高镁磷尾矿回收利用磷、镁的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着世界磷矿资源的贫化和枯竭,各国都在寻求新技术以进一步开发利用贫矿资源。我国中、低品位磷矿资源相当丰富,大多属杂质含量高、难选的胶磷矿,采用常规工艺很难获得优质磷酸,必须经过经济有效的选矿富集才能满足磷酸和高浓度磷复肥生产需求,由此产生的大量尾矿尚未得到开发利用。该尾矿属高镁磷尾矿,应该成为可利用的二次资源。因此,开展对该高镁磷尾矿综合利用的基础研究和技术开发工作,是化肥工业、化学工业,乃至国民经济可持续发展的迫切要求。面对这一挑战,本文选择了我国重要磷矿生产基地——瓮福磷矿浮选尾矿为代表,对其中镁和磷的综合开发利用若干重要理论问题,如尾矿的矿物结构、物理化学性质,水溶液热力学,各种杂质对尾矿酸解过程产生的复杂效应,镁、磷的酸解动力学,液固相复杂体系的反应机理等进行比较系统和深入的研究,获得了若干重要的结论,从而为胶磷矿与白云石的分离、高镁磷尾矿的综合利用提供理论依据,同时也对极低品位磷矿及高镁矿的综合利用具有一定借鉴意义。
     作者采用x射线衍射仪、电子探针、透射电子显微镜、能谱仪、扫描电镜、电子显微镜、分析电镜和常规化学分析等手段测定了尾矿矿物学结构、形貌,镁、磷赋存状态等重要特征,获得了反应活性、抗阻缓性、发泡特性、煅烧特性等矿石工艺方面的重要物性参数,发现了尾矿及其原矿共性和异性之间的关系。研究表明:高镁磷尾矿主要由8.56%氟磷灰石、87.14%白云石组成,属高镁极低品位磷矿;尾矿中镁、磷在细粒级中相对富集,分别为65.66%和66.96%,其中镁主要集中在颗粒内部;依据不同颗粒矿物组成以及内部结构,尾矿类型含量从高到低依次划分为白云石质、白云石磷灰石质、磷灰石白云石石英质、石英质、磷灰石质、褐铁矿质;尾矿中镁多数以独立矿物白云石颗粒形式存在,磷主要以具有相当数量的磷灰石与白云石形成的矿物连生体形式存在,极少数以独立矿物磷灰石形式存在;尾矿反应活性好(反应活性99.65%),有一定的抗阻缓性(抗阻缓系数为12.3),发泡能力强(泡沫稳定指数1780.7ml-min);煅烧温度在900℃时,主要含镁矿物白云石分解完全,而含磷矿物氟磷灰石需在高温时才发生分解。
     作者利用可靠的热力学数据和大量的热力学理论,首次以Mg2+-Ca2+-H2CO3-H2O、CaCO3·MgCO3-SO42--H2O、Ca2+-F--H3PO4-H2O、Ca5(PO4)3F-SO42--H2O、Mg2+-H3PO4-H2O体系在常温下的热力学平衡分析出发,讨论了Ca-Mg-P-H2SO4体系在常温和高温下的溶液-矿物溶解、沉积现象。结果表明,镁、磷的主要溶出反应的pH0随温度的升高而降低,并在较强酸性条件下分别以Ca2+、Mg2+、H3PO4形式存在于溶液中;用H2SO4作为浸出剂时,会促进钙、镁、磷的反应,它们分别以CaSO4结晶体水合物、Mg2+、H3PO4存在。
     作者研究了磷尾矿硫酸复杂体系的液固相反应动力学过程,用扫描电镜、等离子发射光谱、常规化学分析等进行了测试与监控,系统测定了尾矿颗粒中镁、磷及铁、铝杂质的反应动力学曲线。研究表明,镁、磷溶出规律相似,不存在选择性溶解。矿石颗粒表面形成的固体膜对反应有重要影响,表现出较大阻缓性,阻缓系数均大于1.6,方程t/1ln1-x/1-βt/x=k可以很好地描述尾矿中镁、磷的反应动力学,活化能分别为14.881kJ/mol和11.908kJ/mol,尾矿酸解反应为固态膜扩散控制过程。因此,作者进一步对表面固态膜进行了细致而深入的研究,发现随着酸解反应的进行,尾矿颗粒表面由致密、平整变得疏松、多孔,表面结晶体逐渐由细碎短小的针状变为粗大的短柱状,表面固态膜先后形成为烧石膏、石膏、硬石膏。这些研究对控制固相产物形态,从而为提高固液相的过滤性能提供了良好的理论依据。
     以上研究揭示了以磷尾矿为代表的液固相反应机理。尾矿颗粒酸解过程是从外表层到内层逐步深入的,己反应完毕的区域与尚未反应的区域之间的反应界面不是一个面,而是一些硅骨架孔洞。随着反应的进行,这一反应区域逐步向颗粒中心移动,直至反应完全,最后剩下充满复杂孔洞的硅质残骸及钙质覆盖膜。这一进程可描绘为:处于湍流状态的、具有一定浓度的液相主体包围着尾矿颗粒,反应从颗粒外表面的渗透开始,逐渐形成硅骨架孔洞和钙质覆盖膜。进一步反应时扩散过程和化学反应过程同时存在,液相一边沿孔隙扩散,一边与孔壁上的物质进行反应,反应后的液相产物将扩散至液相主体,固相产物沉积、阻塞孔洞、随局部过饱和度的变化发生CaSO4·0.5H2O到CaSO4·2H2O、CaSO4的转化,从而阻碍物流的进一步扩散。
     作者在研究尾矿酸解动力学的基础上,提出了用循环浸出-净化-萃取(反萃)法从尾矿酸浸液中制取磷酸的方法,所得磷酸可满足工业生产要求。酸解产物石膏可直接作为石膏板的原料,消除了磷石膏的污染。
To deal with crisis that high-quality phosphate rocks of the whole world are depleted, the plans to employ low-grade phosphate ores are already in full swing in some of countries presently. Though plenty of phosphate reserve exsist in our country, mainly are middle and low grade and high content impurities and difficult to beneficiat, which need to be beneficiated economically and efficiently to meet demand of phosphorous produces. Result of that, there are large quanlity of tailings to be discarded and not to be recoveried. The tailings belong to