电磁轨道炮技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁发射技术作为一种推进技术,可实现高速度、大载荷发射,是对传统发射技术的一次突破。目前,世界上有多个国家投入了大量的时间和精力对电磁发射技术进行研究,取得了丰富的成果,很大程度上推进了电磁发射技术的工程应用进程。
     本文根据现阶段电磁发射技术的发展水平,从工程应用的角度对电磁轨道炮的相关技术进行了研究,并提出将电磁轨道式发射技术应用于迫击炮的发射中。此举既可降低电磁发射技术应用的难度,也可有效提高现有迫击炮的性能,使得电磁炮的可行性和实用性大为提高。
     论文论述了以下几个方面的工作:
     (1)从电磁轨道式发射技术的内弹道机理出发,首先对简单型和增强型的轨道发射理论公式进行推导,编制了计算机仿真程序,并采用程序对电磁迫击炮内弹道进行仿真和优化,认为采用12级分散储能方式可满足电磁迫击炮的发射要求。
     (2)对电磁轨道式发射系统发射过程中承受的载荷(相当于传统火炮中的后坐力)进行了分析与建模。分析计算表明,电磁轨道式发射装置在发射过程中有较大载荷,需要对其进行有效的缓冲,并提出几种载荷控制措施。在电磁迫击炮发射过程中所受载荷仿真的基础上,设计了相应的反后坐装置。
     (3)对电磁迫击炮电源系统方案进行设计,提出了三种可行的机动性电源系统方案。基于当前相关技术成熟度详细分析了初级储能装置、中间储能装置、充电装置、大功率半导体器件等装置的工作原理和选用参数。分析表明当前脉冲电源技术水平已基本满足机动型电磁迫击炮需求。
     (4)提出了电磁迫击炮系统的方案,并对该武器进行了实体建模和动力学仿真,仿真结果表明电磁迫击炮系统可较好满足发射静止性和稳定性,同时对电磁迫击炮发射时炮口扰动进行计算,表明该系统具有良好的射击精度。
Electromagnetic launch technology (EML) has taken launch science and technology intoa new era. EML has a lot of unique advantages, such as high launch velocity, large massprojection, high efficiency, easy control and so on. Recently, many efforts have been made tothe EML research and its applications, and much progress has been achieved and theapplication of electromagnetic launch has been promoted near practicability.
     In this paper, techniques about application of EML in weapons are studied and anelectromagnetic rail mortar weapon was put forward, which makes the feasibility of the EMLweapon better. Otherwise, application of EML into mortar weapon significantly enhances thisweapon performance.
     The research works involved in this thesis are as follows.
     Firstly, modeling of the simple rail gun and multi-turn rail gun were constructed based onthe deduction of theoretical formulae and the interior ballistic behavior of electromagneticmortar was simulated through a compiled computer routine. Computational results showedthat a 12 steps-energy-store system could meet the need of the electromagnetic mortar.
     Secondly, the recoil force of the electromagnetic mortar was analyzed by finite elementmethod. To buffer this force a variety of measures were discussed and a recoil mechanism forthe electromagnetic mortar was designed.
     Thirdly, the scheme of power system for the electromagnetic mortar was designed and toimprove the feasibility, different power assembly is utilized according the development ofpulse power technology.
     Lastly, a mobile electromagnetic mortar system is proposed. To predict the systemperformance, the three-dimensional model and then the dynamic model of this weapon werecreated. The characteristics of the electromagnetic mortar were simulated by multi-bodydynamics software ADAMS. The simulation results show that the electromagnetic mortarsystem has good stability and its firing accuracy can meet the requirement.
引文
[1] A Egeland, Brikeland’s electromagnetic gun:A historical review. IEEE Transaction onMagnetics. 1989, 17(2): 73-82
    [2] I.R. McNab. Early electric gun research. IEEE Transactions on Magnetics. 1999, 35(1):250-261.
    [3] Marshall R.A. Railgun overview. Proc. Impact fusion workshop, LASL NM, 1999.
    [4] A.L.Brooks. Design and fabrication of large and small bore railguns. IEEE Transactionson Magnetics. 1981, 18(1): 68-72.
    [5] Melrin, M. Widner. A numerical simulation model for the cylidrical reconnection launcher.IEEE Transactions on Magnetics. 1991, 27(1): 634-738.
    [6] I.R. McNab. Thunderbolt. IEEE Transactions on Magnetics. 1991, 27.1
    [7] D.W. Deis, I.R. McNab. A laboratory demonstration electromagnetic launcher. EML1.1982: 16-22.
    [8] T. Gora. Remarks on railgun efficiency. EML5. 1995.
    [9] P. Lehmann. Overview of the electric launch activities at the French-German ResearchInstitute of Saint-Louis. IEEE Transactions on Magnetics. 2003, 39(1): 24-28.
