高品质化学发泡聚烯烃材料的制备及其断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的微发泡技术对于获得综合性能较为理想的微孔聚合物材料,提高其使用性能,满足某种特殊的需要,降低生产成本,均具有非常重要的意义。聚烯烃作为应用最为广泛的聚合物材料,通过微发泡技术在聚烯烃内部引入大量的微孔及微孔作为第二相均匀的分散在聚烯烃内部的微孔聚烯烃材料,既可以保持原有聚烯烃材料某些优良的性能,又可以改进本身性能的不足,兼顾了降低成本又能保持较好的力学性能,是一种新型的高性能复合材料。微孔聚烯烃材料的结构与形态很大程度上依赖于加工过程中的成型工艺、树脂特性,研究其成型工艺、树脂特性与结构形态和性能的关系及变形断裂机制,对于调控和优化材料性能具有重要理论价值和应用指导意义。
     本文系统的研究了化学发泡注塑成型工艺、聚烯烃本征特性(不同凝胶含量聚乙烯、不同流体流动速率聚丙烯)、纳米无机粒子对制备发泡聚烯烃材料发泡行为的影响规律和机理,制备出高质量的微孔发泡聚烯烃材料;对微孔发泡聚烯烃材料变形与断裂行为进行了深入探讨,阐明各种影响因数,提出微孔对聚烯烃增韧机理的新见解,并建立了相应的物理数学模型。论文研究取得了以下主要成果:
     首先,注塑工艺参数中注塑温度对聚烯烃发泡材料的泡孔平均直径、泡孔尺寸分布、泡孔密度影响最大,其次为注塑压力。注塑温度的影响与其对发泡剂分解速度、产气量、熔体强度的影响而导致泡孔的形核和长大(并泡)过程有关。而注塑压力的影响与发泡剂分解产生的气体在外压下的压强平衡有关。通过优化工艺,获得了泡孔平均直径为21μm、泡孔密度3.2×107个/cm3,泡孔尺寸分布均匀的高品质聚烯烃微孔发泡材料样品。
     其次,聚烯烃本征特性对发泡聚烯烃材料泡孔平均直径、泡孔尺寸分布、泡孔密度以及工艺的影响表现为熔体强度的影响。在相同的注塑工艺条件下,熔体强度高导致泡孔临界形核半径较大,熔体强度低易导致泡孔长大(并泡),从而要获得高品质发泡聚烯烃材料,熔体强度应在一定范围内;不同工艺条件下不同的熔体强度聚烯烃可以获得高品质发泡材料。
     再次,纳米无机粒子对化学发泡注塑成型制备其微孔发泡材料的泡孔平均直径、泡孔尺寸分布、泡孔密度以及成型工艺的影响,一方面,纳米有机蒙脱土的添加将引起泡孔形核率和聚烯烃熔体粘度的提高,从而制备出泡孔平均直径19.49μm,泡孔尺寸分布均匀,泡孔密度为3.8×107个/cm3的更高发泡品质聚烯烃/纳米有机蒙脱土复合微孔发泡材料;另一方面,聚烯烃中引入均匀分布的插层形式纳米有机蒙脱土,起到“钉扎”和应变强化作用,导致其在发泡过程中具有更稳定的发泡工艺及更宽的注塑温度,实验表明,注塑温度在170℃~195℃范围内,聚丙烯/纳米蒙脱土复合发泡材料的泡孔平均直径、泡孔尺寸分布、泡孔密度变化不大,注塑温度高于195℃后,才有较大的变化。
     最后,首次提出了微孔对聚烯烃材料冲击断裂韧性作用与聚烯烃材料的本征韧性有关。微孔发泡聚烯烃材料在外加冲击力场作用下变形断裂过程和机理的研究结果表明了,微孔的存在导致聚烯烃材料变形断裂机制发生了变化,微孔的引入一方面减小了试样(材料)的有效承载面积,另一方面导致聚烯烃试样芯部基体材料易松弛裂纹尖端应力集中阻止裂纹扩展,并会诱使主裂纹分解成次生裂纹,使裂纹扩展的方向和方式都发生变化,表现为裂纹扩展的阻力,其综合作用结果导致了微孔的增韧作用随聚烯烃材料本征冲击强度(αk0)的不同存在差异,当裂纹扩展断面的有效截面积减小将导致聚烯烃材料冲击强度下降的值(αk1)小于微孔的存在松弛了裂纹尖端的应力,或改变应力分布形成不同方向的次生裂纹增加裂纹扩展功提高聚烯烃材料冲击强度的值(αk2)时,微孔表现为增韧的作用,反之,微孔的存在则降低材料的韧性。从而得出微孔发泡聚聚烯烃的冲击强度(αk)的物理数学表达式为: a k = a k 0 ? a k 1 + ak2。
To obtain microcellular polymer material with better performance, to meet particular needs, to reduce production costs, the research on polymer micro-foaming technology is of great significance. Microcellular polyolefin materials with a large number of microcells dispersing uniformly, obtained through micro-foaming, are a series of new high-performance composite materials. These materials can maintain the original good mechanical performance and meanwhile low cost. The structure of microcellular polyolefin depends mostly on the processing technology in the process of molding, resin characteristics. Therefore, it’s important theoretically and empirically for the control and optimization of material properties to study the molding process, resin characteristics and the structure of the relationship between morphology and properties of fracture and deformation mechanisms.
