泡沫料浆压滤成型制备纳米孔氧化硅隔热材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用气相法制备的憎水氧化硅粉体、硬硅钙石晶须及石英纤维为主要原料,制备了三相泡沫料浆。泡沫料浆经抽滤浓缩、压滤成型、常压干燥,得到纳米孔氧化硅隔热材料。氧化硅粉体是经物理团聚的粒径为10-20μm的团聚颗粒组成的粉体,其中的团聚颗粒都是由纳米小颗粒组成的多孔结构。动态水热合成的硬硅钙石晶须在水基料浆中相互缠绕形成特殊的微孔球藻状结构,这种特殊结构在亲水的硬硅钙石晶须包裹憎水氧化硅粉体、形成稳定的三相泡沫过程中起到重要作用。另外,硬硅钙石晶须的团聚体与石英纤维、铝溶胶共同作用,可提高纳米孔氧化硅隔热材料的强度。
     本研究的主要内容包括:水基料浆的制备、三相泡沫料浆的制备、泡沫料浆的浓缩和压滤成型、纳米孔氧化硅隔热材料的隔热性能研究等。
     由硬硅钙石晶须和石英纤维、水和分散剂APAM(阴离子型聚丙烯酰胺)组成的水基料浆制备中,主要研究了APAM作为分散剂对各种物料的分散性能的影响。研究表明,加入质量百分数为0.06%的APAM时,通过快速搅拌可以制备出石英纤维/硬硅钙石晶须质量配比为0.4%/5%的均匀分散的水基料浆;而发泡剂SDBS(十二烷基苯磺酸钠)对水基料浆的分散特性没有显著影响。
     由水基料浆和憎水氧化硅粉体组成的三相泡沫料浆的制备中,主要研究了SDBS/APAM复配溶液的发泡性能、SDBS/APAM复配溶液与憎水氧化硅粉体制备的三相泡沫的稳定性、水基料浆与憎水氧化硅粉体制备三相泡沫的稳定性。研究表明,APAM与SDBS的协同效应使SDBA/APAM复配溶液的发泡能力有一定程度提高。SDBS/APAM质量配比为1.2%/0.06%时的发泡能力最强。相同质量水基料浆与SDBS/APAM水溶液可以包裹的憎水氧化硅粉体的最大重量基本一致。但是,水基料浆与憎水氧化硅粉体形成的三相泡沫的稳定性明显优于SDBS/APAM水溶液与憎水氧化硅粉体形成的三相泡沫。而且随着硬硅钙石晶须加入量的增加,三相泡沫的稳定性更加提高。这主要是因为:三相泡沫中,憎水的氧化硅粉体被包裹在气泡中,亲水的硬硅钙石晶须分散在气泡周围的液膜中;亲水的硬硅钙石晶须吸附了大量液相,从而形成稳定的液膜包裹憎水氧化硅粉体的结构;硬硅钙石晶须与憎水的氧化硅粉体搭接,限制了相互之间的移动。
     三相泡沫料浆真空抽滤浓缩过程中,大气泡消失,形成了细密的小气泡结构。随着泡沫料浆中固相含量的增加,料浆的表观粘度快速增加,泡沫稳定性提高。浓缩泡沫料浆在较低剪切速率下就可以实现粘度明显降低,从而大大提高料浆流动性,容易实现泡沫料浆在压滤成型模具中的完全填充。浓缩泡沫料浆压滤过程中,随着水分和气体的排出,憎水氧化硅粉体团聚颗粒之间及硬硅钙石晶须之间搭建的较大空隙逐渐变小、消失。成型密度为0.25g/cm~3的试样,试样中较大的空隙为团聚颗粒之间及硬硅钙石晶须之间的空隙,较大孔的孔径集中在100-200nm之间。成型密度达到0.35g/cm~3,较大孔的孔径集中在50-150nm之间。当成型密度达到0.45g/cm~3,试样中孔径主要集中在10nm和30nm两个峰值附近。
     通过平板炉快速加热法测定了材料的隔热性能并直接测定了材料的导热系数,对材料的隔热性能进行了对比研究。研究表明,随着硬硅钙石晶须加入量的增加,材料的隔热性能降低。但是,为了提高材料的强度和耐热性能需要适度增加硬硅钙石晶须的加入量。硬硅钙石晶须加入量为氧化硅粉体重量的30%的典型试样NP0,在较低温度范围内,导热系数很小。NP0对波长为1-5μm的红外辐射具有较高的透过率。所以,该材料在高温下其辐射传热占主导地位,典型试样的导热系数指数增大。为了降低纳米孔氧化硅隔热材料中的辐射传热,可在热辐射传播的通路上放置具有大的吸收系数或散射系数的陶瓷粉体遮光剂。红外遮光剂的加入量有一个最佳范围,其隔热性能最好。石墨粉、氧化钛粉和氧化锆粉对应的最佳加入量分别为20%、25%和35%左右。
     采用上述泡沫料浆压滤成型工艺,实现了纳米孔氧化硅柔性、刚性及多层隔热材料的制备。本论文还对纳米孔氧化硅多层隔热材料的隔热性能进行了初步研究。通过研究发现,铝箔和柔性石墨纸作为辐射屏蔽层材料,间隔层厚度为2mm左右时,可以得到总体隔热性能最好的纳米孔氧化硅多层隔热材料。这些不同力学性能的纳米孔氧化硅隔热材料可广泛应用于多种高效隔热领域。
Nano-porous SiO2insulation materials were made from three-phase foamedslurry by filter-pressing. The foamed slurry mainly consists of hydrophobic fumedsilica, xonotlite crystal whisker, guartz fiber and water. Certain amounts of waterand gas in the foamed slurry were eliminated before filter-pressing. And the formedsample was dried in the air. A hydrophobic fumed silica particle is a porousaggregate containing many nano particles. The diameter of the silica aggregates isabout10-20micron. Xonotlite crystal whiskers synthesized by dynamichydrothermal process overlap each other in water forming a interwoven porousstructure. Such a structure is important for the fact that xonotlite crystal whiskerencapsulates the hydrophobic fumed silica particles to form a stable three-phasefoam. Besides, the xonotlite crystal whisker, quartz fiber and alumina sol togetherenhance the nano-porous SiO2insulation materials.
