热湿气候个体防护服装面料性能表征与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题旨在开发一种适合热区环境使用的具有抗紫外线、抗菌、吸汗快干功能的织物。为获得多种功能兼具的织物及其制备方法,通过对各功能纤维在纱线中所占比例及各功能纤维所具有功能的互容或互斥作用对纱线及织物功能的影响的分析,提出实用、高效的多功能并存的织物及其功能可靠性的表征。为此展开的研究工作包括以下四方面内容。
     (1)在对国内外抗紫外线、抗菌和吸汗快干纤维的筛选、分析、测试和评价的基础上,选择了纳米Ti02抗紫外线纤维、AmicorTMPlus抗菌纤维和Coolplus(?)吸汗快干功能纤维作为织物实现多重功能的基材。
     (2)设计多元功能纱线。调整抗紫外线纤维、Coolplus(?)、AmicorTM及粘胶纤维在纱线中比例含量,设计了10种混比的32支纱线,并进行了纱线基本性能(断裂强度、毛羽、捻系数、细度不匀CV)和纱线抗菌性能的测试。通过对纱线基本性能的聚类分析、混纺比与纱线基本性能的相关性分析、纱线基本性能优劣的综合评价以及混纺比对抗菌性能影响程度分析得知,各种功能纤维所占比例与纱线的基本性能均没有显著的线性相关性。确定适合成纱的四种纱线分别是H10、H4、H2和H3。其混纺比(抗紫外线纤维/Coolplus(?)/AmicorTM/粘胶纤维)分别为:35/45/15/5,25/45/20/10,25/35/25/15,25/45/15/15。
     (3)设计多元功能机织物。采用10种多元功能纱线分别织造了平纹机织物(凡立丁结构)和斜纹机织物(哔叽结构,2上2下/)结构各10种。分别对2种机织物的基本结构参数及功能指标进行了测试,进行了织物结构参数及功能指标的聚类分析、纱线性能与织物功能的相关性分析、织物结构参数与织物功能的相关性分析,并对2种织物的基本结构参数、抗紫外线功能、吸汗速干功能进行了对比分析,最后对这2种结构的20种织物进行了秩和综合评价排序。得出结论是:①平纹织物和斜纹织物中,各纤维在织物中含量与织物功能均没有显著的线性相关关系。说明本课题设计的各种纤维的混入比重都能使织物获得良好的抗紫外线、吸汗速干性能。只要抗紫外线纤维、Coolplus(?)、AmicorTM和粘胶纤维在平纹织物中比例介于4.3%~11.7%、7.3%~14.7%、5.0%~16.2%、1.4%~5.0%之间,在斜纹织物中比例介于4.6%~11.7%、7.7%~15.1%、4.5%~7.7%、1.7%~5.0%之间,就能实现目标功能。②平纹织物的厚度与水分扩散面积指数显著呈正线性相关,面密度、密度与抗紫外线性能呈显著正线性相关。斜纹织物的厚度、面密度、密度与织物的功能均无显著的线性相关性。③斜纹织物与平纹织物厚度及面密度有显著差异,斜纹织物抗紫外线性、吸水速度优于平纹织物,但水分扩散面积指数劣于平纹织物。④斜纹织物的整体综合性能优于平纹织物。最优织物分别为X6、F1、F6、X9、X3和X1。根据试纺纱线及织物测试的数据,当斜纹织物的经纬密度之比在1-1.1之间,密度在0.29-0.292g/cm2之间时,斜纹织物的综合性能最优。而平纹织物的经纬密度之比在1.2-1.3之间,密度在0.3-0.31g/cm2之间时,平纹织物的综合性能最优。
     (4)设计多元功能针织物。根据机织物的性能分析数据,结合纱线基本性能数据,确定纱线H6和H3纱线作为进一步加工针织物用纱,并以一种竹炭微孔纱(抗紫外线纤维30%/竹炭微孔纤维40%/AmicorTM30%)作为参考对比纱分别进行纬平针织物(汗布)和珠地网眼针织物的设计,得到共计6种针织物。测试所有针织物的基本结构参数、性能指标、抗紫外线、吸汗速干功能指标,并进行了针织物结构参数与性能、针织物功能指标与针织物结构参数、针织物相对功能指标与针织物结构参数的相关性及两种针织物结构参数与基本性能的对比、抗紫外线功能、吸汗速干功能的对比分析得出结论是,①纬平针织物和珠地网眼针织物的顶破强度、抗起球性、耐磨性与厚度、面密度和密度均没有显著的线性相关性。②纬平针织物的抗紫外线性能及隔湿率与厚度、面密度和密度没有显著的线性相关性;干燥速率与厚度显著正相关,与面密度显著负相关;吸水高度与厚度完全负相关,与面密度及密度显著正相关;吸水速度与厚度显著负相关,与面密度显著正相关。珠地网眼织物的抗紫外线性能、隔湿率、吸水速度和吸水高度与厚度、面密度和密度没有显著的线性相关性;干燥速率与厚度完全负相关。③两种针织物在密度、顶破强度和耐磨性指标上无显著差异。
     (5)设计双面功能织物。根据拒水排汗结构模型设计了双面整理工艺并进行了优化。通过对棉织物进行双面整理工艺的正交设计探索,确定对于棉织物而言一种涂层整理工艺。单侧进行拒水整理时采用拒水剂浓度40g/L,热压温度180℃,热压时间60s,用量比1.2;单侧进行亲水整理时采用亲水剂浓度70g/L,热压温度195℃,热压时间90s,用量比1.2。数据分析表明,此种工艺能够使织物一面具有拒水性的同时另一面具有吸水性。并且就吸水性而言,此种工艺对涤棉织物的整理效果优于对于棉织物的整理效果。
