创造性思维中原型启发促发顿悟的神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创造发明史上有关“原型启发”促发顿悟发生的事例十分普遍,从“鲁班受带齿边的茅草启发发明锯子”的经典故事,到“瓦特受沸腾的开水壶启发发明蒸汽机”的传说,都表明“原型启发”促发顿悟是创造发明的一种重要思维方式。基于这一过程而提出的顿悟“原型启发”理论认为,“原型的自动激活”以及“关键启发信息利用”是促发顿悟的关键。然而,由于顿悟思维过程的复杂性,国内外关于顿悟思维脑机制(包括原型启发促发顿悟)的研究还停留在非创造发明问题解决的研究上。依据科学家运用原型启发而成功进行创造发明的最新实例,本研究编制了《创造发明实验问题材料库》,并以功能性磁共振成像(fMRI)和事件相关电位(ERP)作为技术手段系统地探讨了原型启发催化创造发明中顿悟思维发生的神经机制。
     首先,以顿悟的“原型启发”理论为框架,研究一通过3个行为实验有步骤的建立了一个拥有多项指标并可用于研究顿悟思维机制的《创造发明实验问题材料库》。具体而言:实验1按启发式思维、新颖性以及通俗易懂三个标准从创造发明的各个领域内收集科学家运用原型启发而成功进行发明创造的最新实例36个。实验2采用《威廉姆斯创造性倾向测验》量表对实验1收集到的创造发明实验问题作为顿悟思维研究材料的有效性进行了检验。在实验1和实验2的基础上,实验3进一步丰富完善实验材料,建立了一个拥有84个测试题目的《创造发明实验问题材料库》。该材料库不仅在编制和测验的过程中采用严格的标准,而且作为顿悟思维测验的有效性还受到来自《威廉姆斯创造性倾向测验》量表的佐证。因此,该材料库的建立为创造发明中原型启发促发顿悟的认知机制研究提供了可靠的研究工具,同时还满足了该认知过程下神经机制研究对题目叠加次数的要求。
     随后,以《创造发明实验问题材料库》为实验材料,在“先原型学习-后问题测试”范式下,研究二采用fMRI和ERP技术通过3个实验对创造发明实验问题解决中原型启发促发顿悟的神经机制进行了考察。具体而言:实验4采用fMRI技术,在“一对一”范式下(即先让被试学习一个原型,然后再让被试解决与之对应的一个实验问题),通过正确解决创造发明问题和常规问题的思考过程的fMRI数据进行对比分析,直接对“关键启发信息利用”的脑机制进行揭示。现实生活中,顿悟思维的产生之所以困难,是因为人们对“原型”容易“视而不见”,而“一对一学习测试”范式(一个原型配对一个测试问题),具有“类比迁移”的特点(把原型中的启发信息迁移到问题空间里),因为不存在原型自动激活的机制,所以创造性不高,因此有必要进行生态学效度更高的研究范式。以fMRI为技术手段,实验5采用“群对群学习测试”范式:即被试首先(第一天)在行为实验室里学习完65个原型材料(36个创造发明问题的原型材料,29个常规问题的原型材料),随后(第二天)进入磁共振实验室去解决随机呈现的问题(包括创造发明问题与常规问题)。该范式下当个体面临某一问题时,如何从众多的原型中激活与之对应的信息涉及到的认知过程可能首先是某一原型的自动激活,进而才是对原型中启发信息的利用。这样一来,通过比较“群对群”范式和“一对一”范式的脑机制差异,可以间接揭示“原型自动激活”的这一脑机制。实验4和5结果表明,创造发明实验问题解决中原型启发促发顿悟下的“原型自动激活”与楔前叶以及后扣带回有关,可能反映了从记忆中自动提取信息的认知过程:“关键启发信息利用”与舌回的激活有关,可能反映了把所激活原型的启发信息迁移到当前问题空间形成新颖方案的过程。在实验4和5的基础上,实验6采用ERP技术,在“五对五学习测试”范式下(即先让被试学习5个原型,测试阶段随机呈现与之对应的5个问题),对正确解决创造发明问题和常规问题的思考过程的ERP成分进行对比分析,结果发现,P300成分可能参与了原型自动激活过程,N400以及晚期负成分可能与对原型中关键信息进行语义加工整合的过程有关。
     现实生活中,人们通常是在对问题百思不得其解情况下遇到某一启发信息(表面上看起来无关的事物)后产生对该问题的解决方法。顿悟性灵感往往青睐那些有准备的头脑,所以当人们面临原型事件的时候,只有在头脑中存在一个问题意识,才能够有效激活原型并解决问题。因此,研究三以fMRI为技术手段,在“群对群”范式下通过实验7采用“先问题-后原型”的顺序探讨了问题意识下创造发明中原型启发促发顿悟的脑机制。该实验下:被试首先(第一天)在行为实验室里试着解决42个创造发明问题(根据前期建库研究,预期在没有原型启发的条件下这些题目都很难以解决,这样就使被试产生了问题意识),随后(第二天)在磁共振扫描仪里随机呈现84个原型,其中42个原型对应于前面的42个问题(预期很多会产生灵感捕捉),另外42个原型与前面的问题无关(预期较少会产生灵感捕捉,作为一种基线条件)。通过灵感捕捉条件与基线条件进行比较,结果发现,楔前叶、颞中回以及额中回与问题意识下原型启发促发顿悟思维发生的认知活动有关。其中楔前叶被认为是负责由原型材料自动激活某一问题的认知功能,额中回可能与新异联系形成有关,颞中回可能与语义加工有关。
     综合本研究下的7个实验,得到的结论如下:第一,《创造发明实验问题材料库》可以为原型启发促发顿悟的认知与神经机制研究提供可靠有效的实验材料;第二,P300成分可能参与了原型启发促发顿悟中的原型自动激活过程,N400成分以及晚期负成分可能参与了对原型中关键信息进行语义加工整合的过程;第三,原型中的启发信息与问题空间联系形成新颖方案的过程机制,可能受到“先原型后问题”与“先问题后原型”不同范式的调节;第四,创造发明实验问题解决下原型启发促发顿悟中最具创造性的过程(原型自动激活)可能与楔前叶有关;第五,原型或问题的自动激活机制可能是由于原型和问题存在共同语义成分的共振所导致。这些发现相信对理解人类的创造性本质具有重要的理论意义,对培养和激发人的创造力也具有一定的实践价值。