     The main content in the paper includes: process of water based slurry, processof three-phase foamed slurry, concentration of foamed slurry, filter-pressing ofconcentrated foamed slurry, and insulating performance of the nano-porous SiO2insulation materials. In the process of water based slurry, APAM is used as thedispersant agent. The effect of APAM on dispersion of the xonotlite crystal whiskerand quartz fiber in water was studied. The results show that with severe stirring thewater based slurry with mass ratio (xonotlite crystal whisker/quartz fiber) about0.4%/5%can disperse uniformly when the APAM content is about0.06%.Meanwhile, SDBS blister has no significant influence on dispersion of the waterbased slurry.
     In the process of three-phase foamed slurry, the foaming of SDBA/APAMsolution, the stability of the three-phase foamed slurry with SDBA/APAM solutionand the hydrophobic fumed silica, and the three-phase foamed slurry with the waterbased slurry and the hydrophobic fumed silica were studied. It was found thatsynergism of APAM with SDBS can enhance forming performance of the SDBA/APAM solution. When SDBS/APAM in the solution is about1.2%/0.06%thesolution show the best foaming performance. Same weight of the water based slurryand the SDBA/APAM solution can encapsulate the same weight of the hydrophobicfumed silica. But the three-phase foamed slurry with the water based slurry and thehydrophobic fumed silica is apparently more stabile than that with the SDBA/APAMsolution and the hydrophobic fumed silica. As increasing of the xonotlite crystalwhisker in the water based slurry, the three-phase foamed slurry becomes much morestable. It can be seen that the hydrophobic silica particles are encapsulated in thebubble, and that the hydrophilic xonotlite crystal whisker is dispersed in the liquidmembrane of bubbles in the three-phase foamed slurry. The hydrophilic xonotlitecrystal whisker can adsorb a great amount of liquid to encapsulate the hydrophobicsilica particles. The hydrophilic xonotlite crystal whisker overlap with thehydrophobic silica particles, and the movement between them is restricted.