phosphorite tailings with high magnesium content and should become available secondary resource. Therefore, it is urgently important to engage in researching and developing to comprehensively utilize tailings in order to satisfy with chemical industry as well as fertilizers. Facing this chanllenge, we chose the floated tailings from Wengfu phosphate ores and made extensive study about some important theories involving in their recovery such as mineralogical structure and physical and chemical characteristics of the tailings, aqueous thermodynamic, effects of impurities in digesting process, complicated reactive mechanism and reaction kinetics, and then obtained significant results, which can provide some theretical basis and reference for cellophane and dolomite separation, comprehensive recovery on phosphorite tailing with high magnesium content, even on low grade phosphorite and high magnesium content ores.
     The important characteristics such as mineralogical structure, appearance, exsist state of Mg and P of the phosphate tailings were detected by using X ray diffraction (XRD), electron probe, transmission electron micrograph (TEM), spectrometer, scanning electron microscope (SEM), electron microscope (EMS), analytical electron microscope (AEM) and chemical analysis. It is obtained that the key physical and chemical behavior parameters including reactive activity, resistance to retardancy, foaming characteristic and it is discovered that the relation between tailings and their originals. The results indicate that tailings are mainly made of dolomite and phosphorite, accounting for 87.14%and 8.56% respectively, which belong to low grade phosphorite rock with high magnesium content. P2O5 and MgO comparably enriched in fine particle size, accounting for 65.66% and 66.96% respectively, and MgO mainly concentrated to the internal tailing's particle. On the basis of mineralogical components and internal structure of phosphorite tailing, its brand of tailing is successively divided into dolomite based tailings, dolomite and phosphorite based tailings, dolomite and phosphorite and quartz based tailings, quartz based tailings, phosphorite based tailings and brown iron ore based according to their content's amount. The existing state of Mg and P is respectively independent dolomite particle and intergrowth of phosphorite and dolomite, and amount of independent phosphorite is very low. Compared with the original phosphate ores, the phosphate tailings'reactivity is higher, resistance to retardancy is lower and the foaming ability is stronger. When calcination temperature is up to 900℃, dolomite decomposed completely.