Numerous cases have shown that insight appears to occur when inventions were induced by heuristic prototypes in the history of invention. From the classical story of Luban invented the saw which drew inspiration from acrodont couch grass to the legend of Watt invented the elaborate steam engine inspired by looking at a pot of boiling water, too many such cases suggested that'prototype heuristics" might be an important way of thinking in inventions. Based on this process, the theory of prototype heuristics during insight problem solving was raised. In particular, prototype heuristics propositions that'automatic activation of a prototype'and'applying the key heuristic information of the prototype'is critical point to heuristic insight. However, the neural basis of insight thinking (including the brain mechanism of insight induced by heuristic prototype) is still stuck in researches of solving unscientific problems due to the complexity of the processing of the scientific innovation. Based on the latest scientific inventions in which scientists drew inspiration from heuristic prototypes, the present study has complied the material database of creative problem for experiments. Using functional magnetic resonance imaging (fMRI) and event-related potential (ERP), the present study aims to explore the neural mechanisms of insight induced by heuristic prototype in invention.
     Firstly, based on the insight theory of prototype heuristics, stduy1has complied 'the material database of creative problem for experiments'with numerous indicators through3behavioral experiments step by step. Specifically, in Experiment1, the latest scientific inventions (36examples) in which scientists drew inspiration from heuristic prototypes from various areas were collected. And the collected examples should meet the following standards, that is, heuristics by a prototype, latest, and easy to understand. Using Williams'creative tendency scale, Experiment2tested the validity of collected examples, which was considered as the experimental material for insight. Based on the Experiment1and2, Experiment3further collected examples, and complied the material database of creative problem for experiments with84examples at last. There are strict criterions for the process of establishment. The validity of collected examples was supported by Williams'creative tendency scale. Thus, these examples could provide confirmed and effective experimental material to investigate the cognitive and brain mechanism of insight induced by heuristic prototype in invention.
