创造性的脑机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创造性是人类文明的基石和经济社会发展进步的动力(Dietrich&Kanso,2010)。所有的进步和创新都依赖于我们改变现存思维模式,打破当前状态,建立新事物的能力。鉴于创造性对于人类社会发展的极端重要性,创造性思维的认知神经机制研究成为行为和脑科学研究工作的重要主题之一。研究创造性,以及创造性怎样在大脑中发生,哪个脑区起了作用,是获得创造性能力组成部分的决定性途径。
     随着科学技术的发展,具有高空间分辨率、较好的时间分辨率、无创和简便易行特点的磁共振技术逐步进入心理科学和脑科学的研究领域内。本研究首次利用静息态功能磁共振成像(Resting State Functional Magnetic Resonance Imaging, rs-fMRI)和结构磁共振成像(Structural Magnetic Resonance Imaging, sMRI)技术,从个体在不同角度创造性测量上的行为差异为出发点,通过三个研究探索个体外在行为差异和大脑功能以及结构差异之间的关系,进而探讨创造性的脑结构和脑功能基础。其中研究一进行多模态-多角度的创造性测量脑机制研究,“多模态”是指rs-fMRI和sMRI两种脑成像模态,“多角度创造性测量”主要是指使用托兰斯言语创造性量表(Verbal Torrance Tests of Creative Thinking, TTCT-V)、托兰斯图画创造性量表(Figural Torrance Tests of Creative Thinking, TTCT-F)、威廉姆斯创造性倾向量表(Williams Creativity Aptitude Test, WCAT)和远距离联想测验(Remote Association Test, RAT)四个创造性测量,探讨言语创造性、视空创造性、特质创造性和远距离联想能力四个角度的脑结构和脑功能基础,以期通过多模态的大脑特征扫描和多角度的创造性行为测量相结合,系统、全面地勾画创造性的脑结构和脑功能特征。研究二为了提高研究的生态学效度,进一步选择新近出现的具有高生态学效度的科学发明问题材料,测量个体的创造性问题解决能力,并利用rs-fMRI和sMRI两种脑成像模态研究现实生活中的科学发明问题解决的大脑结构和大脑功能机制。在研究三中选择国内某高校具有较高学术成就的大学教授作为研究对象,利用rs-fMRI和sMRI两种脑成像模态测量大脑功能和结构特征,探索高学术成就者和控制组被试之间脑结构和脑功能的差异,从个体差异角度探讨高学术成就者的脑结构和脑功能特点,并进一步考察“多模态-多角度创造性测量的脑机制”和高学术成就者的脑机制之间的关系,初步探索脑影像学数据应用于高学术成就者测量和评估的可行性,为建立基于脑影像学数据的创造性测量和评估数据库提供实验证据。
     研究一使用多模态脑成像技术和多角度创造性测量手段,系统、全面地构建个体创造性行为的脑结构和脑功能特点。该研究选择比较成熟的静息态功能磁共振成像和结构磁共振成像技术,分析个体静息状态时大脑活动的局部一致性(ReHo)指标和局部脑结构指标(局部灰质密度和局部白质密度),在四个实验中分别探讨言语创造性、视空创造性、特质创造性和远距离联想能力的脑结构和脑功能基础。具体为:在实验1中使用托兰斯言语创造性量表测量个体的言语创造性能力,在实验2中使用托兰斯图画创造性量表测量个体的视空创造性能力,在实验3中使用威廉姆斯创造性倾向量表测量个体的特质创造性,在实验4中使用远距离联想测验测量个体的远距离联想能力。实验1结果发现:ReHo值和TTCT-V得分正相关的脑区有右侧前扣带回、右侧枕中回/颞中回和右侧中央前后回。ReHo值和TTCT-V得分负相关的脑区有右侧海马/海马旁回、左侧额中回、左侧顶上叶和左右侧楔前叶。在灰质密度上和TTCT-V正相关的脑区有左侧额下回/额中回和右侧额下回/岛盖区,左右侧尾状核的灰质密度和TTCT-V得分显著负相关。但是在白质密度上没有发现任何显著正相关或者负相关的脑区。实验2结果发现ReHo值和TTCT-F得分正相关的脑区有右侧额下回、右侧中央前回、左侧额中回和右侧额中回。ReHo值和TTCT-F得分负相关的脑区有右侧枕中回、右侧颞上回、右侧中央后回和右侧楔前叶。左侧楔前叶的灰质密度和TTCT-F的得分负相关,没有发现显著的正相关的脑区。在白质密度上和TTCT-F得分正相关的脑区有右侧颞上回、角回和缘上回,负相关的脑区有左侧豆状核、左侧壳核、左侧海马旁回、右侧豆状核和右侧壳核。实验3结果发现左侧额中回和左侧中央后回的ReHo值与WCAT的得分正相关,没有发现任何显著的脑区和WCAT的得分负相关。右侧舌回的灰质密度和WCAT的得分正相关,左侧前扣带回的灰质密度和WCAT的得分负相关;在白质密度上,左侧前扣带回的白质密度和WCAT得分正相关,右侧舌回和左侧小脑后叶的白质密度和WCAT的得分负相关。实验4结果发现和CRA得分负相关的脑区有右侧梭状回、左侧额下回、右侧楔前叶和右侧角回,此外没有发现任何和CRA的得分显著正相关的脑区。在灰质密度上和CRA正相关的脑区有右侧颞中回和右侧颞上沟区域,右侧扣带中回的灰质密度和CRA得分显著负相关;另外,右侧扣带中回的白质密度和CRA的得分正相关,而左侧额下回区域的白质密度和CRA的得分显著负相关。结果表明前部额叶和后部颞顶枕区域在与多角度创造性测量上的关系表现出相反的趋势,前部额叶脑区的ReHo值一般都和创造性测量正相关,而后部颞顶枕区域的ReHo值则表现出一种相反的趋势。研究对前额叶和颞顶枕区域对创造性的作用进行了讨论。