     通过以上五个方面的研究工作,成功研制了多元功能织物,由此研究所产生的理论、方法和数据,可用于所研发织物的产业化生产和对相近、相似功能织物生产的借鉴。由此研究所得的表征方法和特征参数与数据,可成为制定国标、军标的基础理论依据。从军事、社会和经济价值角度看,本课题研究既能为海军官兵在热湿环境作业提供一定的防护,也能在市场开发中产生经济效益,同时,还能提高人民群众对服装与健康的认识,促进整个社会对多元功能织物及服装的认可度。
The subject aims to develop a suitable anti-UV, anti-bacterial, absorbent and quick drying function fabrics for the use in the hot and wet environment.For a variety of functions of both the fabric and its preparation method, through the various functions of the proportion of fibers in the yam fibers and the functional interaction with the content or functionality of the exclusive function of the role of yarn and fabric analysis of the impact put forward practical and efficient co-existence of multi-functional fabrics and functional reliability characterization.Research work towards this end include the following five aspects.
     (1) With screening, analysis, testing and evaluation of anti-UV, antibacterial and absorbent quick-drying fiber, the nano-TiO2 fiber, AmicorTMPlus and Coolplus(?) were chosen to achieve the multi-function.
     (2) Designing multi-function yarn.Adjust anti-UV fibers, Coolplus, AmicorTM and viscose fibers in the proportion of content in the yam, design more than 10 kinds of mixed yarn of 32 and had a basic yarn properties (tensile strength, hairiness, twist coefficient of fineness uneven C V) and antibacterial properties of the test yarn.Basic performance of the yarn through the cluster analysis, blended yarn than with the basic properties of the correlation analysis, the basic properties of yam and blended comprehensive evaluation of the merits of anti-bacterial properties than the impact analysis showed that the proportion of functional fiber proportion of the basic properties of yam were no significant linear correlation.Determine the four yarn for yarn were H10, H4, H2 and H3.The blending ratio (UV fiber/Coolplus/AmicorTM/viscose fibers), respectively:35/45/15/5,25/45/20/10,25/35/25/15,25/45/15/15.