     In this thesis, the effect of the chemical foam injection molding processes, intrinsic properties of polyolefin (different gel content of polyethylene, polypropylene of different fluid flow rates), nano-particles of inorganic materials on foaming behavior and mechanism of polyolefin was studied systematically, which aim to prepare high-quality microcellular polyolefin . Deformation and fracture behavior of microcellular polyolefin was detailedly investigated to clarify the effect of various factors and toughening mechanism of the new opinion, and set up a mathematical model of physics. Research paper made the following main results:
     First, the effect of injection temperature on cell size, cell density and cell size distribution of foamed HDPE is foremost, which lead to different decomposing rate, gas amount of foaming agent, melt-viscosity of HDPE and injection pressure. The effect of injection pressure is related to balance pressure. The average cell diameter of 21μm, cell density of 3.2×107 (cells. cm-3), the cell size uniform distribution of high-quality microcellular polyolefin samples were produced By optimizing the process conditions.
     Second, the effect of intrinsic properties of polyolefin and processing parameters on the average cell diameter, cell size distribution, cell density and the melt strength of polyolefin was studied. In the same processing conditions, the high melt strength leaded to larger bubble nucleation radius of the critical hole, while the low-melt-strength enhanced bubbling. Thus to obtain high-quality polyolefin foam materials, the melt intensity should be within a certain range. The polyolefin foam materials with different melt strength can be obtained under different processing conditions.
     Furthermore, the effect of nano-inorganic particles on the average cell diameter, cell size distribution, cell density was studied. On the one hand, the addition of Nano-OMMT leaded to higher cell nucleation rate and melt viscosity. The microcellular polyolefin / Nano–OMMT composite foam material with average cell diameter of 19.49μm, cell size uniform distribution, cell density of 3.8×107 cell.cm-3 was obtained. On the other hand, the introduction of intercalated Nano-OMMT dispersing uniformly played the role of "pinning" and strain-hardening, resulting in foam with more stable injection molding process and a broader temperature range. The experiment showed that the injection temperature of 170℃~ 195℃range of polypropylene / nano- montmorillonite composite foam materials. The average cell diameter, cell size distribution, the cell density changed inconsiderably, while there could be a large change when injection temperature is higher than 195℃.
     Finally, the relationship between the impact fracture toughness of polyolefin material and intrinsic toughness of polyolefin was introduced for the first time. Mechanism of fraction and deformation of microcellular polyolefin material indicated that the existence of microcells leaded to a change in fracture mechanism. The existence of microcells may reduce the actual section area of samples under impact test, meanwhile, cause easily the cell sample polyolefin matrix material to relax the crack tip stress concentration to prevent crack propagation. The main cracks were broken down to secondary ones, so the direction of crack propagation changed. The resistance performance to crack growth is related with intrinsic impact strength (αk0). If the crack growth in the actual section area of polyolefin materials reduced, the decreased value of impact strength (αk1) was less than the existence of microcells relaxation of crack tip stress. And the microcells toughening property were enhanced provided that the value of impact strength (αk2) were improved, which arised from extended function of the secondary cracks in different directions by means of varying stress distribution. Otherwise, the existence of microcells reduced the toughness of polyolefin materials. And we drew a conclusion that the impact strength (αk) of these microcellular polyolefin materials can be expressed by the following physical mathematical expression: a k = a k 0 ? a k 1 + ak2.
引文
[1] Martini JE, Suh NP and Baldwin DF. Microcellular closed cell foams and their method of manufacture. U.S. Patent. 4,473,665, 1984-9-25.
    [2] Colton, J S, Suh, N P. Microcellular foams of semi-crystaline polymeric materials. US Patent 5160674 .1992-11-3.
    [3] Cha, SW, Suh, N P, Baldwin, D F, Park, C B. Microcellular thermoplastic foamed with supercritical fluid. US. Patent .5158986. 1992-10-27.
    [4] Baldwin, DF, Suh, N P, Park, CB, Cha, S W. Supermicrocellular foamed materials. US. Patent. 5334356. 1994-08-02.
    [5] Martini JE and Ellen J. Master's Thesis. Massachusetts Institute of Technology, 1981.
    [6] Kumar V, Vander Wel M, Weller J, et al. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, Transactions of the ASME. 1994, 116(4): 439-445.
    [7] Williams JM and Wrobleski DA. Microstructures and properties of some microcellular foams. Journal of Materials Science. 1989, 24(11): 4062-4067.
    [8] Maxuana LM., Park CB and Balatinecz JJ-Structures and mechanical properties of microcellular foamed polyvinyl chloride. Cellular Polymers. 1998, 17(1): 1-16.