     研究二采用国内某团队内部自编的取自现实生活中真实发生过的科学发明问题解决材料作为研究材料,利用静息态功能磁共振成像和结构磁共振成像技术,分析个体静息状态时大脑活动的局部一致性(ReHo)指标和局部脑结构指标(局部灰质密度和局部白质密度),以期发现科学发明问题解决的奥秘。在研究5和研究6中分表利用静息态功能磁共振成像和结构磁共振成像探索科学发明问题解决的脑功能和脑结构机制。实验5基于ROI的研究结果发现右侧中央前后回的ReHo值和创造性材料的问题解决正确率显著负相关,左侧额中回的ReHo值既和创造性材料的问题解决正确率显著正相关又和常规性材料的问题解决正确率正相关,另外右侧额下回的ReHo值和创造性材料的问题解决正确率边缘正相关,基于全脑的数据分析发现ReHo值和创造性材料的问题解决正确率正相关的脑区有:左侧前扣带回和右侧额中回,负相关的脑区是右侧中央后回,将被试常规性问题解决正确率作为协变量进行控制后发现左侧前扣带回的ReHo值和创造性材料的问题解决正确率显著正相关。实验6基于ROI的研究结果发现左侧楔前叶的灰质密度和右侧颞上回的白质密度和创造性材料的问题解决正确率显著负相关,左右侧尾状核的灰质密度和常规性材料的问题解决正确率显著负相关。而扣带中回的的白质密度既和创造性材料的问题解决正确率正相关又和常规性材料的问题解决正确率正相关。基于全脑的分析发现在灰质密度上和创造性问题解决正确率显著正相关的脑区有:左侧颞中回和左侧中央前回。研究结果强调了前扣带回在科学发明问题解决中冲突检测和打破定势的作用,同时还需要言语网络和运动计划执行区域的参与。
     研究三以国内某高校获得较高学术成就的教授作为研究对象,一方面检验基于多模态脑成像技术和多角度创造性测量获得的创造性脑功能和脑结构基础在高学术成就者上的表现,另一方面探索高学术成就者和控制组个体之间在脑功能和脑结构上的差异。在实验7和实验8中从这两个方面出发,分别利用静息态功能磁共振成像和结构磁共振成像技术开展研究。实验7基于ROI的研究结果发现高学术成就组被试在海马和海马旁回的ReHo值边缘显著大于控制组在海马和海马旁回的ReHo值,另外高学术成就组被试在右侧中央后回的ReHo值边缘显著大于控制组在中央后回的ReHo值。基于全脑的数据分析发现高学术成就组被试比控制组被试ReHo升高的区域有:右侧海马和海马旁回,ReHo降低的区域有:右侧枕上回/楔片/楔前叶、左侧中央前后回和右侧中央前后回。实验8基于ROI的数据分析发现高学术成就组被试在右侧扣带中回的白质密度显著小于控制组在扣带中回上的白质密度。另外发现左侧额下回/额中回的灰质密度和高学术成就者综合成就指标(Compound Achievement Index, CAI)边缘显著正相关,而左侧小脑后叶和右侧扣带中回的白质密度和CAI显著负相关。研究表明记忆系统、视空间想象能力和运动计划执行区域在个体获得较高成就上的作用。基于多模态-多角度创造性测量的脑机制进行的判别分析结果表明:脑影像学数据在一定程度上可以对高低学术成就个体进行区别和分类,从而为建立创造性测量和评估的脑影像学数据库提供了初步证据和支持。
     综上所述,本研究首次利用多模态脑成像技术和多角度创造性测量(多模态-多角度创造性思维脑机制研究),从大脑自发活动和结构特点两个角度,对言语创造性、视空创造性、特质创造性、远距离联想和科学发明问题解决四个创造性角度进行了研究,初步获得了创造性思维的脑功能和脑结构特点,并进一步探索了通过多模态-多角度创造性思维脑机制研究得到的大脑功能和结果特点在高低学术成就者上的表现,初步验证了创造性脑结构和脑功能特点对高低学术成就者的区分和判别作用。这些结果说明基于影像学的创造性测量和评估方法的可行性,对于深入理解创造性思维的本质具有重要作用。
Creativity is imperative to the progression of human civilization and is essential to cultural life. It is characterized by the formation of something that is both novel and useful (Jung et al.,2013; Sternberg&Lubart,1993). All progress and innovation depend on our ability to change existing thinking patterns, break with the present, and build something new. Given the central importance of this most extraordinary capacity of the human mind, the underlying neurocognitive mechanisms of creative thinking are the subject of intense research efforts in the behavioral and brain sciences. To study creative ideas, and how and where they arise in the brain, is to approach a defining element of what makes us human.