     Then, in Study2, we selected examples from'the material database of creative problem for experiments'as experimental materials in using'prototype learning-creative problem testing'paradigm to explore the neural basis of insight induced by heuristic prototype in invention. There are3experiments in Study2, which used the fMRI and ERP techniques. Specifically, in Experiment4, we used fMRI to explore the neural basis of applying the key heuristic information of the prototype directly by presenting volunteer college students with a problem(creative problem or routine problem) after they had learned a relative heuristic prototype (named'one to one' paradigm). In actual life, the reason why produce a creative idea is so difficult is that the heuristic prototype is usually ignored. The'one to one'paradigm, in which participants could resolve the relative problem quickly according to the heuristic prototypes, is similar to the process of'analogical transfer'. Thus, the process of'one to one' paradigm did not include the process of'automatic activation of a prototype'. Therefore, it is necessary to carry out'group to group'paradigm with higher validity of ecology. In Experiment5, we used fMRI to investigate the neural basis of automatic activation of heuristic prototype and applying the key heuristic information of the prototype by presenting the problem (creative problem or routine problem) randomly after participants had learned all heuristics prototypes. The stimuli in Experiment5were similar to Experiment4. However, participants were required to learn all65heuristic prototypes one day before the experiment, and then resolve65relative problems randomly in the MRI scanner. Therefore, in addition to acquire new methods to resolve problems by applying the key heuristic information of a prototype, participants firstly need to activate the related heuristic prototypes from65prototypes. The pattern of the neural activity from the contrast between creative problem and routine problem in Experiment5might be involved in'automatic activation of heuristic prototype'as well as'applying the key heuristic information of a prototype'. Thus, the pattern of the neural activity from the contrast between Experiment4and5might reflect the process of'automatic activation of heuristic prototype'indirectly. The results of Experiments4and5showed that the right lingual gyrus might be involved in forming novel associations applying the key heuristic information of a prototype, while the precuneus and posterior cingulate cortex might be involved in the automatic activation of the heuristic prototype. Based on the Experiment4and5, Experiment6explored the time course of scientific innovation induced by heuristic information in using ERPs. In Experiment6,'5heuristic information prototypes learning-5problems testing'model was adopted, the result indicated that P300most likely reflects the automatic activation of the heuristic prototype, while N400and late negativity could reflect the process of semantic integration due to the application of heuristic information.
     In actual life, when people encounter an invention problem and have not found the sally port, they might come across a heuristic prototype that seems superficially irrelevant to the problem and find the new idea from the prototype for solving the problem. Insightful inspiration is open to those well prepared for it. Therefore, when come across a heuristic prototype people would activate a heuristic prototype effectively on condition that they have already had the'problem consciousnesses'. In Study3(including Experiment7), we adopted the'group to group' paradigm in using fMRI to explore the neural mechanism for catching inspiration in scientific innovation induced by heuristic information. In Experiment7, the participants were asked to resolve all42creative problems (selected from'the material database of creative problem for experiments') a day before the experiment. In the MRI scanner,84heuristic prototypes were presented randomly. There are42heuristic prototypes (which were expected to produce the phenomenon of the inspiration) are related to the42creative problems, another42heuristic prototypes (which were considered as baseline) have nothing to do with the42creative problems. The pattern of the neural activity from the contrast between inspiration and baseline in Experiment7showed that left precuneus, left middle temporal gyrus, and left middle frontal gyrus might be related to the process of insight. Specifically, the precuneus might be involved in the automatic retrieval of invention problem; the left middle frontal gyrus is probably involved in applying heuristic information from the prototype to form novel associations, while the left middle temporal gyrus is probably involved in semantic processing.
     Together with the7experiments in the present study, the results indicated that, firstly,'the material database of creative problem for experiments'could provide confirmed and effective experimental material to investigate the cognitive and brain mechanism of insight induced by heuristic prototype in invention. Secondly, P300most likely reflects the automatic activation of the heuristic prototype, while N400and late negativity could reflect the process of semantic integration due to the application of heuristic information. Thirdly, the brain mechanism of forming new solution based on the connection between the prototype and problem might be modulated by the experimental paradigm (e.g.,'prototype-problem'/'problem-prototype'). Fourthly, the precuneus might be involved in the automatic retrieval of heuristic information (or creative problem), which might be the most important process in scientific creativity. Fifthly, the process of automatic activation is probably resulted from the common semantic component between the prototype and problem. We believe these findings may have important theory significance to understand the essence of human creative thinking as well as practical significance to stimulate and nurture human creativity.
