)
    [122] O. R?yrvik and L. G. Smith, J. Geophys. Res. 89, 9014 (1984)
    [123] M. G. Mlynczak, Geophys. Monogr. Ser. 123, 37 (2000)
    [124] F.-J. Lübken, J. Geophys. Res. 104, 13441 (1997)
    [125] J. R?ttger and C. LaHoz, J. Atmos. Terr. Phys. 52, 893 (1990)
    [126] W. Hocking, Target parameter estimation, in: Handbook for MAP, 30, SCOSTEP,edited by:S. Fukao, Urbana, 228 (1989)
    [127] P. Czechowsky, I. M. Reid, and R. Rüster, Geophys. Res. Lett. 15, 1259 (1988)
    [128] J. Bremer, P. Hoffmann, R. Latteck, and W. Singer, J. Geophys. Res. 108(D8), 8438 (2003)
    [129] M. M. Huaman, M. C. Kelly, W. K. Hocking, and R. F. Woodman, Radio Sci. 36, 1823 (2001)
    [130] R. Rüster, J. R?ttger, G. Schmidt, P. Czechowski, and J. Klostermeyer, Geophys. Res. Lett. 28, 1471 (2001)
    [131] F.-J. Lübken, M. Zecha, J. H?ffner, and J. Rottger, J. Geophys. Res. 109, D11203 (2004)
    [132] M. Zecha, J. Bremer, R. Latteck, and W. Singer, J. Geophys. Res. 108(D8), 8439 (2003)
    [133] B. B. Balsley, R. F. Woodman, M. Sarango, R. Rodriguez, J. Urbina, E. Ragaini, J. Carey, Geophys. Res. Lett. 20, 1983 (1993)
    [134] B. B. Balsley, R. F. Woodman, M. Sarango, R. Rodriguez, J. Urbina, E. Ragaini, J. Carey, M. Huaman, and A. Giraldez, J. Geophys. Res. 100, 11685 (1995)
    [135] K. Hosokawa, T. Ogawa, A. S. Yukimatu, N. Sato, and T. Iyemori, Geophys. Res. Lett. 31, L02106 (2004)
    [136] A. Dowdy, R. A. Vincent, K. Igarashi, Y. Murayama, and D. J. Murphy, Geophys. Res. Lett, 28, 1475 (2001)
    [137] E. Becher and G. Schmitz, J. Atmos. Sci. 60, 103 (2003)
    [138] X. Chu, C. S. Gardner, and R. G. Roble, J. Geophys. Res. 108(D8), 8447 (2003)
    [139] S. Kirkwood and A. Rechou, Geophys. Res. Lett. 25(24), 4509 (1998)
    [140] S. Kirkwood, V. Barabash, B. U. E. Br?ndstr?m, A. Mostr?m, K. Stebel, N. Mitchell, and W. Hocking, Geophys. Res. Lett. 29(10), (2002)
    [141] P. Hoffmann, W. Singer, and J. Bremer, Geophys. Res. Lett. 26, 1525 (1999)
    [142] J. Bremer, P. Hoffmann, and T. L. Hansen, Ann. Geophys. 18, 202 (1996)
    [143] J. Bremer, T. L. Hansen, P. Hoffmann and R. Latteck, Adv. Space. Res. 28, 1071 (2001)
    [144] U.-P. Hoppe and D. C. Fritts, Geophys. Res. Lett. 22, 619 (1994)
    [145] U.-P. Hoppe and D. C. Fritts, J. Geophys. Res. 100, 16831 (1995)
    [146] R. Ruster, P. Czechnowsky, P. Hoffmann and W. Singer, Ann. Geophys. 14, 1186 (1996)
    [147] B. Inhester, J. Klostermeyer, F.-J. Lübken, and U. Von Zahn, J. Geophys. Res. 99, 20937, (1994)
    [148] F.J. Schmidlin, J. Geophys. Res. 96, 22673, (1991)
    [149] F.-J. Lübken, M. Rapp, and P. Hoffmann, J. Geophys. Res. 107(D15), (2002)
    [150] U. Korner and G. Sonhnemann, J. Geophys. Res, 106, 9639 (2001)
    [151] J. C. Ulwick, K. D. Baker, M. C. Kelley, B. B. Balsley, and W. L. Ecklund, J. Geophys. Res. 93, 6989 (1988)
    [152] ?. Lie-Svendsen, T. A. Blix, U.-P. Hoppe, and E. V. Thrane, J. Geophys. Res, 108(D8),8442, 2003
    [153] O. Havnes, J. Tr?im, T. Blix, W. Mortensen, L. I. N?sheim, E. Thrane, and T. T?nnesen, J. Geophys. Res. 101, 10839 (1996)
    [154] F.-J. Lubken, M. J. Jarvis, and G. O. L. Jones, Geophys. Res. Lett. 25, 893 (1998)
    [155] V. Nussbaumer, K.-H. Fricke, M. Langer, W. Singer, and U. von Zahn, J. Geophys. Res. 101, 19161 (1996)
    [156] U. von Zahn and J. Bremer, Geophys. Res. Lett. 26, 1521 (1999)
    [157] F.-J. Lübken, G. Lehmacher, T. Blix, U.-P. Hoppe, E. Thrane, J. Cho, and W. Swartz. Geophys. Res. Lett. 20, 2311 (1993)