    [10] P. Lehmann, H. Peter. First experimental results with the ISL 10 MJ DES railgunPEGASUS. IEEE Transactions on Magnetics. 2001, 37(1): 435-439.
    [11] D.C. Haugh, S. Gilbert. UK electric gun national overview. IEEE Transactions onMagnetics. 2003, 39(1): 18-21.
    [12]理查德·埃斯特里·马歇尔,王莹.电磁轨道炮的科学与技术.北京:兵器工业出版社,2006: 2-8.
    [13] Carolyn Meinel. For love of a gun. IEEE Spectrum. 2007: 40-46.
    [14]李小鹏.重接式电磁发射技术的现状与应用前景.微电机. 2002, 35(4): 39-46.
    [15]高顺受,孙承纬,陈英石. 60 mm口径电磁感应线圈炮的试验研究.高压物理学报.1996, 10(3): 190-198.
    [16] Y.Wang. EML Technology Research in China. IEEE Transactions on Magnetics. 1999,35(1): 44-46.
    [17]李格.旋转磁通压缩脉冲发电机的理论与实验研究.合肥:中国科学院等离子体物理研究所博士论文, 1993: 1-5.
    [18]吕庆敖,陶孟仙,许家治.一种新型电磁轨道炮的设想.弹道学报. 1998, 10(3): 16-24.
    [19]秦实宏,刘克富,潘垣.减轻轨道炮炮膛烧蚀的研究.弹道学报. 2001, 13(2): 74-78.
    [20]陈立学.电磁轨道炮电气负载特性的理论与实验研究.华中科技大学硕士学位论文. 2007.
    [21]肖铮.电磁发射用C型电枢的有限元仿真计算研究.华中科技大学硕士学位论文. 2007.
    [22]何大娇.电磁轨道炮内弹道优化设计.南京理工大学硕士学位论文. 2008.
    [23]吴宇.电磁炮身管的参数化研究和动态响应分析.南京理工大学硕士学位论文.2009.
    [24]徐跃进.电磁枪械(轨道式)的有关问题研究.南京理工大学硕士学位论文. 2007.
    [25]李迎生.小口径电磁轨道炮内弹道特性初步研究.南京理工大学硕士学位论文.2007.
    [26]刘少培.电磁发射脉冲电源研究及电磁场数值分析.南京理工大学硕士学位论文.2009.
    [27]李昕,翁春生. U形电枢非稳态电磁场二维数值模拟.火炮发射与控制学报. 2009, 1:1-24.
    [28]林庆华,栗保明.电磁轨道炮三维瞬态涡流场的有限元建棋与仿真.兵工学报. 2009,30(9): 1159-1163.
    [29] Meiwu Li, Yuhang Wu, Yanwei Chen. DC Constant Current Power Supply used toPower a Multi-layer Launching system. EML11. 2004: 213-215.
    [30] Jun Li, Shi-zhong Li, Pei-zhu Liu, H. Peter. Design and testing of a 10-MJelectromagnetic launch facility. IEEE Transactions on plasma science. 2011, 39(4):1187-1190.
    [31]孙百瑜.三级电磁发射器的建模及仿真优化.哈尔滨理工大学硕士学位论文. 2006.
    [32]高俊山.三级电磁推进模型及系统研究.哈尔滨理工大学博士学位论文. 2007.
    [33]赵纯.三级重接式电磁发射系统的仿真与实验研究.大连理工大学博士学位论文.2007.
    [34]刘秀成,王赞基,李军.一种用于电磁发射的电感电容混合型储能脉冲电源.弹道学报. 2009, 21(3): 103-106.
    [35]刘秀成,王赞基,李军.新型电感储能型电磁炮脉冲电源拓扑.电网技术. 2009,33(13): 80-85.
    [36]马伟明.电力集成技术.电工技术学报. 2005, 20(1): 16-20.
    [37]刘传谱,袁伟群,严萍,等.重复推进滑动电接触的试验研究.强激光与粒子束.2010,22(4): 923-926.
    [38] I.L. Singer, M.J. Veracka, C.N. Boyer. Wear behavior of lubricant-conditioned copperrails and armatures in a rail-gun. IEEE Transactions on Plasma Science. 2011, 39(1):138-143.
    [39]金志明.高速推进内弹道学.北京:国防工业出版社, 2001.
    [40]周之奎,陈秋华.电磁轨道炮性能的数值模拟.高压物理学报. 1989, 3(4): 308-314.
    [41]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社, 2002.5
    [42] R. L. Ellis, J. C. Poynor, B. T. McGlasson. Influence of bore and rail geometry on anelectromagnetic naval railgun system. IEEE Transactions on Magnetics. 2005, 41(1):182-187.
    [43] R.A. Marshall. Railgun bore geometry, round or square?. IEEE Transactions onMagnetics.1999, 35(1): 427-431.