    [9] Kumar V, Juntunen RP and Barlow C. Impact strength of high relative density solid state carbon dioxide blown crystallizable polyethylene terephthalate microcellular foams. Cellular Polymers. 2000, 19(1):25-37.
    [10] Ozkul MIA Mark JE and Aubert JH. Elastic and plastic mechanical responses of microcellular foams. Journal of Applied Polymer Science. 1993, 48(5): 767-774.
    [11] Collias DI. and Baird DG. Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices andmicrocelluiar foams Polymer Engineering and Science. 1995, 35(14): 1167-1177.
    [12] Seeler K A, and Kumar V, Fatigue of High Density Microcellular Polycarbonate", Journal of Reinforced Plastics and Composites, 1993.12, 359-164 .
    [13] Collias D I,Baird D G, Borggreve R J M, Impact Toughening of Polycarbonate by Microcellular.Foaming Polymer, 1994, 35(18): 35: 3978-3983
    [14] Park C B,Baldwin D F, Suh N P, Polym. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular Polymers. Polymer Engineer Science, 1995 35(5), 432-440.
    [15]肖纪美.聚合物合金的无机化学[M].第一版.北京:冶金工业出版社,1994.206.
    [16] The Freedonia Group, Inc. Foamed Plastics to 2005; Study 1436: Cleveland, OH, 2001.
    [17]佚名.美国泡沫聚合物需求增加.聚合物市场,1996 (23 ): 14.
    [18] Vipin Kumar. Microcellular Polymers: Novel Materials for the 21st Century. Progress in Rubber & Plastics Technology, 1993, 9(1): 54-70.
    [19] Krueger DC and Reichel CJ. Chlorodifluoromethane as the primary blowing agent far rigid urethane foams using conventional low and high pressure foam mixing equipment. Polyurethanes world congress. 1991:220-224.
    [20] Grunbauer HJM, Broos JAF, Thoen JA et al. Fine celled CFC-free rigid foam-new machinery with low boiling blowing agents. Journal of Reinforced Plastics and Composites. 1994, 13(4): 361-370.
    [21] Toensmeier P A. Blowing agents, CFC replacement becomes more promising. Modern Plastics. 1989, 66(9): 53-56.
    [22] Grunbauer HJM, Thoen JA and Smits GF. Low boiling blowing agents for rigid polyurethane foams: A new concept for nucleation and expansion of CFC-1 I free foams. Polymeric materials science and engineering, proceedings of the ACS division of polymeric materials science and engineering. 1992, 67: 503-505.
    [23] Singh SN, Burns SB, Costa JS and Bonapersona V. Method of increasing thesolubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams. Cellular Polymers. 1997, 16(6): 444-467.
    [24] Colton J S, Suh N P. The nucleation of microcellular thermoplastics foam with additives: Part II: Experimental results and discussion. Polymer Engineer Science, 1987,493-497.
    [25] Kumar V and Welter JE. Model for the unfoamed skin on microcellular foams. Polymer Engineering and Science. 1994, 34(3): 169-173.
    [26] Kumar V and Welter .IE. Bubble nucleation in microcellular polycarbonate foams. Polymeric Materials Science and Engineering. 1992, 67: 501-502.
    [27] Welter JE and Kurnar V. On the skin thickness of microcellular foams: The effect of foaming temperature. Annual Technical Conference, Conference Proceeding, 1997, 2037-2041.
    [28] Park CB, Baldwin DF and Suh NP. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science. 1995, 35(5): 432-440.
    [29] Baldwin DF, Park C B and Suh NP. Microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states, Part II:Cell growth and process design, Polymer Engineering and Science. 1996, 36(11):1446-1453.
    [30] Park C.B., Suh N.P. Filamentary extrusion of microcellular polymers using a rapid decompressive element. Polymer Engineer Science, 1996, 36(1): 34- 48.
    [31] Baldwin D.F., Park C.B., Suh N.P. An extrusion system for the processing of microcellular polymer sheets: shaping and growth control. Polymer Engineer Science, 1996, 36(10):1425-1435.
    [32] Baldwin D.F., Park C.B., Suh N.P. Microcellular sheet extrusion system process design models for shaping and cell growth control. Polymer Engineer Science, 1998, 38(4):674-687.
    [33] Nam P.S. Gear throttle as a nucleation device in a continuous microcellular extrusion system. US Patent 6005013.1999-12-21.
    [34] Herrman T. Process and apparatus for producing a foamed polymer. US Patent 5889064.1999-5-30.
    [35] Perman CA, Hendrickson WA and Riechert ME. Method of making thermoplastic articles using supercritical fluids. U S. Patent. 5670102, 1997-9-23.
    [36] Arora KA, Lesser AJ and McGarthy TJ. Preparation and characterization of microcehular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 1998, 31(14): 4614-4620.
    [37] Arora KA, Lesser AJ and McCarthy TJ. Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polymer Engineering and Science. 1998, 38(12): 2055-2062.
    [38] Goel SK and Beckman EJ. Generation of microcellular polymeric foams using supercritical carbon dioxide, I I: cell growth and skin formation. Polymer Engineering and Science. 1994, 34(14):1148-1I56.