     (3)Designing multi-functional fabrics.The use of 10 kinds of multi-function yarn weaving a plain woven fabric, respectively (valitin structure) and twill woven fabric (serge structure,2 on 2, the(?)) structure of the 10 species.Respectively, two kinds of woven fabrics and functional parameters of the basic structure of indicators were tested, for a fabric structure parameters and functions of indicators of cluster analysis, yarn and fabric performance analysis of the correlation function, functional fabric fabric structure parameters and the correlation analysis, and two kinds of basic structural parameters of fabric, UV resistant, absorbent and quick drying capabilities are compared and analyzed, the final structure of these two kinds of fabric for the 20 comprehensive evaluation of the rank and sort.①Plain weave fabric and twill fabrics, the fibers in the fabric content and fabric functions are no significant linear relationship.Description of the project design of the proportion of fibers mixed with the fabric can get a good anti-ultraviolet absorbent quick-drying performance.As long as the UV fiber, Coolplus, AmicorTM plain weave fabric and viscose fibers in the proportion between 4.3%~11.7%,7.3% to 14.7%,5.0%~16.2%,1.4% to 5.0%, and twill fabrics in ratio between 4.6% to 11.7%,7.7% to 15.1%,4.5% to 7.7%,1.7% to 5.0%, and can achieve the objective function.②Plain weave fabric thickness and moisture diffusion area index showed a significant positive linear correlation, density, density and UV resistance was a significant positive linear correlation.Twill fabric thickness, density, density and function of the fabric was no significant linear correlation.③Twill and plain weave fabric thickness and density were significantly different, twill fabric UV resistance, water absorption rate is better than plain fabric, but the water spread area index worse than plain weave fabric.④Twill overall comprehensive performance is better than plain cloth.The best fabrics are X6, F1, F6, X9, X3 and X1.According to the test yarn and fabric testing data, when the warp and weft density ratio is in the 1-1.1, ratio of density is in 0.29-0.292g/cm2, overall performance of twill fabric is the best.The warp and weft density ratio of plain weave fabric is between 1.2-1.3, density ration is between 0.3-0.31 g/cm2, overall performance of plain fabric is the best.
     (4) Designing multi-functional knitwear.Performance analysis of woven fabric according to the data, performance data with the basic yarn, yarn H6 and H3 to determine the further processing of knitted yarn as the yarn and yarn in a porous charcoal (30% of UV fiber/charcoal micro-fiber 40%/AmicorTM30%) as a reference for comparison were weft yarn jersey (jersey) and pique knitted fabric design, to get a total of six kinds of knitted fabric.Test all the basic structural parameters of knitted fabrics, performance indicators, anti-ultraviolet radiation, perspiration wicking function parameters, and parameters for the structure and properties of knitted fabric, knitted fabric and knitted fabric structure function index parameters, the relative functional indicators and knitted knitted structure parameter correlation and two knitted fabric structure parameters and the basic performance comparison, anti-ultraviolet, absorbent quick-drying features contrast analysis concluded that,①latitude jersey and pique knits bursting strength, resistance to pilling, abrasion resistance and thickness, density and density had no significant linear correlation.②weft knitted flat and UV resistance across the wet rate and thickness, density and linear density of no significant correlation;Drying rate significantly correlated with the thickness and density significantly negatively correlated;Height and thickness of the water completely negatively correlated with the density and the density of a significant positive correlation;Water velocity and thickness of the significant negative correlation with the density a significant positive correlation.Pique fabric UV resistance, across the wet rate, water velocity and water height and thickness, density and linear density of no significant correlation;Drying rate and the thickness of the completely negative.③two kinds of knitted fabric density, bursting strength and abrasion resistance index was no significant difference.
     (5) Designing double-sided functional fabrics.According to water proof, sweat-sided structure model designed and optimized finishing process.By finishing of cotton fabric on both sides of the orthogonal design exploration process to determine the terms of a coating for cotton fabric finishing process.Unilateral use of the water repellent finishing agent concentration refused 40g/L, pressing temperature 180℃, pressing time 60s, with a ratio 1.2;Unilateral used for hydrophilic finishing agent concentration 70g/L, pressing temperature 195℃, pressing time 90s, with a ratio 1.2.Data analysis shows that this process can have a hydrophobic side of the fabric while the other side of the absorbent.And the absorbent, such a process on the polyester fabric is better than finishing of cotton fabrics for the finishing effect.
     Through the above five areas of study, we developed a multi-functional fabrics successfully, the produced theory, methods and data developed by the fabric can be used for industrial production and the similar functional fabrics produced.Thus studies of the characterization methods and characteristics of the parameters and data, could be the development of national standard, the basic theory underlying basis for the military.From the military, social and economic value perspective, this research both for the naval officers operating in the hot environment to provide some protection, but also to generate economic development in the market, while also improving the people's clothing and health of understanding and promoting the social fabric and clothing for the multiple functions of recognition.