     In the course of vacuum filtering, the foamed slurry is concentrated, and thelarge bubbles eliminated by replacing of the large bubbles with many fine bubbles.As increasing solid content in the three-phase foamed slurry, the apparent viscosityof the slurry increases quickly. All of these facts are helpful to improve the stabilityof the foam. At low shear rate, the apparent viscosity of the concentrated slurrydecreases remarkably. At the same time the pourability of the slurry increases, andthe slurry can easily fill the filter-pressing mould. In the course of filter-pressing,part of liquid and gas is discharged, and the large pores among the hydrophobicfumed silica and xonotlite crystal whisker transfer into small pores and disappearfinally. The pore diameters in sample of nano-pore SiO2insulation materials withthe density about0.25g/cm~3mainly are from100to200nm. The pore diameters insample with the density ofabout0.35g/cm~3mainly are from50to150nm. The porediameters in sample with the density o about0.45g/cm~3mainly are around10and30nm.
     Thermal insulating performance is evaluated by quickly hot plate and thethermal conductivity is also tested. It was found that with increasing of xonotlitecrystal whisker in samples the thermal insulating performance decreases. But the xonotlite crystal whisker improves the strength of samples. In a typical sample theamount of xonotlite crystal whisker is about30wt%of the hydrophobic fumed silica.The typical sample, named NP0, has low thermal conductivity at lower temperatures.However, because of the high radiation transmittance for wavelength from1to5micron, the thermal conductivity of NP0exponentially increases when radiationplays a principal role at high temperatures. To decrease the radiation in nano-porousSiO2insulation materials, some ceramic powder with large absorption or scatteringcoefficient can be used as opacifier. The amount of the opacifier in nano-porous SiO2insulation materials should be optimized for obtaining the best insulatingperformance. The optimized amount of addition of graphite, titania and zirconia areabout20%,25%and35%, respectively.
     Through filter-pressing of foamed slurry, flexible, rigid and multilayernano-porous SiO2insulation materials are fabricated. In research of nano-porousSiO2multilayer thermal insulation materials, the aluminum foil and flexible graphitepaper are used as heat screen. It was found that nano-porous SiO2multilayer thermalinsulation materials get the best thermal performance when the thickness ofnano-porous SiO2layer in the multilayer thermal insulation is about2millimeters.These nano-porous SiO2insulation materials with different mechanical property canbe used in various fields as high performance insulation materials.
引文
[1]黎青,陈玲燕,沈军,王钰.多孔材料的应用与发展[J].材料导报.1995,6:10-15.
    [2] Gregg S J,Sing K S.Adsorption, Surface Area and Porosity[M]. NewyorkAeademic Press,1982:135-354.
    [3] Sing K S.Pure and Applied Chemistry[M].Newyork Aeademic Press,1985:57-603.
    [4]孙志坚,孙纬,傅加林等.国内绝热保温材料现状及发展趋势[J].实用节能技术.2001,4:26-30.
    [5]夏雅君.隔热技术[M].机械工业出版社,1991:45-47.
    [6]侯增祺,胡金刚.航天器热控制技术[M].中国科技出版社,2007:128-200.
    [7]奚同庚.无机材料热物性学[M].上海科学技术出版社,1984:31-88.
    [8]司徒明.超燃冲压发动机的研究现状与动向[J].飞航导弹.1996,7:24-34.
    [9]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学.2008,29:47-57.
    [10]孙冰,郑力铭.超燃冲压发动机支板热环境及热防护方案[J].航空动力学报.2006,21:336-341.
    [11] Rasky,Daniel J.Ceramic thermal protection systems for reusable launchvehicles[R].NASA report.1996,D:20020041186.
    [12]吴清仁,曾令可,刘振群等.岩矿棉隔热材料导热系数与密度及温度的关系[J].陶瓷学报.1997,3:141-144.
    [13] Lavaste V,Berger M H,Bunsell A R,et al.Microstructure and mechancalcharacteristics of alpha alumina based fiber[J]. J. Mat. Sci.1995,30:4215-4220.
    [14] Romine J C.New high temperature ceramic fiber[J].Cer.Eng. Sci.1987,8:755-780.
    [15] Abe Y,Bunsell A R,Simon G,et al.Ceramic fibers in fiber enforcements ofcomposite materials[J]. Elsevier Amsterdam.1998:427-433.
    [16] Bendkowska,Wieslawa.Synthetic inorganic fibers.Przegl[J]. Wlok. Tech. Wlok.1997,11:6-15.
    [17] Bunsell A R.Development of fine ceramic fibers for high temperaturecomposites[J].Materials Forum.1998,11:78-82.