    [39] Jacobsen Kai, Pierick David. Microcellular foam molding: advantage and application examples. Antec, 2000, 46:1929.
    [40] Xu Jing Yi, Pierick David. Reciprocating screw injection moldingm Chine for microcellular foam. Antec, 2001, 59(1):449-353.
    [41] Hall PG and Stoeckli HF. Adsorption of nitrogen, n-butane and neo-pentane on chlorohydrocarbon polymers. Traps Faraday. 1969, 65 (564): 3334-3340
    [42] Hansen RH and Martin WM. Novel methods for the production of foamed polymers, II. nucleation of dissovled gas by finely divided metals. Journal of Polymer Science, Part B: Polymer letters. 1965, 3: 325-330
    [43] Hansen RH. Production of fine cells in the extrusion of foams. SPE Journal. 1962, 18(1): 77-82
    [44] Blyler LL and Kwei TK. Flow behavior of polyethylene melts containing dissolved gases. Journal of Polymer Science, Part C: polymer symposia. 1971, 35: 165-176
    [45] Desphande Ns and Barigou M. Performance characteristics of novel mechanical foam breakers in a stirred tank reactor. Journal of ChemicalTechnology and Biotechnology. 1999, 74(10): 979-987
    [46] Djelveh G, Gros JB and Cornet JF. Foaming process analysis for a stirred column with a narrow annular region. Chemical Engineering Science. 1998, 53(1): 3157-3160
    [47] Blander M. Bubble nucleation in liquids. Advances in Colloid and Interface Science1979, 10: 1-32
    [48] Ramesh NS, Rasmussen DH and Campbell microcellular foams assisted by the survival of GA. Heterogeneous nucleation of microvoids in polymerslow glass transition particles, Part I: mathematical modeling and numerical simulation. Polymer Engineering and Science. 1994, 34(22):1685-1697
    [49] Stewart CW. Nucleation and growth of bubbles in elastomers. Journal of polymer Science, Part A-2: Polymer Physics. 1970, 8(6): 937-955
    [50] Frenkel J. Kinetic theory of liquids. New York. 1955
    [51] Gerum E, Straub J and Grigul U. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory- International Journal of Heat and Mass Transfer.1979, 22(4):517-524
    [52] Skripov VP. Metastable Liquids.John Wiley&Sons. New York, 1974
    [53] Gabrielli C, Huet F and Keddam M. Characterization of electrolytic bubble evolution by spectral analysis. Application to a corroding electrode. Journal of Applied Electrochemistry. 1984, 15(4): 503-508
    [54] Golorin VS, Kolchugin BA and Zakharova EA Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motion-picture photography. Heat Transfer一Soviet Research. 1978, 10(4): 79-98
    [55] Skripov V, Baidakov V, F, makov G, et al. Superheated liquids: Thermophysical properties, homogeneous nucleation and explosive boiling-up. American Society of Mechanical Engineers. 1977: 77-87
    [56] Hayns MR and Wood MH. Model for the simultaneous heterogeneous and homogeneous nucleation of gas bubbles. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences. 1979: 331-343
    [57] Katz JL and Wiedersich H. Effect of insoluble gas molecules on nucleation of voids in materials supersaturated with both vacancies and intexstitials. Journal of Nuclear Mateaials. 1973,46(1): 41-45
    [58]胡英.近代化工热力学一应用研究的新进展.科学技术文献出版社[M],1994: 48
    [59]徐祖耀.相变原理.科学出版社[M],1988
    [60] Blander M and Katz JL. Bubble nucleation in liquids. AIChE Journal, 1975, 21(5): 833-848
    [61]徐济鉴,贾斗南编,鲁钟琪主审.沸腾传热与气液两相流.原子能出版社[M],1993:362
    [62] Abraham EF. Homogeneous Nucleation. Academic Press. New York. 1974: 125-127
    [63] Petty DG, Blythe PA and Shih CJ. Near-equilibrium heterogeneous nucleation. Letters in Applied and Engineering Sciences. 1977, 5(1): 1-12
    [64] Ward C A ,Johnson WR, Venter RD, et al. Heterogeneous bubble nucleation and conditions for growth in a liquid-gas system of constant mass and volume. Journal of Applied Polymer science. 1983, 54(4): 1833-1843
    [65]筏义人,徐德恒等著.高分子表面的基础和应用.化学工业出版社,1990
    [66]戴干策.聚合物加工中的传递现象.中国石化出版社,1999
    [67] Faridi N, Dey, SK and Chawda A Measurement of solubility of gases in semi-crystalline polymers, Annual Technical Conference-ANTEC, Conference Proceedings, 1997, 2: 2221-2226
    [68]尚金山,郑菊英.高分子化学及物理学.兵器工业出版社[M],1990
    [69] Akiba I and Masuoka H. Measurements of Henry's constants for hydrocarbon vapors in polystyrene and poly(phenylene sulfide) powders by gas chromaxography. Journal of Chemical Engineering of Japan. 1998, 31(3): 313-319
    [70]滕建新.发泡聚合物动态成核机理的研究,华南理工大学博士学位论文,2005
    [71]吴舜英,徐敬一.发泡聚合物成型.第二版.北京:化学工业出版社,1999
    [72] J. Alteepping and J.P. Nebe. Production of low density polypropylene foam. U S. Patent 4940736.1990-7-10.