     The phenomena of solution-mineral dissolution and precipitatation are discussed through the analyses on thermodynamic equilibriums of Mg2+-Ca2+-H2CO3-H2O, CaCO3·MgCO3-SO42--H2O, Ca2+-F--H3PO4-H2O, Ca5(PO4)3F-SO42--H2O and Mg2+-H3PO4-H2O systems at normal temperature. It is dicovered that the pH0 values of digestion reactions of Mg and P decrease with increasing temperature, and they exsist in the forms of Mg2+、H3PO4 in strong-acid solution respectively. While H2SO4 is as acid solvent, the digestion of Ca, Mg and P will accelerate, exsisting in the forms of CaSO4 crystallines, Mg2+ and H3PO4 in solution, respectively.
     Based on the above work, the reacting kinetic processes are investigated in a specially designed reactor system by using SEM, plasma emission spectroscopy (PES) analysis. As important results, the digesting behavior of Mg is similar to P's, not selective dissolution and the negative temperature effect of the digestion of Fe and Al are revealed in the reaction system, which will be of benefit to restrain impurities dissolution from ore particles to acid solution. The strong effects of solid film forming on the surface of tailing particle on acidolysis reaction show stronger retardancy property. It is also noticed that the Drozdov equation (1/tln1/(1-x)-βx/t=k), which took into account the self-impeding effect, can describe the dissolution process of P2O5 and MgO quite well. The result of apparent reaction activation energy of P2O5 and MgO is 14.881 and 11.908 kJ·mol-1 respectively indicates that the main reactions of tailing dissolution are solid film diffusion control process. The detailed investigations on solid film are found that the particle surface turns densy and smoothy into loosy and porus, get thick and bulky, turns finely, and the appearant form turn short, small and needle shapes into big, rough and short column shapes, and the surface materials successively form assanite, plaster and anhydrite.
     From above results, the reacting mechanism is explored that the reactive components can diffuse in the tailing particle through a large amount of mico pores. With the reaction proceeding, the penetration and the reaction region will move towards the center of the particle, finally remain siliceous survival and calcareous coating. There are three regions in the system, which include penetration region where liquid diffuse in the surface of paticle, reaction region where reaction and diffusion phenomena exist at the same time, and unreacted region.
     Besides these, cyclic leaching-extraction-stripping method recovering P2O5 in form of high quality phosphoric acid from phosphorite tailing with high magnesium content is already proved to be available.
引文
[1]Phosphate Rock.Mineral Commodity Summaries,2008
    [2]叶连骏.中国磷块岩(第一版)[M].北京:科学出版社,1989:1-3.
    [3]吴初国.我国磷矿资源优势与可持续供应的对策建议[J].化肥工业,2004,(4):3-5.
    [4]张卫峰,马文奇,张福锁等.中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J].自然资源学报,2005,20(3):378-386.
    [5]刘代俊.我国磷矿资源贫化趋势与对策探讨[J].磷肥与复肥,2005,20(1):7-9.
    [6]Industrial Minerals 2006.1
    [7]Industrial Minerals 2006.12.
    [8]Industrial Minerals 2007.12
    [9]中国地质矿产信息研究院.矿产资源战略分析—磷矿
    [10]尹丽文.我国磷矿资源开发利用现状及对有关问题的建议[J].国土资源情报,2004,(10):37-39.
    [11]高志炜.贵州省磷化工现状及发展前景[J].贵州化工,1995,(2):8-10.
    [12]刘颐华.我国与世界磷资源及开发利用现状.磷肥与复肥[J],2005,20(5):1-5.
    [13]Phosphate Rock.Minerals yearbook,2006
    [14]陈嘉甫,谭光熏.磷酸盐的生产与应用[M].成都:成都科技大学出版社,1989.
    [15]吴丙戍.磷肥与复肥[J].1992,1:6-7.
    [16]上海化工研究院.阿尔巴尼亚富士巴特磷矿选矿中间试验总结报告,1971.