引文
曹贵康,杨东,&张庆林.(2006).顿悟问题解决的原型事件激活:自动还是控制.心理科学,29(5),1123-1127.
    陈丽,张庆林,严霞,张颖,廖祥慧,&陈谊.(2008).汉语字谜原型激活中的情绪促进效应.心理学报(02),127-135.
    龚正霞.(2011).午睡剥夺对创造性问题解决中原型启发效应的影响。硕士,西南大学.
    李小平,张庆林,&何洪波.(2005).中学生创造性倾向发展的初步测试.西南师范大学学报(人文社会科学版)(06),65-68.
    李亚丹,马文娟,罗俊龙,&张庆林.(2012).竞争与情绪对顿悟的原型启发效应的影响.心理学报,44(1),1-13.
    林幸台,王木荣.(1994).威廉斯创造力测验.台北:心理出版社.
    刘春雷.王敏,&张庆林.(2009).创造性思维的脑机制.心理科学进展(01).106-111.
    罗劲.(2004).顿悟的大脑机制.心理学报(02),219-234.
    罗劲,&张秀玲.(2006).从困境到超越:顿悟的脑机制研究.心理科学进展(04),484-489.
    聂其阳,&罗劲.(2012).“啊哈!”和“哈哈!”:顿悟与幽默的脑认知成分比较.心理科学进展,(20)(2),219-227.
    聂衍刚,郑雪.(2005),.儿童青少年的创造性人格发展特点的研究.心理科学,28(2),356-361.
    邱江.(2007).顿悟问题解决中原型激活的认知神经机制.博士,西南大学.
    邱江,罗跃嘉,吴真真,&张庆林.(2006).再探猜谜作业中“顿悟”的ERP效应.心理学报,38(4),507-514.
    邱江,&张庆林.(2007).字谜解决中的“啊哈”效应:来自ERP研究的证据.科学翅报,52(22),2625-2631.
    邱江,&张庆林.(2011).创新思维中原型激活促发顿悟的认知神经机制.心理科学进展(03),312-317.
    任国防,邱江,曹贵康,&张庆林.(2007).顿悟:是进程监控还是表征转换.心理科学(05),1265-1268.
    沈承春.(2011).创造性问题解决中原型启发的情绪效应.硕士,西南大学.
    沈汪兵,刘昌,&陈晶晶.(2010).创造力的脑结构与脑功能基础.心理科学进展(09),1420-1429.
    沈汪兵,刘昌,&王永娟.(2010).艺术创造力的脑神经生理基础.心理群学进展(10),1520-1528.
    沈汪兵,刘昌,张小将,&陈亚林.(2011).三字字谜顿悟的时间进程和半球效应:一项ERP研究.心理学报(03),229-240.
    唐晓晨,庞娇艳,&罗劲.(2009).顿悟中的蔡格尼克效应:左右脑在解题失败与提示信息加工时的活动差异.科学通报,(22),3464-3474.
    田燕,罗俊龙,李文福,邱江,&张庆林.(2011).原型表征对创造性问题解决过程中的启发效应的影响.心理学报(06),619-628.
    王极盛.(1981).智力ABC.北京:北京出版社
    王立永,李小平,&张金秀.(2006).大学生创造性倾向特点的研究.高校保健医学研究与实践(03),14-17.
    王甦,汪安圣.(1992).认知心理学.北京:北京大学出版社.
    吴真真.(2010).顿悟过程的原型启发机制.博士,西南大学.
    吴真真,邱江,&张庆林.(2008).顿悟的原型启发效应机制探索.心理发展与教育(01),31-35.
    张庆林,&邱江.(2005).顿悟与源事件中启发信息的激活.心理科学(01),6-9.
    张庆林,邱江,&曹贵康.(2004).顿悟认知机制的研究述评与理论构想.心理科科学(06),1435-1437.