     Recent investigations into creativity have utilized brain imaging techniques, such as functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) to study the neural correlates of creative cognition (for reviews see Arden et al.,2010; Dietrich&Kanso,2010; Jung et al.,2013). The present study employ resting-state fMRI (rs-fMRI) and sMRI to identify the functional and anatomical correlates of individual trait creativity, as measured by the Verbal Torrance Tests of Creative Thinking (TTCT-V), Figure Torrance Tests of Creative Thinking (TTCT-F), Williams Creativity Aptitude Test (WCAT), Remote Association Test (RAT), Scientific invention problem solving and high academic achievement university professors. Study one using rs-fMRI and sMRI to identify the functional and anatomical correlates of individual verbal creativity, visuo-spatial creativity, trait creativity and remote association thinking, as measured by the Verbal Torrance Tests of Creative Thinking (TTCT-V), Figure Torrance Tests of Creative Thinking (TTCT-F), Williams Creativity Aptitude Test (WCAT), Remote Association Test (RAT). Study two using rs-fMRI and sMRI to identify the functional and anatomical correlates of scientific invention problem solving. Study three using rs-fMRI and sMRI to identify the biological substrate of high academic achievement university professors (HAP) compared to low academic achievement university professors (LAP).
     Study one using multimode brain imaging technology and multi-dimension creative measurements to identify the functional and anatomical correlates of individual creativity. Experiment1using TTCT-V to measure individual verbal creativity and found the regional homogeneity (ReHo) in right anterior cingulate cortex, right middle occipital gyrus/posterior temporal gyrus and right precentral/postcentral gyrus were significantly positively related with individual verbal creativity, while the ReHo value in the right hippocampal gyrus/parahippocampal gyrus, left middle frontal gyrus, left superior parietal lobule and right precuneus were significantly negatively related with individual verbal creativity. Additionally, we found the regional gray matter density (rGMD) in the left inferior frontal gyrus and right inferior frontal gyrus were significantly positively correlated with individual verbal creativity, while the rGMD in the caudate nucleus was significantly negatively correlated with individual verbal creativity. Experiment2using TTCT-F to measure individual visuo-spatial creativity and found the ReHo in right inferior frontal gyrus, right precentral gyrus, left middle frontal gyrus and right middle frontal gyrus were significantly positively related with individual visuo-spatial creativity, while the ReHo value in the right middle occipital gyrus, right superior temporal gyrus, right postcentral gyrus and right precuneus were significantly negatively related with individual visuo-spatial creativity. Additionally, we found the rGMD in the left precuneus gyrus was significantly negatively correlated with individual visuo-spatial creativity, while the regional white matter density (rWMD) in the right superior temporal gyrus, right angular gyrus and right supramarginal gyrus were significantly positively correlated with individual visuo-spatial creativity and the rWMD in the left lentiform nucleus, left putamen, left parahippocampal gyrus, right lentiform nucleus and right putamen were significantly negatively correlated with individual visuo-spatial creativity. Experiment3using WCAT to measure individual trait creativity and found the ReHo in the left middle frontal gyrus and left postcentral gyrus were significantly positively related with individual visuo-spatial creativity, while no areas ReHo valuewas significantly negatively related with individual trait creativity. Additionally, we found the rGMD in the right lingual gyrus was significantly positively correlated with individual trait creativity, while the rGMD in the left ACC was significantly negatively correlated with individual trait creativity. At the same time, we found the rWMD in the left ACC was significantly positively correlated with individual trait creativity, while the rWMD in the right lingual gyrus and left cerebellum was significantly negatively correlated with individual trait creativity. Experiment4using remote association test to measure individual remote association thingking ability and found the ReHo in the right fusiform gyrus, left inferior frontal gyrus, right precunus and right angual gyrus were significantly negatively related with individual remote association thingking ability, while no areas ReHo valuewas significantly positively related with individual remote association thingking ability. Additionally, we found the rGMD in the right middle temporal gyrus and right superior temporal sulcus were significantly positively correlated with individual remote association thingking ability, while the rGMD in the right middle cingulate cortex was significantly negatively correlated with individual remote association thingking ability. At the same time, we found the rWMD in the right MCC was significantly positively correlated with individual remote association thingking ability, while the rWMD in the left inferior frontal gyrus were significantly negatively correlated with individual remote association thingking ability.
     Study two using multimode brain imaging technology and scientific invention problem solving to identify the functional and anatomical correlates of the mystery of the human scientific invention. Experiment5using rs-fMRI to investigate the functional correlates of scientific invention problem solving. Using the region of interest (ROI) analysis method and found the ReHo in the right precentral and postcentral gyrus were significantly negatively related with the creative problem solving accuracy, while the ReHo in the right middle frontal gyrus was significantly positively related with accuracy of creative and conventional problem solving. Using the whole brain analysis method and found the ReHo in the left ACC and right middle frontal gyrus were significantly positively related with the creative problem solving accuracy, while the ReHo in the right postcentral gyrus was significantly negatively related with accuracy of creative problem solving. Experiment6using sMRI to investigate the analogical correlates of scientific invention problem solving. Using the region of interest (ROI) analysis method and found the rGMD in the left precuneus and the rWMD in the right superior temporal gyrus were significantly negatively related with the creative problem solving accuracy, while the rWMD in the MCC was significantly positively related with accuracy of creative and conventional problem solving. Using the whole brain analysis method and found the rGMD in the left middle temporal gyrus and left precentral gyrus were significantly positively related with the creative problem solving accuracy.