    [17]上海化工研究院.陕西何家岩磷矿煅烧消化选矿中间试验总结报告,1973.
    [18]Alfred W. Petersen. Process for Treating Phosphate Ore [J]. US.1972, (3):702-717.
    [19]Isgaque Muhammad, Ahmed Nasir. Removal of Magnesium by Leaching from Lagarban Phosphate Rock for Phosphoric Acid Manufacture[J]. Ferlitizer News,1982,27 (6),53-58.
    [20]陈照宜.化肥工业[J],1987,(1):52-56.
    [21]蒋金尊.磷酸盐资料汇编,1984,(2):15-19.
    [22]伍沅.磷肥与复肥[J],1992, (1):17-20.
    [23]王励生.磷肥与复肥[J],1988,(4):16-18.
    [24]成都科技大学磷肥及复肥研究室.马边磷矿老河口坝矿区全层混采矿降镁制酸试验研究报告,1989.
    [25]Friedrich Wolstein, Essen, et al. Method for the Conversion of Phosphate Rock Containing Magnesium into Phosphoric Acid and a Mixture of Magnesium and Calcium Carbonates[J]. US. 1979, (4):152-379.
    [26]J.P 57,166,502,1982
    [27]黄玉琼,贺小平,吴高安,等.磷矿除镁方法[J].磷肥与复肥.1993,(1):42-45.
    [28]杨建中,李志祥.湿法磷酸生产用磷矿化学法净化技术研究[J],磷肥与复肥,2003,18(1):12-15.
    [29]武汉化工学院.CN90-1,076,89,9.
    [30]Phosphorus & Potassium,1993,183:39-40.
    [31]余静.利用低品位磷矿生产湿法磷酸的新工艺及动力学研究[D].四川大学硕士学位论文.
    [32]Thakkar J L, Vyas R S.采用低品位磷矿石生产磷酸[J].磷肥与复肥,1993, (3):86-90.
    [33]周贵云.湿法磷酸生产中磷矿预处理技术的应用[J].磷肥与复肥,2000,15(1):40-41.
    [34]何光洪,党压固,赵浪.磷矿净化脱镁的研究[J].四川化工,2005,8(5):3-6.
    [35]Paul A. Smith. Phosphate Rock Grade and Quality[J].Phosphorus & Potassium,1992,178:28-36.
    [36]邓维平,夏代宽.磷酸分解磷矿的工艺条件研究[J].硫磷设计与粉体工程,2002,(6):13-15.
    [37]张志业、陈欣.磷矿中镁对湿法磷酸的影响及其综合利用分析[J].中国化工学会无机盐学术年会会议论文集,2005:331-334.
    [38]谭志斗.硫酸连续分解高镁磷尾矿的实验研究[J].化工矿物与加工,2006,(2):7-9.
    [39]吴佩芝.湿法磷酸[M].北京:化学工业出版社,1987.
    [40]王建华等.化学反应工程基本原理[M].成都:成都科技大学出版社,1997.
    [41]姜信其.化学反应工程学简明教程[M].1987
    [42]陈仁学.化学反应工程与反应器[M].1988.
    [43]上海化工学院等.化学工程[M].1980.
    [44]唐玉华等.化学反应工程基础[M].1992.
    [45]陈五平.无机化工工艺学[M].1989.
    [46]S. M. Janikowski. N. Robinson and W. F. Sheldrick, Fert. Soc. Eng.Proc.,1964,81.
    [47]陈欣.计算机三维图象和数据库技术在磷矿弱酸脱镁动力学中的应用[D].成都,四川大学(博士学位论文),2001.
    [48]上海化工研究院.制湿法磷酸用磷矿的评价方法研究,1981.
    [49]刘代俊,钟本和,张允湘.磷块岩的分形特征和反应活性[J].化学反应工程与工艺,1999,15(1):97-113.
    [50]刘代俊,钟本和,张允湘.磷矿的晶体结构和酸解动力学特性[J].磷肥与复肥,1999,(6):7-9.
    [51]刘代俊.磷矿复杂体系液固反应机理及动力学研究[D].成都:四川大学博士学位论文,1998.