    朱丹.(2011).科学发明原型启发中共同文字与突出原理的作用机制.硕士,西南大学.
    朱海雪,罗俊龙,杨春娟,邱江,&张庆林.(2012).发明创造问题解决中的原型位置效应.心理科学,刊印中.
    朱新秤,李瑞菊,&周治金.(2009).谜语问题解决中线索的作用.心理学报(05),397-405.
    Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). " Aha!":The neural correlates of verbal insight solutions. Human brain mapping,30(3),908-916.
    Bechtereva. N., Korotkov, A., Pakhomov, S. V., Roudas, M., Starchenko, M., & Medvedev, S. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology,.53(1),11-20.
    Bischof, M., & Bassetti, C. L. (2004). Total dream loss:a distinct neuropsychological dysfunction after bilateral PCA stroke. Annals of neurology,56(4),583-586.
    Blagrove, M., & Tucker, M. (1994). Individual differences in locus of control and the reporting of lucid dreaming. Personality and individual differences,16(6), 981-984.
    Bowden, E. M., & Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. Methods,42(1),87-99.
    Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences,9(7),322-328.
    Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences,1124(1),1-38.
    Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia,38(6),873-885.
    Carreiras, M., Gillon-Dowens, M., Vergara, M., & Perea, M. (2008). Are vowels and consonants processed differently? Event-related potential evidence with a delayed letter paradigm. Journal of cognitive neuroscience,27(2),275-288.
    Chronicle, E. P., MacGregor. J. N., & Ormerod, T. C. (2004). What Makes an Insight Problem? The Roles of Heuristics, Goal Conception, and Solution Recoding in Knowledge-Lean Problems. Journal of Experimental Psychology':Learning, Memory, and Cognition,30(1),14-27.
    Danko, S., Starchenko, M., & Bechtereva, N. (2003). EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks. Human Physiology,29(4),502-504.
    Davidson, J. E. (1995). The suddenness of insigh. t In R. J.Sternberg, & J. E. Davidson (Eds.), The Nture of Insigh t (pp.125-155). Cambridge, MA:M I T Press
    Dickinson, M. H. (1999). Bionics:Biological insight into mechanical design. Proceedings of the National Academy of Sciences,96(25),14208-14209.
    Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review; 11(6),1011-1026.
    Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological bulletin,136(5),822-848.
    Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success:Separable neurocognitive components underlying episodic recognition. Neuropsychologia,41(3),318-333.
    Domino, G. (1970). Identification of potentially creative persons from the Adjective Check List. Journal of Consulting and Clinical Psychology,35(1),48-51.
    Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences,11,355-372.
    Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience:Experimental tasks for the neuroscientific study of creative thinking. Methods,42(1),68-76.
    Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience,23(8),2241-2246.
    Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper. C., Ebner, F., & Neubauer, A. C. (2009). The creative brain:Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping,30,734-748.
    Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G.. Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation:Evidence from an fMRI study. Neurolmage,52(4),1687-1695.
    Finke, R. A. (1990). Creative imageiy:Discoveries and inventions in visualization:L Erlbaum Associates.
    Goel, V., & Vartanian, O. (2005). Disassociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb Cortex,15(8),1170-1177.
    Grainger, J., & Holcomb, P. J. (2009). Watching the Word Go by:On the Time-course of Component Processes in Visual Word Recognition. Language and linguistics compass,3(1),128-156.
    Guilford, J. P. (1950). Creativity. American Psychologist,5,444-454.
    Guilford, J.P. (1967). The Nature of Human Intelligence. McGraw-Hill Companies.
    Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of cognitive neuroscience,18(10),1631-1643.
    Jausovec, N., & Jausovec, K. (2000a). Differences in resting EEG related to ability. Brain Topography,12(3),229-240.
    Jausovec, N., & Jausovec. K. (2000b). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology,36(1),73-88.
    Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006). Differences in brain information transmission between gifted and normal children during scientific hypothesis generation. Brain and cognition,62(3),191-197.
    Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R.,... Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology,2(4),500-510.
    Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores. R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human brain mapping, 37(3),398-409.
    Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive Psychology,22(3), 374-419.
    Kounios, J., Fleck. J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia,4(5(1),281-291.