     Study three used a combined structural and rs-fMRI to examine the biological substrate of high academic achievement university professors (HAP) compared to low academic achievement university professors (LAP). Experiment7using rs-fMRI to investigate the functional difference between high academic achievement university professors (HAP) compared to low academic achievement university professors (LAP). Using the region of interest (ROI) analysis method and found HAP had greater ReHo in the hippocampal gyrus/parahippocampal gyrus and right precentral gyrus than that in LAP. Using the whole brain analysis method and found HAP had greater ReHo in the right hippocampal gyrus/parahippocampal gyrus and smaller ReHo in the right cuneus/precuneus, left precentral/postcentral gyrus and the right precentral/postcentral gyrus than that in LAP. Experiment8using sMRI to investigate the structural difference between high academic achievement university professors (HAP) compared to low academic achievement university professors (LAP). Using the region of interest (ROI) analysis method and found HAP had smaller rWMD in the right MCC than that in LAP.
     In conclusion, the current study using the multimode brain imaging technology and multi-dimension creative measurements to identify the functional and anatomical correlates of individual creativity. These results provided the theoretical foundation for the cultivating creative talents and creative thinking.
引文
林幸台,& 王木榮.(1994).威廉斯创造力测验:心理出版社.
    刘春雷,王敏,& 张庆林.(2009).创造性思维的脑机制.心理群学进展(01),106-111.
    邱江,罗跃嘉,吴真真,& 张庆林.(2006).再探猜谜作业中“顿悟”的ERP效应.心理学报(04),507-514.
    邱江,& 张庆林.(2011).创新思维中原型激活促发顿悟的认知神经机制.心理科学进进展(03),312-317.
    申继亮,王鑫,& 师保国.(2005).青少年创造性倾向的结构与发展特征研究.心理发展与教育(04),28-33.
    沈承春,& 张庆林.(2012).负性情绪对创造性问题解决中原型启发的影响.西南大学学报:自然科学版,(6),150-156.
    沈汪兵,刘昌,& 陈晶晶.(2010).创造力的脑结构与脑功能基础.心理科学进展(09),1420-1429.
    田燕,罗俊龙,李文福,邱江,& 张庆林.(2011).原型表征对创造性问题解决过程中的启发效应的影响.心理学报,(6),619-628.
    汪安圣.(1992).思维心理学上海:华东师范大学出版社.
    沃建中,陈婉茹,刘扬,& 林崇德.(2010).创造能力不同学生的分类加工过程差异的眼动特点.心理学报(02),251-261.
    吴真真,邱江,& 张庆林.(2008).顿悟的原型启发效应机制探索.心理发展与教育(01),31-35.
    吴真真,邱江,& 张庆林.(2009).顿悟脑机制的实验范式探索.心理科学(01),122-125.
    张庆林,& Sternberg. (2002).创造性研究手册.成都:四川教育出版社.
    张庆林,邱江,& 曹贵康.(2004).顿悟认知机制的研究述评与理论构想.心理科学(06),1435-1437.
    张庆林,田燕,& 邱江.(2012).顿悟中原型激活的大脑自动响应机制:灵感机制初探.西南大学学报(自然科学版)(09),1-10.
    张庆林,朱海雪,邱江,& 罗俊龙.(2011).顿悟的原型启发机制的研究.宁波大学学报(教育科学版(01),45-49.
    朱丹,罗俊龙,朱海雪,邱江,& 张庆林.(2011).科学发明创造思维过程中的原型启发效应.西南大学学报(社会科学版)37(5),144-149.
    朱海雪,杨春娟,李文福,刘鑫,邱江,& 张庆林.(2012).问题解决中顿悟的原型位置效应的fMRI研究.心理学报44(8),1025-1037.
    Abraham, Anna, Beudt, Susan, Ott, Derek V. M.,& Yves von Cramon, D. (2012). Creative cognition and the brain:Dissociations between frontal, parietal-temporal and basal ganglia groups. Brain Research,1482(0),55-70.
    Abutalebi, J., Della Rosa, P.A., Green, D.W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex,22(9), 2076-2086.
    Amabile, Teresa M. (1982). Social psychology of creativity:A consensual assessment technique. Journal of Personality and Social Psychology,43(5),997-1013.
    Anderson, B.,& Harvey, T. (1996). Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein. Neurosci Lett,210(3),161-164.
    Arden, Rosalind, Chavez, Robert S., Grazioplene, Rachael,& Jung, Rex E. (2010). Neuroimaging creativity:A psychometric view. Behavioural Brain Research,214(2),143-156.
    Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neurolmage,38(1),95-113.
    Ashburner, J.,& Friston, K.J. (2005). Unified segmentation. Neurolmage,26(3),839-851.
    Aziz-Zadeh, Lisa, Kaplan, Jonas T.,& Iacoboni, Marco. (2009). "Aha!":The neural correlates of verbal insight solutions. Human Brain Mapping,30(3),908-916.
    Baas, Matthijs, De Dreu, Carsten K. W.,& Nijstad, Bernard A. (2008). A Meta-Analysis of 25 Years of Mood-Creativity Research:Hedonic Tone, Activation, or Regulatory Focus? Psychological Bulletin,134(6),779-806.
    Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G,& Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology,53(1),11-20.