    [18] Konkin A A.Carbon and other heatresistant fibrous materials[J].KhimiyaMoscow.1974,5:21-28.
    [19] Banas R P,et al.Thermal physical and mechanical properties of the HTP familyof rigid ceramic insulation materials[C]. AIAA85-1055.1985:6-12.
    [20] Rasky,Daniel J.Ceramic thermal protection systems for reusable launchvehicles[R].NASA report D.20020041186,1996.
    [21] Lu I.Tina: TABI-The Lightweight Durable Thermal Protection System forFuture Reusable Launch Vehicles[C].AIAA96-1426.1996:957-961.
    [22] Rasky,Daniel J.Advanced Ceramic Matrix Composites for TPS CurrentTechnology for Thermal Protection Systems[R].NASA Conference Publication3157.1992:43-62.
    [23]李懋强,陈玉峰,夏淑琴等.超轻微孔硅酸钙绝热材料的显微结构和工艺控制[J].硅酸盐学报.2000,28:401-406.
    [24]李懋强.水热合成硅酸钙微孔球形颗粒[J].硅酸盐学报.2002,30:64-67.
    [25]石兴,李懋强.耐高温、低导热、柔性微孔硅酸钙材料的研究[J].稀有金属材料与工程.2007,36:560-566.
    [26] Blosser M L.Development of Metallic Thermal Protection Systems for theReusable LaunchVehicle[C].Proceedings of the Space Technology and ApplicationsInternational Forum.Albuquerque NM.1997,3:1125-1143.
    [27] Blair W,Meaney J E,Rosenthal H A.Fabrication of Prepackaged SuperalloyHoneycomb Thermal Protection System (TPS) Panels[R]. NASA CR-15646,1985.
    [28] Dorsey J T,Poteet C C,Chen R R,Wurster K E. Metallic Thermal ProtectionSystem Technology Development Concepts.Requirements and AssessmentOverview[C]. AIAA2002-05-02.
    [29] Morris W D,White N H,Ebeling C E.Analysis of Shuttle Orbiter Reliabilityand Maintainability Data for Conceptual Studies[C].AIAA Space Programs andTechnology Conference. Huntville AL.1996:43-62
    [30] Blosser M L.Development of Metallic Thermal Protection System for TheReusable Launch Vehicle[R]. NASA Technical Memorandum110296,1996.
    [31] Hunt A J. Aerogel, Atransparent Porous Super Insulator[C]. MaterialsEngineering Congress.ASCE,Pusloby,ASCE.1992,2:398-403.
    [32] Kistler S S.Coherent expanded aerogels and jellies[J].Nature.1931,127:741-743.
    [33] Kistler S S.Coherent expanded aerogels[J].J.Physical Chem.1932,36:52-55.
    [34] Friedrich Hrz, Glen Cress, Mike Zolensky.Optical analysis of impact features inaerogel from the orbital debris collection experiment on the Mir Station[R],NASATM.1999,209372.
    [35] Fesmire J E, Ryu J.Improved aerogel-based thermal insulationsystems[R].NASA Tech Briefs,1999,56.
    [36] Anthony J,Tuzzolino,Thanasis E.Dust measurements in the Coma of comet bythe Dust Flux Monitor Instrument[J].Science.2004,304:1776-1780.
    [37] Joanne Baker.Look into the Seeds of Time[J].Science.2006,314:1707-1710.
    [38] Soleimani D A, Abbasi M H.Silica aerogel synthesis properties andcharacterization[J].Journal of materials processing technology.2008,199:10–26.
    [39] Brinker C J,James B.Preparation of high porosity xerogels by chemical surfacemodification[P].WO9425149.
    [40] Prakash S S,Brinker C J,Hurd A J,et al. Silica aerogel films prepared atambient pressure by using surface derivatization to induce reversible dryingshrinkage. Nature.1995,375:431-439.
    [41] Smith D M,David S,Julie M,et al.Preparation of low-denksity xerogels atambient pressure[J].Journal of Non-Crystalline Solids.1995,186:104-112.
    [42] Prakash S S.Ambient-pressure silica aerogel films[J].Mat. Res. Soc.1995,371:205-210.