    [73] Doroudiani. S, Park C B, Kortechot M T. Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends, Polymer Engineer Science, 1998, 3 8(17):1205- 1215
    [74] Harada. Polypropylene composition and foamed polypropylene sheet therefrom. U.S. Patent. 3846349.1974-11-5
    [75] J. J. Park, L. Katz and N. G. Gaylord. Polypropylene foam sheets. U.S. Patent 5116881 .1992-5-26
    [76] Yaolin Zhang, Denis Rodrigue, Abdellatif AitKadi. High-density polyethylene foams. I. Polymer and foam characterization Journal of Applied Polymer Science 2003:2111-2119
    [77] Horng-Jer tai. Bubble Size Distribution and Elastic Retraction in Crosslinked Metallocene Polyolefin Elastomer Foams. Journal of polymer research, 2005(12):457-464.
    [78] Waldman F A, The processing of microcellular foam. S.M Thesis. Dept Mech Engineer, MIT, Cambridge, MA, 1982
    [79] Kumar V, Vanderwel M M. Microcellular polycarbonate PartⅡ: Characterization of tensile modulus. SPE Technical papers, 1991, 37:1406-1410
    [80] Kumar V, Vanderwel M, Weller J,et al. Experimental characterization of the tensile behavior of microcellular polycarbonate foam. J Eng Mat Tech, 1994, 116(4): 439-445
    [81] Matuana L M, Park C B, Balatinecz J.J., Structures and mechanical properties of microcellular foamed polyvinylchloride. Cellular Polymers, 1998, 17(1):1-16
    [82] Waldman F A, The processing of microcellular foam. S.M Thesis. Dept Mech Engng, MIT, Cambridge, MA, 1982
    [83] Kumar V, et al. The effect of additives on microcellular PVC foams: PartⅡ. Tensile Behavior. Cellular Polymers, 1998, 17(5): 350-361
    [84] Collias D I, Baird D G. Impact behavior of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and single-edge-notched tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate. Polymer Engineer Science,1995,35(14):1178-1183
    [85] Richard P. Juntunen, Vipin KumarV, Impact Strength of High Density Microcellular Poly (Vinyl Chloride) Foams. Journal of vinyl & additive technology, June 2000, 6(2):1789-1895.
    [86] FIannace, S. Iannace, G. Caprino et al, Prediction of impact properties of polyolefin foams. Polymer Testing 20 (2001):643–647.
    [87] Xinhua Dai, Zhimin Liu, Yong Wang et al, High damping property of microcellular polymer prepared by friendly environmental approach. Journal of Supercritical Fluids 33 (2005): 259–267.
    [88]胡正飞,杨振国,赵斌,高密度硬质聚氨醋发泡聚合物的断裂特性[J].高分子材料科学与工程,2004,20(6),191-194.
    [89]梁书恩,王建华,田春蓉等.匀泡剂对硬质聚氨酷泡沫孔径及冲击性能的影响,塑料助剂[J], 2005,51(3),25~27.
    [90] Matuana L M, Park C B, Balatinecz J J. Structures and mechanical properties of microcellular foamed polyvinylchloride. Cellular Polymers, 1998, 17(1):1-16.
    [91] Kumar V, Juntunen R P, Barlow C, Impact strength of high relative density solid state carbon dioxide blown cristallizable poly(ethylene terephthalate) microcellular foams. Cellular, 2000, 19(1):25-37.
    [92] Bureau M V, Gendron R. J Cell plastic, Mechanical-morphology relationship of PS foams. 2003, 39: 353-367.
    [93] Achtanapun P, Selke S, Matuaua L M. Relationship between cell morphology and impact strength foamed high-density polyethylene/polypropylene blends. Polymer Engineer and Science, 2004, 44: 1551-1560.
    [94] Weaire D, Fortes M. Stress and strain in liquid and solid foams, Advance phys, 1994, 43: 685-738.
    [95] Link H R. Testing of polymeric foams at high and medium strain rates.Polymer Test, 1997, 16: 429- 443.
    [96] Mills V J. Zhu H X. The high strain compression of closed-cell polymer foams, J Mech Phys Solids, 1999, 47: 669- 695.
    [97] Almauza O, Babago L, RoDriguez Perez M A, De Saja ,J A, The microstructure of polyethylene foams produced by a nitrogen solution process Journal of Macromol Science Physics, 2001, 840: 603-613.
    [98] Ramsteiner F,Fell N Forster S. Testing the deformation behavior of polymer foams, Polymer Test,2001,20, 661-670.
    [99] Archer E, HarkiTr Joues E, Kearns M P, Fatues A M. Processing characteristics and mechanical properties of metallocene catalyzed linear low-density polyethylene foams for rotational molding. Polymer Engineer Science, 2004, 44: 638- 647.