    Benedek, Mathias, Jauk, Emanuel, Fink, Andreas, Koschutnig, Karl, Reishofer, Gernot, Ebner, Franz, et al. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neurolmage,88(0),125-133.
    Bengtsson, S.L., Csikszentmihalyi, M.,& Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience,19(5),830-842.
    Berkowitz, Aaron L.,& Ansari, Daniel. (2008). Generation of novel motor sequences:The neural correlates of musical improvisation. Neurolmage,41(2),535-543.
    Berkowitz, Aaron L.,& Ansari, Daniel. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neurolmage,49(1),712-719.
    Bhattacharya, Joydeep,& Petsche, Hellmuth. (2002). Shadows of artistry:cortical synchrony during perception and imagery of visual art. Cognitive Brain Research,13(2),179-186.
    Bhattacharya, Joydeep,& Petsche, Hellmuth. (2005). Drawing on mind's canvas:Differences in cortical integration patterns between artists and non-artists. Human Brain Mapping,26(1),1-14.
    Boden, Margaret A. (1994). Precis of the creative mind:Myths and mechanisms. Behavioral and Brain Sciences,17(3),519-531.
    Bowden, Edward M,& Jung-Beeman, Mark. (2003). Normative data for 144 compound remote associate problems (Vol.35).
    Bowden, Edward M.,& Jung-Beeman, Mark. (2007). Methods for investigating the neural components of insight. Methods,42(1),87-99.
    Brown, Steven, Martinez, Michael J.,& Parsons, Lawrence M. (2006). Music and language side by side in the brain:a PET study of the generation of melodies and sentences. European Journal of Neuroscience,23(10),2791-2803.
    Bryant, D.M., Hoeft, F., Lai, S., Lackey, J., Roeltgen, D., Ross, J., et al. (2011). Neuroanatomical phenotype of Klinefelter syndrome in childhood:a voxel-based morphometry study. The Journal of Neuroscience,31(18),6654-6660.
    Carlsson, Ingegerd, Wendt, Peter E.,& Risberg, Jarl. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia,38(6), 873-885.
    Carson, Shelley H., Peterson, Jordan B.,& Higgins, Daniel M. (2005). Reliability, Validity, and Factor Structure of the Creative Achievement Questionnaire. Creativity Research Journal,17(1), 37-50.
    Cavanna, Andrea E.,& Trimble, Michael R. (2006). The precuneus:a review of its functional anatomy and behavioural correlates. Brain,129(3),564-583.
    Chavez-Eakle, Rosa Aurora, Graff-Guerrero, Ariel, Garcia-Reyna, Juan-Carlos, Vaugier, Victor,& Cruz-Fuentes, Carlos. (2007). Cerebral blood flow associated with creative performance:A comparative study. Neurolmage,38(3),519-528.
    Chakravarty, Ambar. (2010). The creative brain-Revisiting concepts. Medical hypotheses,74(3), 606-612.
    Chao-Gan, Y.,& Yu-Feng, Z. (2010). DPARSF:a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in systems neuroscience,4.
    Chavez, R.A., Graff-Guerrero, A., Garcia-Reyna, J.C., Vaugier, V.,& Cruz-Fuentes, C. (2004). Neurobiology of creativity:preliminary results from a brain activation study. Salud Mental, 27(3),38-46.
    Chermahini, Soghra Akbari,& Hommel, Bernhard. (2010). The (b)link between creativity and dopamine:Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition,115(3),458-465.
    Chrysikou, Evangelia G.,& Thompson-Schill, Sharon L. (2011). Dissociable brain states linked to common and creative object use. Human Brain Mapping,32(4),665-675.
    Cramond, B., Matthews-Morgan, J., Torrance, E. P.,& Zuo, L. (1999). Why should the Torrance Tests of Creative Thinking be used to assess creativity? The Korean Journal of Thinking and Problem Solving(9),77-101.
    Dandan, Tong, Haixue, Zhu, Wenfu, Li, Wenjing, Yang, Jiang, Qiu,& Qinglin, Zhang. (2013). Brain activity in using heuristic prototype to solve insightful problems. Behavioural Brain Research, 253(0),139-144.
    Danielian, L. E., Iwata, N. K., Thomasson, D. M.,& Floeter, M. K. (2010). Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage,49(2), 1572-1580.
    De Manzano, Orjan,& Ullen, Fredrik. (2012). Goal-independent mechanisms for free response generation:Creative and pseudo-random performance share neural substrates. NeuroImage, 59(1),772-780.
    DeYoung, Colin G, Hirsh, Jacob B., Shane, Matthew S., Papademetris, Xenophon, Rajeevan, Nallakkandi,& Gray, Jeremy R. (2010). Testing Predictions From Personality Neuroscience: Brain Structure and the Big Five. Psychological Science,21(6),820-828.
    Diamond, Marian C., Scheibel, Arnold B., Murphy Jr, Greer M.,& Harvey, Thomas. (1985). On the brain of a scientist:Albert Einstein. Experimental Neurology,88(1),198-204.
    Dietrich, Arne. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review,11(6),1011-1026.
    Dietrich, Arne,& Kanso, Riam. (2010). A Review of EEG, ERP, and Neuroimaging Studies of Creativity and Insight. Psychological Bulletin,136(5),822-848.