    [52]Mcclellan G H Gremillion L R.Evaluation of phosphate Raw Materials[M]. I.F.D.C.1980.
    [53]Lehr J R.Characterization of apatites in commercial phosphate rocks[M]. I.F.D.C.1980.
    [54]Mcclellan G H. Crystall chemical investigation of natural apatites [J].AM.Mineral,1969,54(9-10): 1374-1391.
    [55]刘代俊,钟本和,张允湘.磷矿的晶体结构和酸解动力学特性[J].磷肥与复肥,1999, (6)7-9.
    [56]中国磷肥工业协会.磷酸磷铵的生产工艺[M].成都:成都科技大学出版社,1991.
    [59]涂敏端,霍丹群.胶磷矿酸解反应活性的研究[J].磷肥与复肥,1996, (4):10-12.
    [60]向汉珍,任伟.浅析磷矿杂质对二水物法湿法磷酸生产的影响[J].湖南化工,1993, (4):26.
    [62]陆熊掌.冯建章.中国九个磷矿床中磷灰石的组成结构参数与反应活性的相互关系[J].化肥与催化,1983,(2):42-50.
    [63]刘代俊,钟本和,张允湘.磷块岩的分形特征和反应活性[J].化学反应工程与工艺,1999,(1):97-100.
    [64]姜志新.湿法冶金分离工程[M].北京:原子能出版社,1993.
    [65]蒋汉瀛.湿法冶金物理化学[M].北京:冶金工业出版社,1984.
    [66]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1997.
    [67]赵俊学,张丹力,马杰等.冶金原理[M].西北工业大学出版社,2002.
    [68]黄兴无.有色冶金原理[M].北京:冶金工业出版社,1993.
    [69]熊家林,刘钊杰,贡长生.磷化工概论[M].北京,化学工业出版社,1994.
    [72]Vandersluis S, etc. The digestion of phosphate ore in phosphoric acid[J].Ind Engchem Res.1987, 26(12):1-5.
    [73]Ma Sanjian.Dissolution kinetics os phosphate ore in acidic solution[J].Chinese J Ind Engchem Res, 1990,29:2389
    [74]吕莉.汉源磷钾矿特性与制复肥反应过程机理研究[D].成都,四川大学(博士学位论文),2004.
    [75]刘代俊,钟本和,张允湘.磷酸中铁铝镁杂质对开阳磷矿分解速率的影响[J].四川大学学报(工程科学版),2001,33(3):41-45.
    [76]刘代俊,钟本和,张允湘.晓峰林矿反应动力学及表面微结构影响的研究[J].硫磷设计.1999,(3):42-45.
    [77]刘代俊,钟本和,张允湘.金河磷矿中磷、铁、铝和镁的酸解动力学研究[J].磷肥与复肥,2000,15(4):9-13.
    [78]李成蓉,钟本和,张允湘.金河磷矿在硫、磷混酸中的溶解动力学[J].化工学报,1998,49(3):335-341.
    [79]张太明,黄隐华,张允湘.金河磷矿在磷酸中的溶解动力学[J].四川联合大学学报(工程科学版),1997,1(3):27-32.
    [80]余静.利用低品位磷矿生产湿法磷酸的新工艺及动力学研究[D],2005.
    [81]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989.
    [82]化学工业部化肥司,中国磷肥工业协会编写组.磷铵生产分析[M].成都:成都科技大学出版社,1991.
    [83]周贵云,张允湘.我国几种典型磷矿的反应特性和发泡特性的研究[J].磷肥和复肥,1996,12(4): 13-15.
    [84]杨林军,张允祥,钟本和.湖北磷矿的特性研究[J].磷肥与复肥,2001,16(4):9-11.
    [85]戴元法.磷矿性质与重过磷酸钙生产的关系[J].化肥工业,1993, (1):4-9.
    [86]Lehr J R. A revised laboratory reactivity scale for evaluating phosphate rocks for direct application[M]. T.V.A.Muscle hoals, Ala.T.V.A.Bull:19-48.
    [87]化学工业部化肥司,中国磷肥工业协会编写组.磷酸磷铵的生产工艺[M].成都:成都科技大学出版社,1991,2-14.
    [88]项宗筠.磷肥与复肥[J],1987,3(1):21-24.