    [100] Tu Z H, Shim V, Lim C T. Plastic deformation modes in rigid polyurethane foam under static loading , Int. Journal Solids Struct, 2001, 38: 9267- 9279.
    [101] Landron L Di, Sala G,Olivieri D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets, Polymer Test, 2002, 21: 217- 228.
    [102] Kim Y,Kung S. Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams, Polymer Test, 2002, 22: 197- 202.
    [103] Saha M C, Mahfuz H, Chakravarty U K, Udddin M. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams, Materials Science and Engineering :A Struct Mater Prop Microstruct Process, 2005, 406: 328-336.
    [104] Subhash, G., Liu, Q. and Gao, X.-L. (2006). Quasi-static and high strain-rate uniaxial compressive response of polymeric structural foams. Int. Journal of Impact Engineering. 32, 1113-1126.
    [105] Song B, Chen W, Don S B, Winfree N A.. Int. J. Strain-rate Effect on Elastic and Early Cell-collapse Responses of a Polystyrene Foam International, Journal of Impact Engineering, 2005, 31: 509- 521.
    [106]吴智华,孙洲渝.双腈胺改性偶氮二甲酰胺在聚丙烯中的发泡特性[J].中国塑料,2002, 15(7):7-10.
    [107]吴智华,孙洲渝,唐卓,牛艳华.影响注塑PP微孔材料结构的工艺参数[J].中国塑料,2002, 16(97):57-61
    [108]何和智,周南桥,吴宏武等.电磁动态塑料混炼挤出机性能分析[J].中国塑料,1997, 11(5):76-81.
    [109]瞿金平.聚合物挤出成型的新方法与新设备[J].中国塑料,1997,11(3):69-73
    [110]周南桥,长云,孔磊,湛丹.速率对聚苯乙烯/超临界CO2发泡体系的影响[J].中国塑料, 2004, 18(12):37-40.
    [111]张纯,罗筑,于杰,等.二次开模注射成型微孔发泡PP工艺及其性能研究[J].中国塑料,2005,19(8):67~70.
    [112] D.F.Baldwin, C.B.Park, and N.P.Suh, Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites [J], Polymer engineering and science, 1998, 38(11):1862-1872 .
    [113]吴强,瞿保钧,吴强华.聚乙烯光引发交联过程中的表面光氧化和光稳定,高等学校化学学报[J], 2001,22(9),1610~1613
    [114]N.P.Suh,“Microcellular Plastics”,nin Innovation in Polymer Processing-Molding[M], J.F. Stevenson, ed, Hanser publishers, Munich, 1996.
    [115]C. B. Park D. F. Baldwin, and N. P. Suh, Cellular and Microcellular[J], ASME, 53, 109 (1994).
    [116] L. S. Turng and H. A. Kharbas, Effect of conditions on the Weld-Line Strength and microstructure of Microcellular Injection Molded Parts[J], Polymer Engineering and Science,2003, 43(1):157-168.
    [117]Chicheng wang, Karen cox, Gregory A, Microcellular Foaming of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process, Campbell journal of vinyl and additive technology, 1996, 2(2):167~169.
    [118]D.F.Baldwin, C.B.Park, and N.P.Suh, Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites [J], Polymer Engineering and Science, 1998, 38(11):1862-1872.
    [119]N.P.Suh, Innovation in Polymer Injection Molding[M], Hanser, Munich, 1996:93-149.
    [120]J.Xu and D.pierick, J. Inject. microstructure foam processing in reciprocating screw injection molding machines, Journal of Injection Molding Technology , 2001:5(3), 152-159.
    [121]姜同川,正交工艺设计[M],山东科学出版社.1995.
    [122]Masayuki Yamaguchi, Ken-ichi Suzyki, Rheological properties and foam processability for blends of linear and crosslinked polyethylenes, Journal of polymer Science, 2001, 39.2159-2167.
    [123]Yaolin, zhang, Denis Rodrigue, Abdellatif Ait-Kadi, High density polyethylene foams.Ⅰ.Polymer and foam characterization, Journal of Applied polymer science, 2003, 90:2111-2119.
    [124]Andrzej K. Bledzki, Omar Faruk, Effects of the chemical foaming agents, injection parameters, and melt-flow index on the microstructure and mechanical properties of microcellular injection-molded wood-fiber/polypropylene composites, Journal of Applied polymer science, 2005,97:1090-1096.
    [125]Chong Hoon Lee, Ki-jun Lee, Ho Gab Jeong, Seong Woo Kim. Growth of gas bubbles in the foam extrusion process. Advances in polymer technology, 2000, 19(2):97-112.
    [126]郦华兴,阮诗川.聚丙烯泡沫挤出成型中气泡成核行为的研究.国外塑料[J],1999,17( 1) :28-31.
    [127]刘振龙,孟斌等.聚丙烯低发泡片材的研制[J].塑料工业,2004,32( 3):58 -60
    [128]李迎春,谭能超等.发泡工艺对交联发泡PP板材性能的影响[J].工程塑料应用,2003, 31( 7) :25- 27.