引文
1王举,姚华栋等.南海北部海区太阳辐射观测分析与计算方法研究.海洋和湖沼,2005(5):385-393
    2 GB50176-93.民用建筑热工设计规范
    3柯文棋等.现代舰船卫生学.北京:人民军医出版社,2005
    4何学秋等.安全工程学,北京:中国矿业大学出版社,2000
    5 Ammer, K..Thermology 2010-A computer-assisted literature survey. Thermology International,2010,21 (1):15-30
    6 Bi, P., Williams, S., et al. The effects of extreme heat on human mortality and morbidity in Australia: implications for public health. Asia-Pacific journal of public health/Asia-Pacific Academic Consortium for Public Health, 2010,23(2):27-30
    7 CIE Publieation.Reommendations of simulated solar Radiation for Testing Purpose,1988:30-34
    8 Ldres, R. Breit, W. Jordan, W. Halbritter.UV Radiation, Irradiation, and Dosimetry,2003:5-8
    9 Lan, L., Wargocki, P.et al. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance.Indoor air,2011,21(5):376-390
    10 Cheung, S.S.,Petersen, S.R.. Physiological strain and countermeasures with firefighting. Scandinavian Journal of Medicine and Science in Sports,2010,20(3):103-115
    11张兵.办公室环境与人工除湿.办公室业务,2008(7):62
    12 Seungsin Lee and S. Kay Obendorf.Transport Properties of Layered Fabric Systems Based on Electrospun Nanofibers
    13 Chen, Y S, Fan, J.Clothing thermal insulation during sweating.Textile Research Journal,2003(2):27-29
    14 Dev, Aditya. Skin ailments on the rise. Times of India,Aug.2009:36
    15 Schuch, A.P., Menck, C.F.M.. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight. Journal of Photochemistry and Photobiology B:Biology,2010,99(3):111-116
    16 Tavakoli, M.B., Shahi, Z..Solar ultraviolet radiation on the ground level of Isfahan. Iranian Journal of Radiation Research,2007,5(2):101-104
    17 Kao J.H.The study of anti-ultraviolet properties on nylon woven fabrics,Textile Research Journal,1999,Vol.9,Issue4:81-92
    18 MikePailthorpe.Sun Protective Clothing.TextileHorizons,1996,Oct/Nov:11-14
    19 M.VAZQUEZ.Damaging Effects of UV Radiation on Humans.Ultraviolet Radiation in the Solar System. Springer Netherlands,2006:193-196
    20 Absothersintextiles.Colorage.2000,Nov:27
    21 EskhadtC,RohuerH.UVP fotector for Cotton Fabries.TCCIAD.2000(4):21-23
    22 Smith J.Conversion of Solar Energ.Photovoltaics Bulletin,Vol.3,Issue 2,February 2003:13-14
    Cleaver, James E. Genetics of human sensitivity to ultraviolet radiation. Proceedings of SPIE-The International Society for Optical Engineering,1995,2134B:43-52
    24 RC.Crews.Text.chemicall.1999,31 (6):17-28
    25 J.Matsunami,S.Yoshida et al.Solar Energ,1999,65(1):21-22
    26 Kudish, A.I., Evseev, E.G.The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density. Renewable Energy,2011,36(6):1854-1860
    27 Eric M.Textiles of protection against harmfulul traviolet radiation.Intemational textileBulletin,2001 (6):13-20
    28陈辉,黄卓等.高温中暑气象等级评定方法.应用气象学报,2009,20(4):18-20
    29吴喜江,祁光伟等.热辐射对高温作业岗位的影响.职业与健康,2006,22(19):35-38
    30张庆国,杨书运等.热污染及其防治途径的研究.合肥工业大学学报,2005,28(4):41-45
    31辛华.人的高温耐受极限是多少.安全与健康,2006(9):18-19
    32李国建.高温高湿低氧环境下人体耐受性研究.天津大学博士论 文,2008:55-57
    33姚穆,周锦芳,黄淑珍等.纺织材料学.中国纺织出版社,1997:464
    34于伟东,储才元编著.纺织物理.东华大学出版社,2002:251
    35杨志祯.抗紫外线涤麻面料产品开发与性能评价的探讨.北京纺织.2004(8):41-46
    36沈学础.半导体光谱和光学性质.科学出版社,2002:239-273
    37谭娴.防紫外线辐射效果与纺织品特性的关系.纺织科学研究,2002(1):23-26
    38吴建华.抗紫外线纤维及其织物加工技术.合成纤维,2001,30(5):22-24
    39汪邦海,朱若英.抗紫外线纤维及其织物.天津纺织科技,2002,40(3):26-28
    40允秋侠.防紫外线纤维及织物.四川丝绸.2004,91(2):29-30
    41 Goldenhersh,MiehaelA.UV blocking Material and Method of Making same.EP,0410055AI,1991
    42钟安华.抗紫外线辐射机理及产品开发.印染助剂,2002,19(3):43-45.