    [43] Smith D M,David S,Julie M,et al..Preparation of low-density xerogels atambient pressure for low K dielectrics[J].Mat. Res. Soc.1995,371:261-272.
    [44] Speil S.Low density thermal insulations for aerospace applications[J]. Appl.Materials Research.1964,3:238-242.
    [45] Leeser D L,Blair C,Betty B R. Flexible compression resistant and highlyinsulating systems[P].WO2006074463A2.
    [46] Herrmann G, Iden R, Mielke M,et al.On the way to commercial productionof silica aerogel[J].Journal of Non-Crystalline Solids.1995,186:380-387.
    [47] Johnston J H,Andrew J M,Thomat B,et al.Nano-structured silicas and silicatesnew materials and their applications in paper[J].CurrentApplied Physics.2004,4:411-414.
    [48] Uskokovi V, Miha D. Reverse micelles:Inert nano-reactors orphysico-chemicallyactive guides of the capped reactions[J]. Advances in Colloid andInterface Science.2007,133:23-34.
    [49] Sung S K,Hyun S K,Sun G K.Effect of electrolyte additives sol-precipitatednano silica particles[J]. Ceramics International.2004,30:171-175.
    [50] Porrasa M,Solansb C,Gonzaleza C,et al. Studies of formation of W/O nano-emulsions[J].Colloids and Surfaces.2004,249:115-118.
    [51]杨波,何慧,周扬波等.气相法白炭黑的研究进展[J].化工进展.2005,24:2372-2377.
    [52]郑典模,苏学军.化学沉淀法制备纳米SiO2的研究[J].南昌大学学报(工科版).2003,25:239-241.
    [53]何清玉,郭锴,赵炳国等.超重力法制备超细二氧化硅及影响因素的研究[J].北京化工大学学报(自然科学版).2006,33:16-19.
    [54]陈建峰,邹海魁,刘润静等.超重力反应沉淀法合成纳米材料及其应用[J].现代化工.2001,21:9-12.
    [55] Poco J F,Satcher J H,Hrubesh L W.Synthesis of high porosity monolithicalumina aerogels[J]. J. Non-Cryst. Solids.2001,285:57-63.
    [56] Venkateswarea R A,Pajonk G M,Haranath D.Synthesis of hydrophobicaerogels for transparent window insulation applications[J]. Materials Science andTechnology.2001,17:343-346.
    [57] Li F,Yu X H,Pan H J,et al. Syntheses of MO2(M=S,i Ce, Sn) nanoparticles bysolid-state reactions at ambient temperature[J].Solid State Sciences.2000,2:767-772.
    [58]胡兵,蒋斌波,陈纪忠.单分散性SiO2的制备与应用[J].化工进展.2005,24:603-605.
    [59] Shao Q G,Gu G B,Zhang L J.The application research of micro emulsion inthe preparation of nanometer materials[J].New Chemieal Materials.2001,29(7):9-13.
    [60] www.aerosil.com
    [61]杨海堃.超微细气相法白炭黑的表面改性[J].化工新型材料.2001,27:8-12.
    [62]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].化学工业出版社,2006:92-93.
    [63]苏瑞彩,李文芳,彭继华等.硅烷偶联剂KH570对纳米SiO2的表面改性及其分散稳定性[J].化工进展.2009,28(9):1596-1599·
    [64] Teofil J,Andrzej K. Influence of silane coupling agents on surface properties ofprecipitated silicas[J]. Applied Surface Science.2001,172(1):18-32.
    [65]李凤生等.超细粉体技术[M].国防工业出版社,2000:234-268.
    [66] Binks B P, Murakami R.Phase inversion of particle-stabilized materials fromfoams to dry water[J]. Nature Materials.2006,12(5):865-869.
    [67] Evans D L, Borrelli N F, Teter M P, et al.Short-Range Order andCrystallinity[J].Science.1973:774-775.
    [68] Konnert J H,Karle J and Ferguson G A.Crystalline Ordering in Silica andGermania Glasses[J].Science.1973,179(4069):177-179.
    [69]关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社,1992.
    [70] Moner G M,Martinez E,Esteve J,et al.Micromechanical Properties ofCarbon-silica Aerogel Composites[J]. Appl PhysA.2002,74:119-122.
    [71] Lee O J,Lee K H,Yim T J,et al. Determination of Mespore Size of Aerogelsfrom Thermal Conductivity Measurements[J]. J. Non-Cryst.Solids.2002,298:287-292.