    [129]李迎春,韩朝星等.交联过程对交联发泡PP板材性能的影响[J].塑料工业,2003,31( 7) :43-45.
    [130]G .J N am,J.H .Y oo, etal. Effect of long-chain branches of polypropylene on heological properties and foam-extrusion performances[J]. Journal of Applied Polymer Science, 2005, 96(5):1793 -1800.
    [131] Alexander Chandra, Shaoqin Gong, mingjun Yuan. Lih-sheng Turang. PolymerEngineer and Science, 2005:52-61.
    [132] Ramesh N S, Baker Jim. Foam comprising a blend of low density polyethylene and high melt tension polypropylene. US Patent .6462101,2002-10-8.
    [133]Horng-Jer tai. Bubble Size Distribution and Elastic Retraction in Crosslinked Metallocene Polyolefin Elastomer Foams. Journal of polymer research, 2005(12):457-464.
    [134]占国荣,周南桥,彭响方.聚合物的熔体强度及其测试技术,中国塑料[J],2003:79-82.
    [135]Kazuaki Okamoto,Suprakas Sinha Ray,and Masami Okamoto.New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure,properties,melt rheology,and biodegradability[J].Journal of Polymer Science Part B:Polymer Physics,2003,41:3160-3172.
    [136] Petr Svoboda,Changchun Zeng,Hua Wang,L.James Lee,and David L.Tomasko.Morphology and mechanical properties of polypropylene/organoclay nanocomposites [J].Journal of Applied Polymer Science,2002,85:1562-1570.
    [137] Tae H.Kim,Sung T.Lim,Chung H.Lee,Hyoung J.Choi, and Myung S. Jhon.Preparation and rheological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite[J].Journal of Applied Polymer Science,2003,87:2106-21 12.
    [138] Chong Min Koo,Mi Jung Kim,Min Ho Choi,Sang Ouk Kim, and In Jae Chung. Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology [J].Journal of Applied Polymer,2003,88:1526-1535.
    [139] Phillip B.Messersmith,and Emmanuel P.Giannelis.Synthesis and barrier properties of poly(-caprolactone)-layered silicate nanocomposites[J], Journal of Polymer Science Part A:Polymer Chemistry.1995.33:1047—1057
    [140] Masami Okamoto, Pham Hoai Nam,Pralay Maiti, Tadao Kotaka, TakashiNakayama,Mitsuko Takada, Masahiro Ohshima, Arimitsu Usuki, Naoki Hasegawa, and Hirotaka Okamoto.Biaxial Flow—Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam[JJ.Nano letters. 2001.1:503-505.
    [141]Han Xiangmin, Extrusion of polystyrene foams reinforced with Nano-Clays,[C].Annual Technical Conference-ANTEC, Conference Proceedings, 2003 .vol 2:1732 -1734
    [142] Zeng Changchuu, Extrusion of Polystyrene NanocompoSite Foams With Supercritical C02, Polymer Engineering and Science, 2003, 43(6), 1261-1275
    [143] Mingjun Yuan, Lih-Sheng Turng, Shaoqin Gong, Daniel Caulfield, Chris Hunt, and Rick Spindler. Study of Injection Molded Microcellular Polyamide-6 Nanocomposites[J]. Polymer Engineering And Science, 2004, 44, 673- 686.
    [144]Xia Cao, L.James Lee, Tomy widya and Christopher Macosko. Polyurethane/clay nanocomposites foams: Processing, structure and properties [J]. Polymer, 2005, 46:775-783
    [145] Yingwei Di,Salvatore Iannace,Ernesto Di Maio,and Luigi Nicolais Poly(1actic acid)/Organoclay Nanocomposites:Thermal,Rheological Properties and Foam Processing[J].Journal of Polymer Science:Part B:PolymerPhysics,2005,43:689-698.
    [146] S. T. Lee, Foam Extrusion, Technomic Publishing Company, INC. (2000)
    [147]赵素合.聚合物加工工程[M].北京:中国轻工出版社,404-406
    [148]Masami Okamoto, Pham Hoai Nam, Pralay Maiti, Tadao Kotaka, Naoki Hasegawa and Arimitsu Usuki, A House of Cards Structure in Polypropylene/Clay Nanocomposites under Elongational Flow 2001(1), 295-198.
    [149]J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineer Science, 1987. 27, 485-488..
    [150]J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion, PolymerEngineering and Science, 1987.27, 493 -451.
    [151]Youhei Fujimoto, Suprakas Sinha, Masami Okamoto, Akinobu Ogami, Kazunobu Yamada, and Kazue Ueda. Well-Controlled Biodegradable Nanocomposite Foams: from Microcellular to Nanocellular[J]. Macromol. Rapid Commun, 2003, 24:457~461
    [152]Pham Hoai Nam,Pralay Maiti,Masami Okamoto,et al.Ahierarchical Structure and properties of intercalated polypropylene/clay nanocomposites[J]. Polymer, 2001, 42:9633-9640.
