生物表面活性剂的合成及其促进有机物降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面活性剂无毒,可以生物降解,对环境影响很小,具有较低的临界胶束浓度和较高的表面活性,因此是合成表面活性剂的理想替代品。生物表面活性剂能够促进微生物对难溶有机物的利用和降解。本文的目的主要是利用分泌生物表面活性剂的微生物来降解有机污染物。
     以水溶性底物甘油作为碳源,选用铜绿假单胞杆菌合成鼠李糖脂的发酵体系作为研究对象。采用多种流加方式进行发酵,实验分析细胞浓度、碳源浓度和氮源浓度对发酵过程的影响。当摇瓶培养基中含有3%甘油和4g/L硝酸钠时,接种后60h细胞浓度达到最大值4.08g/L,糖脂最终浓度为15g/L,糖脂对于甘油的产率为0.35g/g。
     实验表明,氮源是细胞生长的促进因子,碳源是细胞生长的必需因子。糖脂的合成属于部分生长伴随型。底物甘油的消耗既用于细胞生长又用于产物合成。建立非结构化动力学模型,采用龙格-库塔法解方程,通过遗传算法优化模型参数。模型计算值与实验值十分吻合。分析模型,较低的细胞生长速率有利于糖脂的合成,当细胞生长速率为0.051g/L/h时,糖脂比合成速率达到最大值0.088/h。
     以菜油作为唯一碳源,分析油浓度和摇床转速等对发酵过程的影响。测定鼠李糖脂作为生物表面活性剂的基础理化性质,从胶束形成的角度分析它促进有机物乳化和溶解的性能。鼠李糖脂的临界胶束浓度为58mg/L,实验条件下对菜油的增溶度约为0.22g/g,计算鼠李糖脂混合物的HLB值在8~16的范围内。在表面活性剂的作用下,发酵液的乳化能力和乳化稳定性得到提高。当菜油含量达到10%时,发酵液的乳化能力开始下降。加入少量电解质和正丁醇等有机物可以降低CMC,提高生物表面活性剂的效能。
     采用不同型式的生物反应器和搅拌桨进行油发酵实验。由于生物表面活性剂的发泡特性,实验所用气升式反应器中有机物的降解结果不是十分理想。研究搅拌反应器中的流体力学和传递特性,分析操作条件对混合和传质过程的影响。由于生物表面活性剂的发泡特性限制了通气量的调节,因此搅拌转速是影响氧气体积传质系数和油滴直径的重要因素,进而影响着微生物的生长。
    
    11 浙江大学博士学位论文
     研究微生物降解有机物的发酵过程,大部分生物表面活性剂是在稳定生长期
    合成的,因此它属于次级代谢产物。生物表面活性剂可以通过促进有机物的分散
    和溶解来刺激细胞对油的吸收利用。搅拌速率和油含量对降解过程影响较大,说
    明油滴粒径是一关键指标,细胞生长主要发生在油滴表面。
     建立可以反映生物表面活性剂特殊作用,并成功模拟有机物降解过程的机理
    性动力学模型。模型反映两种微生物摄取有机物的方式,区分生物表面活性剂的
    乳化作用和增溶作用。模型是包含9个参数,涉及4个变量的微分方程组,描述
    了细胞生长、表面活性剂合成以及有机物的摄取过程。模型中假设乳化油的消耗
    主要用于细胞生长,而维持能来源于细胞对增溶在胶束中的油的代谢过程。
     通过拟合间歇式搅拌反应器中的发酵数据,获得模型参数。建立的模型可以
    很好地解释实验现象。通过对模型的分析,证实在本实验体系中,生物表面活性
    剂的主要作用是降低油滴直径,促进细胞在油/水界面上的吸附。
     尝试各种方式的双碳源发酵工艺。当培养基中同时含有甘油和菜油两种碳源
    时,细胞主要通过代谢菜油进行生长和繁殖,甘油对细胞生长的贡献不大。但是,
    添加甘油,使菜油的增溶状况得到明显增强,发酵液的乳化能力和乳化稳定性得
    到显著提高,同时菜油的降解率提高至 80%~90%。
     最后,针对该项利用生物表面活性剂特殊功能的生物治理技术,考察其实际
    应用效果。实验结果,废油对微生物活性的影响较小。采用简单的操作工序,便
    可以取得理想的降解效果,其中油炸废油的降解率达到 94.8%,降解速率为 1.59
    g/Lth。
Biosurfactants were non-toxic, natural biodegradable products, offered the advantages of little environmental impact. Biosurfactants showed low critical micelle concentrations and high surface activities and were, therefore, promising substitutes for synthetic surfactants. Biosurfactants had the potential for enhancing the bioavailability and biodegradation of insoluble hydrocarbons. This paper aimed to contribute to the use of biosurfactants producing microorganism for the degradation of organic contaminants.
    The production of rhamnolipids by pseudomonas aeroginosa grown on water-miscible substrates glycerol was studied. To investigate the influences of cell concentration, carbon source concentration, nitrogen source concentration, etc. on the fermentation process, we ran fermentations with different feeding profiles. In a shake flask medium containing 3% glycerol and 4 g/1 nitrate, the biomass concentration reached a maximum of 4.08 g/1 after 60 h cultivation, a final concentration of rhamnolipids over 15 g/1 was reached, giving a production yield of rhamnolipids on glycerol of 0.35 g/g.
    Evidence indicated that cell growth rate could be enhanced by adding nitrogen source, and the carbon source was the limiting nutrient of the cell growth. The rhamnolipids were produced in a partly growth-associated mode. The glycerol was used in both cell growth and rhamnolipids production. An unstructured kinetic model for biosurfactant production was proposed. The model parameters were estimated using genetic algorithms, coupled with a Runge-kutta method for the interpretation of integral data. The correspondence between experimental data and model prediction was good. Analyzing the model, lower cell growth rate was favorable for rhamnolipids production. The specific rhamnolipids production rate reached a maximum 0.088 /h when the cell growth rate was 0.051 g/l/h.
    A fermentation using vegetable oils as sole carbon was established, the influences of oil volume percentage and the rotational speed of the shaker were
    