    [72]刘开平,梁庆宣.水镁石纤维增强SiO2气凝胶隔热材料的制备方法[P].CN1803602A,2006.
    [73] Karout A, Buisson P, Perrard A, et al. Shaping and mechanical reinforcement ofsilica aerogel biocatalysts with ceramic fiber felts[J]. J. Sol-Gel Sci. Technol.2005,36:163-171.
    [74] Frank D,Kessler B,Zimmermann A. Process for producing fiber-reinforcedxerogels and their use[P]. US5866027,1999.
    [75] Kuhn J,Gleissner T,Arduini-Schuster M C,et al.Integration of mineralpowders into SiO2aerogels[J]. J. Non-Cryst. Solids.1995,186:291-295.
    [76] White S,Rask D.Lightweight supper insulating aerogel/tile composite havepotential industrial use[J]. Mater. Technol.1999,14(1):13-17.
    [77] Ryu J,Diego S. Flexible aerogel superinsulation and its manufacture[P]. US6068882,2000.
    [78] Carta D,Corrias A,Mountjoy G,et al. Structural Study of Highly PorousNanocomposite Aerogels[J].J. Non-cryst. Solids.2007,353:1785-1788.
    [79] Fesmire J E.Aerogel Insulation System for Space Launch Applications[J].Cryogenics.2006,46:111-117
    [80] Carta D,Corrias A,Mountjoy G.,et al. Structural Study of Highly PorousNanocomposite Aerogels[J]. Journal of Non-Crystalline Solids.2007,353(18-21):1785-1788.
    [81]李懋强,陈玉峰,夏淑琴等.超轻微孔硅酸钙绝热材料的显微结构和工艺控制[J].硅酸盐学报.2000,28(5):401-406.
    [82]张洪涛,李友明.分散剂在纤维悬浮液中的应用进展[J].造纸化学品.2000,4:36~41.
    [83]傅瑞芳.分散剂在造纸工业中的应用[J].上海造纸.2007,38(5):40-44.
    [84]姚献平,郑丽萍.聚丙烯酞胺在造纸中的应用[J].造纸化学品.2010,22(4):2-6.
    [85]赵国玺.表面活性剂物理化学[M].北京大学出版社,1984.
    [86]沈钟,王果庭.胶体与表面化学(第二版)[M].化学工业出版社,1997.
    [87] Kerekes R J,Schell C J.Characterization of fiber flocculation regimes by acrowding factor[J]. J. Pulp Paper Sci.1992,18(1):32-38.
    [88] Kerekes R J and Schell C J.Effects of fiber length and coarsenesson pulpflocculation[J].Fiber Properties.1994,78(2):133-139.
    [89]崔之开.陶瓷纤维[M].化学工业出版社,2004
    [90]仝爱莲,蒋宇平.新的高纯陶瓷纤维复合材料及其应用[J].宇航材料工艺.1995,1:14-19.
    [91]王德刚,仲蕾兰,顾利霞.高性能无机纤维[J].化工新型材料.2001,10:23-26.
    [92] Casey J P.制浆造纸工艺学[M].王菊花,张春龄,张玉范等译.第三版.轻工业出版社,1988.
    [93]沈钟,赵振国,王果庭.胶体与表面化学[M].化学工业出版社,1994.
    [94]赵国玺.表面活性物理化学[M].北京大学出版社,1991.
    [95]王莉娟,张高勇,董金凤等.泡沫性能的测试和评价方法进展[J].日用化学工业.2005,35(3):171-173.
    [96]郭志伟,徐昌学,路遥等.泡沫起泡性、稳定性及评价方法[J].化学工程师.2006,4:51-54.
    [97]谢拥群,陈彦,张壁光.植物纤维膨化材料的研究[J].木材工业.2004,18(2):30-32.
    [98] Xie Y Q,Tong Q J,Chen Y. Construction mechanism of reticular structure offiber[J]. Journal of Korea Furniture Society.2008,19(2):106-110.
    [99]余妙春,谢拥群,张德智.竹纤维悬浮发泡浆料流变特性的研究[J].北京林业大学学报.2011,33:119-124.
    [100]陶文铨.传热学[M].西安西北工业大学出版社,2006:3-18.