    43 Ferdani, G, Vittori, M.. Protection from UV rays:Characteristics of anti-UV fabrics and degree of protection. Tinctoria,2002,99(3):60-62
    44 Dastjerdi, R., Montazer, M., Shahsavan, S. A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,345(3):202-210
    45 Robotan H.J..Textiles for protection against harmfulul traviolet radiation.Intemational textileBulletin,2001 (6):13-20
    46 Guo, H., Zhang, H., Wang, S. Anti-ultraviolet finishing of cotton fabrics with modified nano-silicon nitride powder. Journal of Tianjin Polytechnic University,2010,29(2):51-55
    47陈晓光.溶胶-凝胶技术在棉织物抗紫外性能中的应用研究.化纤与纺织技术,2008(3):4-6.
    48 Ibrahim, N.A., Refaie, et al. Novel approach for attaining cotton fabric with multi-functional properties. Journal of Industrial Textiles,2010,40(1):65-83
    49李永庚,许海育.泡沫整理发泡原液组成的研究.印染,2008(18):22-27
    30 Ibrahim, N.A., Eid, B.M., et al.Smart options for functional finishing of linen-containing fabrics. Journal of Industrial Textiles,2010,39(3):233-265
    51文会兵,戴瑾瑾.超临界二氧化碳涤纶抗紫外线整理.印染,2006:9-10.
    52 Rathinamoorthy, R., Senthilkumar, P. Synthesis of nanoparticles and their application in textiles. Melliand International,2009,15(3):110-111
    53张晓莉,罗敏等.稳定水溶胶的制备及其在棉织物上的紫外线屏蔽整理.现代纺织技术,2003,11(3):1-4
    54寇勇琦,段亚峰.防紫外线功能性纺织品的技术机理与应用.国外丝绸,2009(1):30-33
    55杨栋梁,紫外线屏蔽整理的近况.印染,2002,(3):38-43
    56高铭,汤晓蓉纺织品防紫外线性能的检测标准近况,印染,2009,(3):40-43
    57何秀玲,纺织品抗紫外线性能检测标准比较,印染,2009,(11):38-42
    58冯德才,刘小林等.抗菌剂和抗菌纤维的研究进展.合成纤维工业,2005,28(4):11-14
    59 El-Molla, M.M., El-Khatib, E.M.,et al. Nanotechnology to improve coloration and antimicrobial properties of silk fabrics. Indian Journal of Fibre and Textile Research,2011,36(3):266-271
    60 Tyrone L V. Antimicrobial fiber treatment and disinfection.Textile Research Journal,1981,51 (7):454—465
    61 Gagliardi D D.Antibacterial finishes.American Dyestuff Reporter,1962,51(2):31-40
    62 Hebeish, A., El-Naggar, M.E., et al.Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers 2010,86 (2):936-940
    63 Hara, S., Ishimoto, H.,et al. Antibacterial property and mechanism of copper alginate fiber. Advanced Materials Research,2011,81 (2):107-117
    64 Sathianarayanan, M.P., Bhat, N.V. Durable antibacterial finishing of cotton fabrics using silver nanoparticles. BTRA Scan,2009,39(3):9-16
    65祖庸,雷闫盈,纳米TiO2—一种新型的无机抗菌剂,现代化工,2002,19(8):46-48
    66吴建华.抗菌纤维及其织物的加工技术,合成纤维,2006(9):22-26
    67王树根,马新安.特种功能纺织品的开发.北京:中国纺织出版社.2003:87-91
    68李毕忠.抗菌纤维及抗菌织物的研制与开发.纺织科学研究,2003,14(1):13-16
    69李亚辉.织物抗菌防臭整理工艺实践.染整技术,2006,28(3):16-18
    70 Brigita, T., Barbara, S.,et al. The influence of antimicrobial test performance on the bacterial reduction of finished cotton fabric. ITC and DC:Book of Proceedings of the 4th International Textile, Clothing and Design Conference-Magic World of Textiles,2008:910-914