    [89]高执棣.化学热力学基础[M].北京:北京大学出版社,2006.
    [90]张业主编.物理化学学习指导[M].北京:化学工业出版社,2004.
    [91]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:39-441.
    [92]李余增.热分析[M].北京:清华大学出版社,1987.
    [93]陈镜泓,李传入.热分析及其应用[M].北京:科学出版社,1985.
    [94]蔡正千.热分析[M].北京:高等教育出版社,1993.
    [95]印永嘉.大学化学手册[M],第一版,济南:山东科学技术出版社,1985,261.
    [96]Somasundaran. P. etc. Mineral —Solution Equilibria in Sparingly Soluble Mineral System, Colloids and Surfaces,1985,15.
    [97]邵绪新.胶磷矿浮选化学——胶磷矿和白云石的捕收与抑制[D].中国矿业大学,1990:72-83.
    [98]李自强,何良惠.水溶液化学位图及其应用[M].成都科技大学出版社,1991,8:52-172.
    [99]傅崇说.冶金溶液热力学原理与计算[M].冶金工业出版社,1989.9.
    [100]无机化学编写组编.无机化学[M].人民教育出版社,1978.3.
    [101]R.G.Robins.The Solubility of Metal Arsenates, American Society for Metals and the Metallurgical Transactions, B vol.128,March,1981,103-109.
    [102]Wagman. D. D., Selected values of chemical therm-dynamic properties[M].. Technical Note 270,part 3 and 6,1968,1971.
    [103]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].中南工业大学出版社.1986.7:403-469.
    [104]钟竹前,梅光贵.电位—pH图在湿法冶金中的应用[J].有色金属(冶炼部分),1979,(3):28-36.
    [105]Latimer, Wendell Mitchell. The oxidation states of the elements and their potentials in aqueous solution, New York:Prentice-Hall,1953.
    [106]谭凯旋,王清良,伍衡山,等.溶浸采矿热力学和动力学[M].中南大学出版社,2003年3月:35-36.
    [107]中南矿业学院.冶金过程原理[M].1973.
    [108]Horvath, A. L. Handbook of Aqueous electrolyte solutions:physical properties, estimation, and correlation methods[M].Ellis Horwood limited;New York:Halsted Press,1985:409-412.
    [109]许志宏,王乐珊.无机热化学数据库[M].科学出版社1897,9,P203-223.
    [110]梁英教.物理化学[M].冶金工业出版社.1992.10,P369-373.
    [111]邱竹贤,梁英教,李席孟,等.冶金热化学[M].冶金工业出版社,1985,3,P450-465.
    [112]A.V.斯拉克编,广东化工学院无机物工学教研组译,磷酸(上册)[M].石油化学工业出版社,1976,2:102.
    [113]钟竹前,梅光贵.电位—pH图在湿法冶金中的应用(续)[J].有色金属(冶炼部分),1979,(4):29-35.
    [114]王淀佐,胡岳华.浮选溶液化学[M].湖南科学技术出版社.1987.6.
    [115]朱元保,沈子琛,张传福,等.电化学数据手册[M].湖南科学技术出版社.1985.4.
    [116]Barin.I. etc. Thermochemical properties inorganic substances. Berlin, springer-verlag,1973 L Ⅱ 921.
    [117]J.A.迪安.兰氏化学手册[M].尚久方,操时杰,辛无名,等.译,科学出版社,1991年3月:9-1—-9-66.
    [119]GB1871-80,磷精矿和磷矿石中磷、铁、铝、钙、镁含量的分析方法[S].
    [120]张允湘,冯余清,应建康,等.料浆法制磷铵的生产与操作[M].成都:成都科技大学出版社,1987:153-188.
    [121]叶连骏.中国磷块岩(第一版)[M].北京:科学出版社,1989:179-196.
    [122]Mcphail D.C. Thermodynamic properties of aqueous tellurium species between 25 and 350℃[J]. Geochimica et Cosmochimica Acta.1995,59(5):851-866.
    [123]Evangelos D.Economou.The kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions:the case of PH range from 3.96 to 6.40[J]. Journal of colloid and interface science,2002,245:133-141.