    [101]黄昆.固体物理学[M].高等教育出版社,1988:78-152.
    [102] Phillip W G,Calvin L,Frank K,et al. Application of Nanofiber Technologyto Nonwoven Thermal Insulation[J].Journal of Engineered Fibers and Fabrics.2007,2:225-227.
    [103] Walter W Y,Ezra T,George C.Combined conductive radiative heat transfer inhigh porosity fiberous insulation materials theory and experiment[C].The6thASME-JSME Thermal Engineering Joint Conference,2003.
    [104] Wainwright,Ronald C.High temperature resistant fibres[P],WO2007054697A1.
    [105] Smith D M,Maskara A,Boes U.Aerogel-based thermal insulation[J].Journalof Non-Crystalline Solids.1998,225:254-259.
    [106] Zeng S Q,Hunt A, Greuf R. Theoreticalmodeling of carbon contenttominimize heat transfer in silica aerogel[J]. Journal of Non-CrystallineSolids.1995,186:271-277.
    [107] Wang J,Kuhn,Lu X.Monolithic silica aerogel insulation doped with TiO2powder and ceramic fibers[J].Journal of Non-Crystalline Solids.1995,186:296-300.
    [108] Deng Z S, Wang J, Wu A M, et al. High strength SiO2aerogelinsulation[J].Journal of Non-Crystalline Solids.1998,225:101-104.
    [109] Hofmann A.The thermal conductivity of cryogenic insulation materials and itstemperature dependence[J].Cryogenics.2006,46:815–824.
    [110] Li P,Cheng H E.Thermal analysis and performance study for multilayerperforated insulation material used in space[J].Applied Thermal Engineering.2006,26:2020–2026.
    [111] Muhlratzer A,黄品秋.使神号防热系统内部多层隔热材料[J].导弹与航天运载技术.1992,10:50-56.
    [112] Krishnaprakas C K,Narayana K B,Dutta P.Heat transfer correlations formultilayer insulation systems[J]. Cryogenics.2000,40(7):431-435.
    [113] Markus S,Edgar R F,Wintera X,et al.Theoretical studies of high-temperaturemultilayer thermal insulations using radiation scaling[J].Journal of QuantitativeSpectroscopy&Radiative Transfer.2004,84:477-491.
    [114] Kamran D.Thermal Analysis and Design of Multi-layer Insulation for Re-entryAerodynamic Heating[C].AIAA2001-2834,35thAIAA Thermophysics Conference,2001.
    [115] David E G,Ray D Harold C.Materials development for hypersonic flightvehicles[C].AIAA2006-8122,14thAIAA/AHI Space Planes and HypersonicSystems and TechnologiesConference,2006.
    [116] Siegel R.Transient thermal analysis for heating a translucent wall with opaqueradiation barriers[J]. Journal of Thermophysics and Heat Transfer.1999,13(3):277-284.
    [117]闫长海,孟松鹤,陈贵清等.金属热防护系统多层隔热结构的稳态传热分析[J].航空动力学报.2006,21(5):800-803.
    [118]马忠辉,孙秦,王小军等.热防护系统多层隔热结构传热分析及性能研究[J].宇航学报.2003,24(5):543-546.
    [119]赵玲,吕国志,任克亮等.再入飞行器多层隔热结构优化分析[J].航空学报.2007,28:1345-1350.
    [120]李东辉,夏新林,艾青.多层高温隔热结构的传热特性[J].宇航材料工艺.2011,1:20-23.
    [121]石兴,李懋强.纳米孔氧化硅绝热材料[J].中国粉体工业.2010,2:12-16.
    [122]斯帕罗EM,塞斯著R D.辐射传热[M].顾传保,张学译.高等教育出版社,1982:216~234.
    [123]蔡龙明.传热学[M].第四版.台北兴业图书股份有限公司,1979:262-264.
    [124]于怀之.红外光学材料[M].国防工业出版社,2007:48-51.
    [125]陶文铨.传热学[M].西北工业大学出版社,2006:324-326.
    [126] Touloukian S and DoWitt D P. Thermal radiative properties of nonmetallicSolids[J].Thermophysical properties of matterm.1972,8.
    [127]江经善.多层隔热材料及其在航天器上的应用[J].宇航材料工艺.2000,30(4):17-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700