    Dollinger, Stephen J., Urban, Klaus K.,& James, Troy A. (2004). Creativity and Openness:Further Validation of Two Creative Product Measures. Creativity Research Journal,16(1),35-47.
    Drago, Valeria, Foster, Paul S., Heilman, Kenneth M., Arico, Debora, Williamson, John, Montagna, Pasquale, et al. (2011). Cyclic alternating pattern in sleep and its relationship to creativity. Sleep medicine,12(4),361-366.
    Duff, Melissa C., Kurczek, Jake, Rubin, Rachael, Cohen, Neal J.,& Tranel, Daniel. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus,23(12),1143-1149.
    Eggert, Lucas D., Sommer, Jens, Jansen, Andreas, Kircher, Tilo,& Konrad, Carsten. (2012). Accuracy and Reliability of Automated Gray Matter Segmentation Pathways on Real and Simulated Structural Magnetic Resonance Images of the Human Brain. PLoS ONE,7(9), e45081.
    Falk, D. (2009). New Information about Albert Einstein's Brain. Front Evol Neurosci,1,3.
    Falk, D., Lepore, F. E.,& Noe, A. (2013). The cerebral cortex of Albert Einstein:a description and preliminary analysis of unpublished photographs. Brain,136(Pt 4),1304-1327.
    Fink, A., Grabner, Roland H., Gebauer, Daniela, Reishofer, Gernot, Koschutnig, Karl,& Ebner, Franz. (2010). Enhancing creativity by means of cognitive stimulation:Evidence from an fMRI study. Neurolmage,52(4),1687-1695.
    Fink, A., Graif, Barbara,& Neubauer, Aljoscha C. (2009). Brain correlates underlying creative thinking:EEG alpha activity in professional vs. novice dancers. Neurolmage,46(3),854-862.
    Fink, Andreas, Koschutnig, Karl, Hutterer, Lisa, Steiner, Elisabeth, Benedek, Mathias, Weber, Bernhard, et al. (2013). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function,1-7.
    Frodl, T., Koutsouleris, N., Bottlender, R., Born, C., Jager, M., Morgenthaler, M., et al. (2008). Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression. Molecular psychiatry,13(12),1093-1101.
    Gansler, David A., Moore, Dana W., Susmaras, Teresa M., Jerram, Matthew W.Sousa, Janelle,& Heilman, Kenneth M. (2011). Cortical morphology of visual creativity. Neuropsychologia, 49(9),2527-2532.
    Gaser, Christian,& Schlaug, Gottfried. (2003). Brain Structures Differ between Musicians and Non-Musicians. The Journal of Neuroscience,23(27),9240-9245.
    Gasparovic, C., Bedrick, E. J., Mayer, A. R., Yeo, R. A., Chen, H., Damaraju, E., et al. (2011). Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magn Reson Med,66(2),324-332.
    Gibson, Crystal, Folley, Bradley S.,& Park, Sohee. (2009). Enhanced divergent thinking and creativity in musicians:A behavioral and near-infrared spectroscopy study. Brain and Cognition, 69(1),162-169.
    Goel, Vinod,& Vartanian, Oshin. (2005). Dissociating the Roles of Right Ventral Lateral and Dorsal Lateral Prefrontal Cortex in Generation and Maintenance of Hypotheses in Set-shift Problems. Cerebral Cortex,15(8),1170-1177.
    Guilford, J.P. (1950). Creativity. American Psychologist,5,444-454.
    Guilford, J.P. (1967). The nature of human intelligence.
    Hao, Xin, Cui, Shuai, Li, Wenfu, Yang, Wenjing, Qiu, Jiang,& Zhang, Qinglin. (2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes:An fMRI study. Brain Research,1534(0),46-54.
    Heilman, Kenneth M., Nadeau, Stephen E.,& Beversdorf, David O. (2003). Creative Innovation: Possible Brain Mechanisms. Neurocase,9(5),369-379.
    Howard-Jones, Paul A, Blakemore, Sarah-Jayne, Samuel, Elspeth A, Summers, Ian R,& Claxton, Guy. (2005). Semantic divergence and creative story generation:An fMRI investigation. Cognitive Brain Research,25(1),240-250.
    Huang, P., Qiu, L., Shen, L., Zhang, Y, Song, Z., Qi, Z., et al. (2012). Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping.
    Jones-Gotman, Marilyn,& Milner, Brenda. (1977). Design fluency:The invention of nonsense drawings after focal cortical lesions. Neuropsychologia, 15(4-5),653-674.
    Jung-Beeman, Mark, Bowden, Edward M., Haberman, Jason, Frymiare, Jennifer L., Arambel-Liu, Stella, Greenblatt, Richard, et al. (2004). Neural Activity When People Solve Verbal Problems with Insight. PLoS Biol,2(4), e97.
    Jung, R. E., Gasparovic, Charles, Chavez, Robert S, Flores, Ranee A, Smith, Shirley M, Caprihan, Arvind, et al. (2009). Biochemical support for the "threshold" theory of creativity:A magnetic resonance spectroscopy study. The Journal of Neuroscience,29(16),5319-5325.
    Jung, R.E., Grazioplene, R., Caprihan, A., Chavez, R.S.,& Haier, R.J. (2010a). White matter integrity, creativity, and psychopathology:Disentangling constructs with diffusion tensor imaging. PLoS ONE,5(3), e9818.