    71 Dastjerdi, R., Montazer, M., A new method to stabilize nanoparticles on textile surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,345(1):203-209
    72李玲.抗菌纺织品的性能测试方法.上海毛麻科技,2009(1),31-36
    73顾平,李焰.纺织品抗菌性能测试方法的比较研究.南通纺织职业技术学院学报,2009,9(1):1-5
    74高春朋,高铭等.纺织品抗菌性能测试方法及标准.染整技术,2007,29(2):38-43
    75李毕忠.抗菌测试技术.应用科技,2009,17(11):31-33
    76楼利琴,张才前.导湿排汗纤维机织物的导湿性能.纺织学报,2007,28(9):45-48
    77王耀武,杨建忠.吸汗快干凉爽型纤维及织物的开发现状.纺织学报,2003(3):24-26
    78沈艳琴,万明等.织物的热湿舒适性探讨.广西纺织科技,2001,30(3):47-49
    79吴旭华,胡盼盼等.浅述吸湿排汗涤纶纤维.合成技术及应用,2005,16(4):30-32
    80刘茜.吸湿排汗纤维的开发及应用.广西纺织科技,2003,32(3):38-41
    81艾宝泉.吸湿排汗涤纶短纤维的生产和性能.合成纤维,2005(6):27-29
    82王其等.高导湿纱线模型及应用研究.上海纺织科技,2002(8):8-11
    83徐宗桓,李莉.提高涤纶织物吸湿性的途径.广东化纤,2005,(4):38-41
    84 FTTS-FA-004.吸湿排汗速干纺织品验证规范,台湾标准
    85GB/T 21655-2008.纺织品吸湿速干性的评价,中国国家标准
    86姜兆辉,白瑛等.差别化聚酯纤维技术研究进展.合成纤维工业,2011,34(1):30-32
    Toh, A.G.G, Cai, R.et al. Properties, applications and preparations of nanometer TiO2 particles.Journal of Hazardous Materials,2003,11:42-47
    88计耀浩,李伟等.防紫外线辐射纺织品加工技术及其原理.“印染在线”杯浙江省纺织印染助剂情报网第20届年会论文集,2005.5
    89徐斌、钟明强等.纳米TiO2、纳米ZnO对聚丙烯抗紫外光老化及结晶性能的影响.高分子材料科学与工程,2007,23(1):37-39
    90 Dastjerdi, R., Montazer, M.. Study on anti-ultraviolet radiation aging property of TiO2 modified asphalt. Advanced Materials Research,2011,306:951-955
    91 El-Dessouky, H.M., Lawrence, C.A. Preparation of TiO2/PBO nano-composites by solution blending method. Journal of Nanoparticle Research,2011,13(3):1115-1124
    92曾玉燕,沈培康等.纳米二氧化钛粉体的分散研究.中山大学学报,2004,4(23):49-53
    93王华印.UV辐射对PET/TiO2复合纤维结构与性能影响的分析.浙江理工大学硕士论文,2004
    94沈红玲,郑水林等.二氧化钛/煅烧高岭土复合粉体材料的紫外光透过性能.非金属矿,2009,32(4):68-69
    95徐德增,栾宇等.TiO2/ZnO超细粉体对PET纤维抗紫外性能及力学性能的影响.大连工业大学学报,2009,28(2):29-31
    %钱樟宝,曹欣羊等.全消光涤纶FDY生产技术.纺织学报,2007,28(8):46-49
    97张玲玲,郑今欢等.纤维素织物的纳米抗紫外线整理技术.纺织学报,2006,27(7):58-61
    98 Brunet, L., Lyon, D.Y..Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. Environmental Science and Technology,2009,43(12):4355-4360
    99杨栋梁.纺织品的紫外线屏蔽整理[J].印染,1995,21(5):36
    100田燕,刘伟等.小剂量长波紫外线多次照射对人体皮肤的影响.临床皮肤科 杂志,2010,39(10):22-25
    101 Nagaveni, K., Sivalingam, G.Characteristics and properties of surface coated nano-TiO2. Surface and Coatings Technology,2006,49(2):165-172
    102 Montazer, Majid.Enhanced Self-cleaning, Antibacterial and UV Protection Properties of Nano TiO2 Treated Textile through Enzymatic Pretreatment.Photochemistry and Photobiology,Jul./Aug,2011
    103 Al-Deyab, S.S., El-Rafie, M.H. Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex. Carbohydrate polymers,2009,86(2):936-940
    104 Hrdina, R., Abou-Okeil, A. Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric Journal of Natural Fibers.2011,8(2):176-180
    105 Petronela, D., Floarea, P., Doina, T. Antimicrobial behaviour in the textile products containing amicor fibres. Proceedings of the 3rd International Conference on Advanced Materials and Systems,2010:39-44