    Kounios, J., Frymiare. J. L., Bowden, E. M., Fleck, J. I., Subramaniam. K.. Parrish, T. B., & Jung-Beeman, M. (2006). The Prepared Mind:Neural Activity Prior to Problem Presentation Predicts Subsequent Solution by Sudden Insight. Psychological Science,77(10),882-890.
    Kuperberg, G. R., Sitnikova, T., & Lakshmanan, B. M. (2008). Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging. Neurlmage.40(1), 367-388.
    Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences:Brain potentials reflect semantic incongruity. Science,207(4421).203-205.
    Kutas, M., & Hillyard, S. A. (1982). The lateral distribution of event-related potentials during sentence processing. Neuropsychologia,20(5),579-590.
    Kutas, M., & Hillyard, S. A. (1989). An electrophysiological probe of incidental semantic association. Journal of cognitive neuroscience,7(1),38-49.
    Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry:The P300 as a measure of stimulus evaluation time. Science,197(4305),792-795.
    Lang, S., Kanngieser, N., Jaskowski, P., Haider, H., Rose, M., & Verleger. R. (2006). Precursors of insight in event-related brain potentials. Journal of cognitive neuroscience,18(12),2152-2166.
    Lavric, A., Forstmeier, S., & Rippon, G. (2000). Differences in working memory involvement in analytical and creative tasks:an ERP study. Neuroreport,11(8), 1613-1618.
    LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity:A meta-analytic review study. British Journal of Psychology; 94(1),29-44.
    Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods,42(1),77-86.
    Luo, J., & Niki, K. (2003). The function of hippocampus in'insight'of problem solving. Hippocampus,13(3),316-323.
    Luo, J., Niki. K., & Knoblich, G. (2006). Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain research bulletin,70(4-6), 430-443.
    Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the'Aha! reaction'. Neuroreport,75(13),2013-2017.
    Luo, J. L, Li, W. F., Fink, A., Jia, L., Xiao, X., Qiu, J., & Zhang. Q. L. (2011). The time course of breaking mental sets and forming novel associations in insight-like problem solving:an ERP investigation. Experimental Brain Research,212(4). 583-591.
    Molle. M., Marshall, L., Wolf, B., Fehm, H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology,36(1),95-104.
    MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001). Information processing and insight:A process model of performance on the nine-dot and related problems. Journal of Experimental Psychology:Learning, Memory, and Cognition,27(1),176-201.
    Mai, X. Q., Luo, J., Wu, J. H., & Luo, Y. J. (2004).'Aha!'Effects in Guessing Riddle Task:An ERP Study. Human brain mapping,22(4),261-270.
    Mashal, N.. Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language,100(2),115-126.
    Mayer, R. E. (1995). The search for insight:Grappling with Gestalt psychology's unanswered questions.
    McKiernan. K. A., D'Angelo, B. R., Kaufman, J. N., & Binder, J. R. (2006). Interrupting the "stream of consciousness":an fMRI investigation. Neurolmage,29(4), 1185-1191.
    Mckiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of cognitive neuroscience,75(3),394-408.
    McPherson, W. B., & Holcomb, P. J. (1999). An electrophysiological investigation of semantic priming with pictures ofreal objects.Psychophysiology,36(01),53-65.
    Molinaro,N., & Carreiras,M.(2010).Electrophysiological evidence of interaction between contextual expectation and semantic integration during the processing of collocations.Biological psychology,83(3),176-190.
    Ormerod,T.C.,MacGregor,J.N., & Chronicle,E.P.(2002).Dynamics and constraints in insight problem solving.Journal of Experimenta,Psychology:Learning, Memory,and Cognition,28(4),791-799.
    Qiu,J.,Li,H.,Jou,J.,Liu,J.,Luo,Y.,Feng,T.,...Zhang,Q.(2010).Neural correlates of the" Aha" experiences:evidence from an fMRI study of insight problem solving.Cortex,46(3),397-403.
    Qiu,J.,Li,H.,Jou,J.,Wu,Z., & Zhang,Q.(2008a).Spatiotemporal cortical activation underlies mental preparation for successful riddle solving:an event-related potential study.Experimental Brain Research,186(4),629-634.