    Jung, R.E., Segall, Judith M., Jeremy Bockholt, H., Flores, Ranee A., Smith, Shirley M., Chavez, Robert S., et al. (2010b). Neuroanatomy of creativity. Human Brain Mapping,31(3),398-409.
    Jung, Rex Eugene, Mead, Brittany S, Carrasco, Jessica,& Flores, Ranee A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience,7.
    Kanai, R.,& Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci,12(4),231-242.
    Kim, Kyung Hee. (2005). Can only intelligent people be creative? A meta-analysis. Prufrock Journal, 16(2-3),57-66.
    Kim, Kyung Hee. (2006). Can We Trust Creativity Tests? A Review of the Torrance Tests of Creative Thinking (TTCT). Creativity Research Journal 18(1),3-14.
    Kim, Kyung Hee. (2008). Meta-Analyses of the Relationship of Creative Achievement to Both IQ and Divergent Thinking Test Scores. The Journal of Creative Behavior,42(2),106-130.
    King, Laura A., Walker, Lori McKee,& Broyles, Sheri J. (1996). Creativity and the Five-Factor Model. Journal of Research in Personality,30(2),189-203.
    Kirk, Ulrich, Skov, Martin, Hulme, Oliver, Christensen, Mark S.,& Zeki, Semir. (2009). Modulation of aesthetic value by semantic context:An fMRI study. Neurolmage,44(3),1125-1132.
    Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., et al. (2006). The prepared mind:neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol Sci,17(10),882-890.
    Kounios, John,& Beeman, Mark. (2009). The Aha! Moment:The Cognitive Neuroscience of Insight. Current Directions in Psychological Science,18(4),210-216.
    Kowatari, Y., Lee, S.H., Yamamura, H., Nagamori, Y, Levy, P., Yamane, S., et al. (2009). Neural networks involved in artistic creativity. Human brain mapping,30(5),1678-1690.
    Li, D.,& Chen, GP. (1989). Combined Reven's teat.(CRT)-Chinese revised version (in Chinese). Shanghai:East China Normal University.
    Li, Wenfu, Xueting, Li, Huang, Lijie, Kong, Xiangzhen, Yang, Wenjing, Wei, Dongtao, et al. (2014). Brain Structure Links Trait Creativity to Openness to Experience. Social Cognitive and Affective Neuroscience (In press).
    Limb, C.J.,& Braun, A.R. (2008). Neural substrates of spontaneous musical performance:An fMRI study of jazz improvisation. PLoS ONE,3(2), e1679.
    Luo, J. (2004). Neural correlates of insight. Acta Psychologica Sinica,3(6),2.
    Luo, J.,& Niki, Kazuhisa. (2003). Function of hippocampus in "insight" of problem solving. Hippocampus,13(3),316-323.
    Luo, Junlong, Li, Wenfu, Qiu, Jiang, Wei, Dongtao, Liu, Yijun,& Zhang, Qinlin. (2013). Neural Basis of Scientific Innovation Induced by Heuristic Prototype. PLoS ONE,8(1), e49231.
    Mai, Xiao-Qin, Luo, Jing, Wu, Jian-Hui,& Luo, Yue-Jia. (2004). "Aha!" effects in a guessing riddle task:An ERP study. Human Brain Mapping,23(2),128-128.
    Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P.,& Shamay-Tsoory, S. G (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Front Hum Neurosci,7,502.
    McCrae, Robert R. (1987). Creativity, divergent thinking, and openness to experience. Journal of personality and social psychology,52(6),1258.
    Mednick, SarnoffA. (1962). The associative basis of the creative process. Psychological review, 69(3),220-232.
    Mednick, SarnoffA,& Mednick, Martha T. (1967). Examiner's Manual, Remote Associates Test: College and Adult Forms 1 and 2:Houghton Mifflin.
    Men, Weiwei, Falk, Dean, Sun, Tao, Chen, Weibo, Li, Jianqi, Yin, Dazhi, et al. (2013). The corpus callosum of Albert Einstein's brain:another clue to his high intelligence? Brain.
    Miller, Geoffrey F.,& Tal, Ilanit R. (2007). Schizotypy versus openness and intelligence as predictors of creativity. Schizophrenia Research,93(1-3),317-324.
    Milner, Brenda,& Petrides, Michael. (1984). Behavioural effects of frontal-lobe lesions in man. Trends in Neurosciences,7(11),403-407.
    Moore, Dana W., Bhadelia, Rafeeque A., Billings, Rebecca L., Fulwiler, Carl, Heilman, Kenneth M., Rood, Kenneth M. J., et al. (2009). Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity. Brain and Cognition,70(3),267-272.
    Qiu, Jiang, Li, Hong, Jou, Jerwen, Liu, Jia, Luo, Yuejia, Feng, Tingyong, et al. (2010). Neural correlates of the "Aha" experiences:Evidence from an fMRI study of insight problem solving. Cortex; a journal devoted to the study of the nervous system and behavior,46(3),397-403.
    Qiu, Jiang, Li, Hong, Jou, Jerwen, Wu, Zhenzhen,& Zhang, Qinglin. (2008a). Spatiotemporal cortical activation underlies mental preparation for successful riddle solving:an event-related potential study. Experimental Brain Research,186(4),629-634.
    Qiu, Jiang, Li, Hong, Yang, Dong, Luo, Yuejia, Li, Ying, Wu, Zhenzhen, et al. (2008b). The neural basis of insight problem solving:An event-related potential study. Brain and Cognition,68(1), 100-106.