    106 Moakes, B. Silver fibre with activated carbon Advances in Textiles Technology, 2008.Mar.12
    107 Bobrowski, S. Antimicrobial polyester fibers for the healthcare sector. International Fiber Journal.2008,23(5):38-40 1
    108 Lucas, V. Refractory applications for Rhovyl fibre. High Performance Textiles,2009,Feb.2
    Jackowski, T., Czekalski, J., Blended yarns with a content of biological active fibres. Fibres and Textiles in Eastern Europe,2004,12(1):18-23
    110 Ollenhauer-Ries, C. Fibre innovations and their uses. Knitting Technology, 2002,24(6):26-29
    111高顺英,陈茂凯等.新型抗菌纤维—Amicor纤维的生产特点及抗菌性能.中国纤检,2006(7):30-32
    112 Michael D'Onofrio.Triclosan resistant bacteria found in Northeastern Ohio. Ohio Journal of Science,March 2003:19-21
    113桑榆.新型抗过敏Amicor丙烯腈系纤维.国际纺织导报,2005,33(3):40-41
    114 Tolnaftate.http://en.wikipedia.org/wiki/Tolnaftate
    115黄汉兰.Amicor抗微生物纤维.北京化纤,2003(3):18-22
    116肖学霞,顾平.一种新型的抗菌纤维—Amicor.丝绸,2005(4):44-45
    117任进和,常红梅.Amicor抗菌纤维/棉混纺织物练染工艺.印染,2003(3):22-24
    118欧阳燕,张淑芳.Amicor防螨抗菌床上用品织物的染整工艺.印染,2005(8):28-29
    119赵博.Amicor纤维的性能特点及其应用.国外丝绸,2008(2):39-40
    120赵博.Amicor抗菌纤维与竹纤维混纺产品的开发.纺织学报,2006(1):16-18
    121高威,含有抗菌添加剂的Amicor纤维—领先科技的新纤维.针织工业,2002(4):65-68
    122 A.H.Woodeoek.MoistureTransferinTextileSystems,Part Ⅰ, T.R. J.,1962,August,628-633
    123刘国华,王启明.含有Coolmax与Lycra的运动内衣,针织工业,2005(2):47-49
    124张会青.Coolplus纤维性能及其织物干爽舒适性分析.中国纤检,2006(11):23-24
    125张弦,郝凤鸣等.Coolplus纤维性能及其功能性针织产品的开发合成纤维,2005(8):44-45
    126陶钰,李芝谊等.Coolplus(酷帛丝)纤维的性能特征及纺纱.现代纺织技术,2005(2):22-23
    127关燕,刘亦军等.Coolplus纤维加工工艺及其产品性能研究.棉纺织技术,2003,31(9):5-8
    128 Mahish, S.S., Punj, S.K., Banwari, B.Effect of substituting modified polyester for cotton in ring-spun polyester/cotton blended yarn fabrics. Indian Journal of Fibre and Textile Research,2006,31(2):313-319
    Barnes, J.C., Holcombe, B.V.. Moisture sorption and transport in clothing during wear.Textile Research Journal,1996,Vol.66:771-86.
    130徐家麒.多元功能性化学纤维开发.丝织园地,2005(10):28-30
    131杨锁廷主编.纺纱学.第一版.北京:中国纺织出版社,2008:2-19
    132 Gretton, J.C., Brook, D.B., Dyson, H.M., Harlock, S.C..Moisture vapour transport through waterproof breathable fabrics and clothing systems under a temperature gradient.Textile Research Journal,1996, Vol.68:936-940
    133 Kim, J.O., Spivak, S.M..Dynamic moisture vapour transfer through textiles. Ⅱ. Further techniques for microclimate moisture and temperature measurement.Textile Research Journal,1996, Vol.64:112-121
    134 Li, Y., Holcomb, B.V., Apcar, F.,Moisture buffering behaviour of hygroscopic fabric during wear. Textile Research Journal,1996, Vol. Vol.62:619-627
    135 Lomax, G.R..Hydrophilic Polyurethane Coatings. J. Coated Fabrics, 1994, Vol..20:88-107
    136 Cassie, A.B.D. Fibers and fluids. J. Textile Inst.,1994,Vol.53:739-745

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700