    Qiu,J.,Li, H.,Yang,D.,Luo,Y.,Li,Y.Wu.Z., & Zhang,Q.(2008b).The neural basis of insight problem solving:An event-related potential study.Brain and cognition, 68(1),100-106.
    Raichle,M.E.,MacLeod,A.M.,Snyder.A.Z.,Powers,W.J..Gusnard,D.A., & Shulman,G. L.(2001).A default mode of brain function.Proceedings of the National Academy of Sciences,98(2),676-682.
    Razoumnikova,O.M.(2000).Functional organization of different brain areas during convergent and divergent thinking:An EEG investigation.Cognitive Brain Research,10(1-2),11-18.
    Rose,M.,Haider,H., & Buchel. C. (2005).Unconscious detection of implicit expectancies.Journal,of cognitive neuroscience,17(6),918-927.
    Rose,M.,Haider,H.,Weiller,C., & Buchel.C.(2002).The Role of Medial Temporal Lobe Structures in Implicit Learning::An Event-Related fMRI Study.Neuron, 36(6),1221-1231.
    Sambataro.F.,Murty,V.P.,Callicott,J.H.,Tan,H.Y.,Das,S.,Weinberger,D.R., & Mattay,V.S.(2010).Age-related alterations in default mode network:Impact on working memory performnance.Neurobiology of aging,31(5),839-852.
    Sandkuhler,S., & Bhattacharya,J.(2008).Deconstructing insight:EEG correlates of insightful problem solving.PLoS One,3(1),e1459.
    Seger,C.A.,Desmond,J.E.,Glover,G.H., & Gabrieli,J.D.E.(2000).Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology,14(3),361-369.
    Starchenko, M., Bekhtereva, N., Pakhomov, S., & Medvedev, S. (2003). Study of the brain organization of creative thinking. Human Physiology,29(5),652-653.
    Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American psychologist, 57(7),677-688.
    Stoppel, C. M., Boehler, C. N., Strumpf, H., Heinze, H. J., Hopf, J. M., Diizel, E., & Schoenfeld, M. A. (2009). Neural correlates of exemplar novelty processing under different spatial attention conditions. Human brain mapping,30(11), 3759-3771.
    Takahashi, N., & Kawamura, M. (2002). Pure topographical disorientation—the anatomical basis of landmark agnosia, cortex,38(5),717-725.
    Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate:the association between brain activity during a working memory task and creativity. Neurolmage(55),681-687.
    Talairach. J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensionalproportional system:an approach to cerebral imaging:Thieme.
    Taylor, S. F., Liberzon, I., Fig, L. M., Decker, L. R., Minoshima, S., & Koeppe, R. A. (1998). The effect of emotional content on visual recognition memory, a PET activation study. Neurolmage,8(2),188-197.
    Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge:A reevaluation. Proceedings of the National Academy of Sciences,94(26),14792-14797.
    Tian, F., Tu, S., Lv, Y., Wei, T., Su, Y., Qiu, J., & Zhang, Q. (2011). Neural correlates of mental preparation for successful insight problem solving. Behavioural brain research,216(2),626-630.
    Vogel, S., & Davis, K. K. (2000). Cats'paws and catapults:Mechanical worlds of nature and people:WW Norton & Company.
    Wagner, A. D., Pare-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering Meaning::Left Prefrontal Cortex Guides Controlled Semantic Retrieval. Neuron, 31(2),329-338.
    Wang, T., Zhang, Q., Li, H., Qiu, J., Tu, S., & Yu, C. (2009). The time course of Chinese riddles solving:Evidence from an ERP study. Behavioural brain research, 199(2),278-282.
    Whitney, C., Jefferies, E., & Kircher, T. (2011). Heterogeneity of the left temporal lobe in semantic representation and control:Priming multiple versus single meanings of ambiguous words. Cerebral Cortex,21(4),831-844.
    Zeigarnik, B. (1927). Uber das Behalten von erledigten und unerledigten Handlungen. Psychologische Forschung,9(1),1-85.
    Zhang, M., Tian, F., Wu, X., Liao, S., & Qiu, J. (2011). The neural correlates of insight in Chinese verbal problems:an event related-potential study. Brain research bulletin,84(3),210-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700