    [153]Baldwin D F, Park C B and Suh N P. A microcellular processing study of poly (ethylene-terephthalate) in the amorphous and semicrystalline states, Polymer Engineering and Science, 1996, 36(10), 1425-1435
    [154] Collias D I, Baird D G, Impact behavior of microcellular foams of polystrene, styrene-acrylonitrile copolymer, and single-edge-notched tensile toughness of microcellular foams of polystrene, styrene-acrylonitrile copolymer, and polycarbonate Polymer Engineering and Science, 1995,35(14), 1178-1183
    [155]卢子兴,微孔泡沫塑料力学行为的研究综述,力学进展,2002,vol.32, No.3, 365-378
    [156]Ramesh N S, Rasmussen D H, Campbell G A. Numerical and Experimental Studies of Bubble Growth Polymer Engineer Science, 1994, 31( 23):1657-1664.
    [157]Colton J S, Suh N P. The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion, Polymer Engineer Science, 1987, 27(7):493-498.
    [158]Baldwin DF, Park C B, Suh N P. A Microcellular Processing Study of Poly(Ethylene-Terephthalate) in the Amorphous and Semicrystalline States. Polymer Engineer Science, 1996, 36(10):1437-1445
    [159]Behravesh A H, Park C B, Pan M,et al. Effect suppression of cell coalescence during shaping in the extrusion of microcellular HIPS foams, Polymer Prep, 1996, 37( 2):767-771.
    [160]Park CB, Suh N P. Filamentary extrusion of microcellular polymers using arapid decompressive element, Polym Engineer Science, 1996, 36(1):34-38.
    [161]叶强,周炜,刘华蓉,吴大珍,双连续相微乳液辐射聚合制备多孔材料的研究,高分子学报,2005,(1):41-46
    [162]魏红,关绍巍,郭梅梅,马晓野,姜振华.新型PES微孔材料的制备及性能研究,高等学校化学学报[J],2007,28(1),188-192
    [163]Selke S E M, Matuana L M. Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends, Polym Eng Sci, 2004, 44(8): 1552-1560
    [164] Juntunen R. P, Kumar V. impact Strength of High Density Microcellular Po ly( Vinyl Chloride) Foams, Journal of vinyl & additive technology, 2000, l6(2):93-99
    [165]F. Iannace, S. Iannace, G. Caprino. Prediction of impact properties of polyolefin foams Polymer Testing, 2001, 20: 643-648
    [166] Xinhua Dai, Zhimin Liu, Yong Wang, Guanying Yang, Jian Xu and Buxing Han, High Damping Property of Microcellular Polyurethane Prepared By Supercritical CO2, Journal of Supercritical Fluids, 2005, (33), 259-267.
    [168]胡正飞,杨振国.高密度硬质泡沫聚氨酯塑料的断裂特性高分子材料科学与工程, 2004, (6):191~194
    [169]梁书恩,王建华.匀泡剂对硬质聚氨酯泡沫孔径及冲击性能的影响,塑料助剂,2005,(3):25~27
    [170]Park C B, Behravesh A H, Venteret R D. Low density microcellular fo am processing in extrusion using CO2[J]. Polymer Engineering and Science, 1998, 38(11): 1812-1823.
    [171]Matuana L M, Park C B, Balatinecz J J. Structure and mechanical pro perties of microcellular foamed polyvinyl chloride[J]. Cellular Polymers, 1998, 17(1): 1-16.
    [172]刘浩,韩常玉,董丽松.闭孔发泡聚合物结构与性能研究进展.高分子通报.2008,3(3):29~42.
    [173]Waldman F A.The processing of microcellular foam. S M Thesis. Dept Mech Engng, MIT, Cambridge, MA, 1982.
    [174]Kumar V,Technical Vanderwel M M. Microcellular polycarbonate Part II: Characterization of tensile modulus. SPE papers, 1991, 37: 1406-1410
    [175]Doroudiani S, Kortschot M T. Polystyrene foams. II. Structure-impact properties relationships.Journal Applied Polymer Science, 2003, 90: 1427-1434
    [176]周文管,王喜顺,发泡聚合物主要力学性能及其力学模型.塑料科技,2003,12:17-20
    [177]张纯,于杰,张凯舟、何力、周国治、李谦.微孔对HDPE缺口冲击强度及断面形貌特征的影响研究,高分子学报[J].2008.7: 726-732
    [178]张纯,何力,于杰,周国治.温度对微孔发泡PP、HDPE材料冲击性能的影响,高分子材料科学与工程[J],2008,11:103-07
    [179]区英鸿,邢春明,李永先).塑料手册[M.北京:兵器工业出版社,1991.37-38
    [180]于杰.聚合物宏观断口分析[J],高分子材料科学与工程,1995,(4):22-25
    [181]符若文,李谷,冯开才.高分子物理[M],北京:化学工业出版社,2004.224-226
    [182]何曼君,陈维孝,董西侠.高分子物理.上海;复旦大学出版社,1990,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700