    Raichle, Marcus E., MacLeod, Ann Mary, Snyder, Abraham Z., Powers, William J., Gusnard, Debra A.,& Shulman, Gordon L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences,98(2),676-682.
    Runco, M.A. (2010). Creativity:Theories and Themes:Research, Development, and Practice: Elsevier Science.
    Runco, Mark A.,& Jaeger, Garrett J. (2012). The Standard Definition of Creativity. Creativity Research Journal,24(1),92-96.
    Sandkuhler, Simone,& Bhattacharya, Joydeep. (2008). Deconstructing Insight:EEG Correlates of Insightful Problem Solving. PLoS ONE,3(1), e1459.
    Sawyer, K. (2011). The cognitive neuroscience of creativity:A critical review. Creativity Research Journal,23(2),137-154.
    Shobe, Elizabeth R., Ross, Nicholas M.,& Fleck, Jessica I. (2009). Influence of handedness and bilateral eye movements on creativity. Brain and Cognition,71(3),204-214.
    Society_For_Creative_Minds. (1969). Manual ofS-A creativity test. Tokyo (Japan):Tokyo Shinri Corporation.
    Song, X.W., Dong, Z.Y., Long, X.Y., Li, S.F., Zuo, X.N., Zhu, C.Z., et al. (2011). REST:a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE,6(9), e25031.
    Starchenko, M. G., Bekhtereva, N. P., Pakhomov, S. V.,& Medvedev, S. V. (2003). Study of the Brain Organization of Creative Thinking. Human Physiology,29(5),652-653.
    Stein, Morris I. (1953). Creativity and Culture. The Journal of Psychology,36(2),311-322.
    Sternberg, Robert J. (1999). Handbook of creativity. New York:Cambridge University Press.
    Sternberg, Robert J.,& Lubart, Todd I. (1993). Investing in Creativity. Psychological Inquiry,4(3), 229-232.
    Takeuchi, H., Taki, Y, Sassa, Y, Hashizume, H., Sekiguchi, A., Fukushima, A., et al. (2010a). Regional gray matter volume of dopaminergic system associate with creativity:Evidence from voxel-based morphometry. Neurolmage,51(2),578-585.
    Takeuchi, H., Taki, Yasuyuki, Hashizume, Hiroshi, Sassa, Yuko, Nagase, Tomomi, Nouchi, Rui, et al. (2011). Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity. PLoS ONE,6(9), e25532.
    Takeuchi, H., Taki, Yasuyuki, Sassa, Yuko, Hashizume, Hiroshi, Sekiguchi, Atsushi, Fukushima, Ai, et al. (2010b). White matter structures associated with creativity:Evidence from diffusion tensor imaging. Neurolmage,51(1),11-18.
    Takeuchi, Hikaru, Taki, Yasuyuki, Hashizume, Hiroshi, Sassa, Yuko, Nagase, Tomomi, Nouchi, Rui, et al. (2012). The Association between Resting Functional Connectivity and Creativity. Cerebral Cortex,22(12),2921-2929.
    Thomas B, Ward. (2007). Creative cognition as a window on creativity. Methods,42(1),28-37.
    Torrance, E.P. (1966). The Torrance Tests of Creative Thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B-Figural Tests, Forms A and B. Princeton,NJ:Personnel Press.
    Torrance, E.P. (1968). Torrance tests of creative thinking:Personnel Press, Incorporated.
    Turken, A. U.,& Dronkers, N. F. (2011). The neural architecture of the language comprehension network:converging evidence from lesion and connectivity analyses. Front Syst Neurosci,5,1.
    Wallas, G. (1926). The art of thought. New York, NY:Harcourt, Brace.
    Wang, Z., Yan, C., Zhao, C., Qi, Z., Zhou, W., Lu, J., et al. (2011). Spatial patterns of intrinsic brain activity in mild cognitive impairment and alzheimer's disease:A resting-state functional MRI study. Human Brain Mapping,32(10),1720-1740.
    Wei, Dongtao, Yang, Junyi, Li, Wenfu, Wang, Kangcheng, Zhang, Qinglin,& Qiu, Jiang. (2013). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex((Inpress)).
    Williams, F. E. (1980). Creativity Assessment Packet:(CAP):DOK Publishers.
    Witelson, S. F., Kigar, D. L.,& Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353(9170),2149-2153.
    Zang, Yufeng, Jiang, Tianzi, Lu, Yingli, He, Yong,& Tian, Lixia. (2004). Regional homogeneity approach to fMRI data analysis. Neurolmage,22(1),394-400.
    Zhang, Hao, Liu, Jia,& Zhang, Qinglin. (2013). Neural Correlates of the Perception for Novel Objects. PLoS ONE,8(4), e62979.
    Zhang, Meng, Tian, Fang, Wu, Xin, Liao, Shu,& Qiu, Jiang. (2011). The neural correlates of insight in Chinese verbal problems:An event related-potential study. Brain Research Bulletin,84(3), 210-214.
    Zhu, Feifei, Zhang, Qinglin,& Qiu, Jiang. (2013). Relating Inter-Individual Differences in Verbal Creative Thinking to Cerebral Structures:An Optimal Voxel-Based Morphometry Study. PLoS ONE,8(11),e79272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700