    [44] Aleksey E. Poltanov, Anatoly K. Kondratenko. Concept analysis and experimentalresults IEEE Transactions on Magnetics. 2001, 37(1): 457-461.
    [45]王莹.电炮原理.北京:国防工业出版社, 1992: 32-34.
    [46] J.F. Kerrisk. Current distribution and inductance calculations for railgun conductors.Report LA-9092-MS, UC 34, Los Alamos National Laboratory, New mexico, USA,1981.
    [47] Hilmar Peter, Francis Jamet, Volker Wegner. Technical aspects of railguns. IEEETransactions on Magnetics. 1995, 31(1): 348-353.
    [48] J. H. Price, E. P. Fahrenthold, C. W. G. Fulcher. design and testing of large-bore,ultra-stiff railguns. IEEE Transactions on Magnetics. 1989, 25(1): 460-466.
    [49] Wm. F. Weldon, M. D. Driga, and H. H. Woodson. Recoil in electromagnetic railguns.IEEE Transactions on Magnetics. 1986, 22(6): 1808-1811.
    [50] A.K.T.Assis. On the Mechanism of railguns. Galilean electrodynamics. 1992, 1: 93-95.
    [51] P. Graneau. Amperian recoil and the efficiency of railguns. Appl. Phys. 1987, 62(10):3006-3009.
    [52] J. V. Parker and S. J. Levinson. Muzzle arc control using an Inductive shunt. IEEETransactions on Magnetics. 1997, 33(1): 594-598.
    [53] Wm. F. Weldon, M. D. Driga, and H. H. Woodson. Recoil in electromagnetic railguns.IEEE Transactions on Magnetics. 1986, 22(6): 1808-1811.
    [54]高跃飞.火炮反后坐装置设计.北京:国防工业出版社, 2010, 78-82.
    [55] J. H. Gully. Power supply technology for electric guns. IEEE Transactions on Magnetics.1991, 27(1): 329-334.
    [56]王弘滨,吴晓. SX2190型斯太尔系列军用汽车简介.汽车运用. 2004, 10: 13-14.
    [57]贺艳兵.高功率锂离子电池电化学性能和安全性能的研究.天津:天津大学博士论文, 2009: 5-6.
    [58]梁宵,温兆银,刘宇.高性能锂硫电池材料研究进展.化学进展. 2011, 23(2):520-526.
    [59]吴绍朋.空芯补偿脉冲发电机的设计方法与关键技术研究.合肥:哈尔滨工业大学博士论文, 2001, 5: 9-11.
    [60] P. Mongeau, C. Gunsallus, P.Rezza. High performance disk alternators. IEEETransactions on Magnetics. 1989, 25(1): 376-380.
    [61]陈景亮,姚学玲,孙伟.脉冲电流技术.西安:西安交通大学出版社, 2008.10.22-25
    [62] Gao Yinghui1, Sun Yaohong, Yan Ping. High power capacitor charging power supply forEML applications. IEEE Transactions on Magnetics. 2008, 25(1): 376-380.
    [63] T.R. Childers, C.N. Coyne. Development of lightweight prime power sourceComponents for pulsed applications. pulse power conference, 1991, 8: 708-710.
    [64]清华大学电力系高电压技术专业.冲击大电流技术.北京:科学出版社, 1978:60-65
    [65] Dong Jian-nian, Zhang Jun, LI Jun. The 100-kJ modular pulsed power units for rail-gun.IEEE Transactions on Plasma Science. 2011, 39(1): 275-278.
    [66] Pascale Lehmann, Minh Duc Vo, Walter Wenning. Comparative study of railgunhousings made of modern fiber wound materials, ceramic,or Insulated steel plates. IEEETransactions on Magnetics. 2005, 41(1): 200-205.
    [67]刘锡三.高功率脉冲技术.北京:国防工业出版社, 2005: 314-315
    [68] M. J. Hinton1, A. Howard, N.R. Cooper, D.K. Wallington. Concepts for fieldableelectromagnetic gun barrels. 10th U.S. Army Gun Dynamics Symposium Proceedings,To order the complete compilation report. 2001, 5
    [69] T. Watt, F. Stefani. The effect of current and speed on perimeter erosion in recoveredarmatures. IEEE Transactions on Magnetics. 2005, 41(1): 448-452.
    [70] Trevor Watt, Mark Crawford. Experimental results from a two-turn 40-mm rail-gun.IEEE Transactions on Plasma Science. 2009, 45(1): 490-494.
    [71] Chadee P, Andrew Y, Gopal P. On the nature of the armature-rail interface:Liquid metaleffects. IEEE Transactions on Plasma Science. 1997, 33(1): 140-145.
    [72]管红根,袁人枢,高树滋.车载炮发射动力学仿真研究.兵工学报. 2005, 26(1):53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700