    [124]Evangelos D.Economou. Kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions[J]. Journal of colloid and interface science,1998,201:164-171.
    [125]M.Bayramoglu, N.Demircilolu, et.al. Dissolution kinetics of Mazidagi phosphate rock in HNO3 solution[J]. Mineral processing,1995,43:249-254.
    [126]Emmanuel M.Papamichael. Dissolution of the carbonate minerals of phosphate ores:catalysis by carbonic anhydrase Ⅱ, from Bovine erythrocytes, in acid solutions[J]. Journal of colloid and interface science,2002,251:143-150.
    [127]Van der sluis S, etc. The digestion of phosphate ore in phosphoric acid[J].Ind Engchem Res.1987, 26(12):1-5.
    [128]Ma Sanjian. Dissolution kinetics os phosphate ore in acidic solution[J]. Chinese J Ind Engchem Res,1990,29:2389.
    [129]涂敏端,周进.硫磷混酸分解磷矿反应动力学研究[J],化学工程,1995,23(1):62-66.
    [130]严永华.磷酸分解磷矿石的动力学[J],高校化学工程学报,1998,12(3):265-270.
    [131]朱炳辰.化学反应工程[M],北京:化学工业出版社,1993,173-192.
    [132]杨显万,邱定蕃,湿法冶金[M].北京:冶金工业出版社,1998.4
    [133]Gioia F,Mura G,Viola A.Ind Eng Chem Process Des Dev,1977,16(3):390-399.
    [134]Elnashaie S S,Al-fariss T F, Abdel Raziksm,et al.Ind Eng Chem Res,1990,29(12):2389-2401.
    [135]齐曾荫,郑竹人.改进湿法磷酸工艺[J].磷肥与复肥,1991,6(2):5-9.
    [137]Said S Elnashaie, et al. Ind Eng Chem [J],1990,29 (2):2389.
    [138]涂敏端,周进.化学工程[J],1995,23(1):62-66.
    [139]尹建国,徐绍龄.化肥工业[J],1986,(2):2-6.
    [140]王方瑚,陈健,彭少方.化肥与催化[J],1987,(4):59-62.
    [141]Science Ventures Inc. New phosphate purification process [J].Phosphorus & Potassium,1993,183 (1):39-40.
    [142]Chen xin, Wang Lisheng. Kinetics of Removal of Magnesium from Phosphate Ore with Diluted Acid[J]. Progress in natural science,2000,10(7):515-519.
    [143]S.Yagi,D.Kunii. Chem.Eng.(Japan),1955,19:500.
    [144]刘代俊,钟本和,张允湘.沉积型磷矿酸解过程的介微观反应机理[J].硫磷设计与粉体工程.2000,(6):1-5.
    [145]王濮,潘兆橹,翁玲宝,等.系统矿物学(下册)[M],第一版,地质出版社,1987,2:271-337.
    [146]胡显智.高镁矿石酸浸降镁及浸出液综合利用研究[D].昆明理工大学(博士论文),2001.61-64.
    [147]孔繁振.磷矿浮选尾矿煅烧铵盐法综合回收镁、磷试验研究[D].贵州大学(硕士论文),2008.47-49.
    [148]文衍宣.磷矿脱镁废水综合利用应用基础研究[D].四川大学(博士论文),1999.
    [149]王军民.湿法磷酸的净化脱氟新工艺研究[J].无机盐工业,2001,1(1):6-8.
    [150]黄伟九,张俊.湿法磷酸的脱硫(SO42-)净化研究[J].昆明理工大学学报,1997,8(4):112-115.
    [151]黄金赛,于世杰.食品级磷酸的试制[J].福建化工,1989,(3):23-28.
    [152]钟本和,陈亮,李军,等.溶液萃取法净化湿法磷酸的新进展[J].化工进展,2005,24(6):596-602.
    [153]骆广生,刘舜华,孙永,等.磷酸的溶剂萃取法净化[J].过程工程学报.2001,2(1):211-213.
    [154]谭志斗,谷晋川,吴焕理,等.高镁磷尾矿在磷酸中的溶解动力学[J].化工矿物与加工,2007,(4):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700