    [158] M. Rapp, F.-J. Lübken, and A. Blix, Atmos. Chem. Phys. 3, 1399 (2003)
    [159] M. C. Kelley, D. T. Farley, and J. Rottger, Geophys. Res. Lett. 14, 1031 (1987)
    [160] J. Y. N. Cho, T. M. Hall, and M. C. Kelley, J. Geophys. Res. 97, 875 (1992)
    [161] T. A. Blix, M. Rapp, and F.-J. Lubken, J. Geophys. Res. 108(D8), 8450 (2003)
    [162] M. Rapp, F.-J. Lübken, A. Müllemann, G. E. Morfill, and E. J. Jensen, J. Geophys. Res. 107(D19), 1029 (2002)
    [163] M. Rapp, F.-J. Lübken, P. Hoffmann, R. Latteck, G. Baumgarten, and T. A. Blix, J. Geophys. Res. 108(D8), 8450 (2003)
    [164] V. N. Tsytovich, U. de Angelis, and R. Bingham, J. Plasma. Phys. 42, 429 (1989)
    [165] V. N. Tsytocich, Phys. Scripa, 45, 521 (1992)
    [166] R. Bingham, U. de Angelis, V. N. Tsytovich, and O. Havnes, Phys. Fluids. 3(3), 811 (1991)
    [167] O. Havnes, U. de Angelis, R. Bingham, C. K. Goertz, G. E. Morfill, and V. N. Tsytovich, J. Atmos. Terr. Phys. 52, 637 (1990)
    [168] C. La Hoz, Phys. Scripa, 45, 529 (1992)
    [169] T. Hagfors, J. Atmos. Terr. Phys. 54, 333 (1992)
    [170] E. Jensen and G. E. Thomas, J. Geophys. Res. 96, 18603 (1991)
    [171] M. Rapp and F.-J. Lubken, J. Atmos. Sol. Terr. Phys. 63, 759 (2001)
    [172] J. Gumbel and G. Witt, Geophys. Res. Lett. 29, 16 (2002)
    [173] F.-J. Lubken and M. Rapp, J. Atmos. Sol. Terr. Phys. 63, 771 (2001)
    [174] R. G. Roble and R. E. Dickinson, Geophys. Res. Lett. 16, 1441 (1989)
    [175] D. C. Fritts and M. J. Alexander, Rev. Geophys. 41(1), 1003 (2003)
    [176] J. Rottger, Mem. Nat. Inst. Pol. Res. 54, 9 (2001)
    [177] W.-g. Zhang, J.X. Ma, Y.-r. Li, Y.-b. Zheng, and Y.-h. Chen, Planet. Space Sci. 12.006 (2009)
    [178] O. Havnes, A. Brattli, T. Aslaksen, W. Singer, R. Latteck, T. Blix, E. Thrane, J. Tri?m, Geophys. Res. Lett. 28, 1419 (2001)
    [179] O. Havnes, L.I. N?asheim, T. Hartquist, G. E. Morfill, F. Melands?, B. Schleicher, J. Tri?m, T. Blix, E. Thrane, 44, 1191 (1996)
    [180] M. Rapp and F.-J. Lübken, J. Geophys. Res. 108(D8), 8437 (2003)
    [181] R. J. Hill, J. Geophys. Res. 83, 989 (1978)
    [182] G. L. Natanson, Sov. Phys. Tech. Phys. Engl. Transl. 5, 538 (1960)
    [183] R. W. Schunk, Rev. Geophys. Space Phys. 15, 429 (1977)
    [184] G. C. Reid, J. Geophys. Res. 95, 13891 (1990)
    [185] T. A. Blix, Adv. Space Res. 24, 537 (1999)
    [186] M. Zecha, J. Bremer, R. Latteck, et al., 2003, J. Geophys. Res. 108(D8), 8439 (2003)
    [187] Q. Li, M. Rapp, J. R?ttger , et al., J. Geophys. Res. 115, D00I13 (2010)
    [188] A. Brattli, ?. Lie-Svendsen, K. Svenes , et al., Ann. Geophys. 27, 781 (2009)
    [189] G. Baumgarten, J. Fiedler, Geophys. Res. Lett. 35, L10811 (2008)
    [190] L. Megner, D. E. Siskind, M. Rapp, J. Geophys. Res. 113, D03202 (2008)
    [191] S. I. Popel, S. I. Kopnin, I. N. Kosarev, et al., Adv. Space Res. 37, 414 (2006)
    [192] M. Rapp, F.–J. Lübken, T. A. Blix, Atmos. Chem. Phys. 3, 1399 (2003)
    [193] V. L. Ginzburg, the Propagation of Electromagnetic waves in Plasmas (second edition), Pergamon Press,New York (1970)
    [194] L. M. Brekhovskikh, Waves in Layered Media (second edition), Academic Press, London, (1980)
    [195]胡希伟,等离子体理论基础,北京大学出版社,北京(2006)
    [196] D. E. Hinkel-Lipsker, B. D. Fried, and G. J. Morales, Phys. Fluids, B4(3), 559 (1992)
    [197] J. P. Freidberg, R. W. Mittchell, R. L. Morse, et al. Phys. Rev. Lett, 28(13), 795 (1972)
    [198] U.-P. Hoppe, T. A. Bix, E. V. Thrane, et al. Adv. Space. Res, 14, 139 (1994)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700