    
    studied. Some important basic physico-chemical characteristics of the rhamnolipids were measured. Through analyzing the micellar formation, evaluating the emulsionfication ability and the pseudosolubilization ability of rhamnolipids. The rhamnolipids exhibited a low critical micelle concentration of 58 mg/1. Its miceller solubility ratio for the vegetable oil was 0.22 g/g. Its hydrophile-lipophile balance was in the range of 8-16. The emulsifying power and the stability of the whole broth were increased under the effect of rhamnolipids. When the oil volume percentage reached 10%, the emulsification capacity decreased. Some salt and hydrocarbon could reduce the CMC, leading to higher effectiveness of the rhamnolipids.
    Various bioreactor systems and impeller types were used in the heterogenous cultivation. Because of the problems with foaming caused by the biosurfactant during the process, the results of hydrocarbon biodegradation in the air-lift fermentators in consider were not perfect. Fluid dynamic and mass transfer characteristics of the stirred tank reactor were studied. The influences of operating conditions on mixing and mass transfer processes were researched. The foaming phenomenon limited the regulation of the air flow rate, so the stirring speed was the crucial operating factor for the volumetric oxygen mass transfer coefficient and the oil drop diameter, which was important for the microbial growth.
    The fermentation process for the biodegradation of hydrocarbon was investigated. The profile of biosurfactant production was typical of a secondary metabolite, since it was produced mostly during the stationary phase. It was considered that biosurfactant stimulated cell growth on oil by enhancing the dispersion and the solubility of hydrocarbon. The biodegradation was strongly influenced by the stirring speed and the oil volume percentage, so it was concluded that the oil droplet size was an important index, and the cell growth mainly occurred at the oil droplet surface.
    A mechanistic kinetic model
引文
1 徐燕莉.表面活性剂的功能.北京:化学工业出版社,2000
    2 方云,夏咏梅 编译.生物表面活性剂.北京:中国轻工业出版社,1992
    3 Haba H, Espuny M J, Busquets M, etc. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol, 2000, 88:379-387
    4 Banat L M, Makkar R S, Cameotra. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol, 2000, 53:495-508
    5 Desai J D. Microbial surfactants: evaluation, types, production and future applications. J Scientific Industrial Res, 1987, 46:440-449
    6 Fiechter A. Biosurfactants: moving towards industrial application. TIBTECH JUNE, 1992, 10:208-217
    7 Lin S C. Biosurfactants: recent advances. J Chem Tech Biotechnol, 1996, 66:109-120
    8 Lang S, Wullbrandt D. rhamnose lipids-biosynthesis, microbial production and application potential.Appt Microbiol Biotechnol, 1999, 51:22-32
    9 顾惕人 等.表面化学.北京:科学出版社,1999
    10 崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,1999
    11 梁治齐,李金华.功能性乳化剂与乳状液.北京:中国轻工业出版社,2000
    12 曹同玉,刘庆普,胡金生,聚合物乳液合成原理性能及应用.北京:化学工业出版社,1997
    13 Gutierrez J R, Erickson L E. Hydrocarbon uptake in hydrocarbon fermentation. Biotechnol Bioeng, 1977, ⅪⅩ: 1331-1349
    14 Zosim Z, Gutnick D, Rosenberg E. Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsion. Biotechnol Bioeng, 1982, ⅩⅩⅣ: 281-292
    15 Beal R, Betts W B. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol, 2000, 89:158-168
    
    
    16 Butler E C, Hayes K F. Micellar solubilization of nonaqueous phase liquid contaminants by nonionic surfactant mixtures: effects of sorption, partitioning and mixing. Wat Res, 1998, 32: 1345-1354
    17 Jordan R N, Nichols E P, Cunningham A B. The role of (bio)surfactant sorption in promoting the bioavailability of nutrients localized at the solid-water interface. Wat Sci Tech, 1999, 39:91-98
    18 Kim S H, Lim E J, Lee S O, etc. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem, 2000, 31:249-253
    19 Schmid A, Kollmer A, Witholt B. Effects of biosurfactant and emulsification on two-liquid phase Pseuadomonas oleovorans cultures and cell-free emulsions containing n-decane. Enzyme Microb Technol, 1998, 22:487-493
    20 Zhang Y, Miller R M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol, 1992, 58: 3276-3282
    21 Angelova B, Schmauder H P. Lipophilic compounds in biotechnology-interactions with cells and technological problems. J Biotechnol, 1999, 67:13-32
    22 Hommel S, Stuwer O, Stuber W, etc. Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl Microbiol Biotechnol, 1987, 26:199-205
    23 Hisatsuka K, Nakahara T, Sano N, etc. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agr Biol Chem, 1971, 35: 686-692
    24 Itoh S, Suzuki T. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agr Biol Chem, 1972, 36:2233-2235
    25 Kim J S, Powalla M, Lang S, etc. Microbiol glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol, 1990, 13:257-266
    26 Miller R M, Bartha R, Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes, Appl Environ Microbiol, 1989, 55:269-274
    27 Smucker R A, Cooney J J. Cytological responses of Cladosporium resinae when shifted from glucose to hydrocarbon medium, Can J Microbiol, 1981, 27:1209-1218
    
    
    28 Champion J T, Gilkey J C, Lamparski H L, etc. Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J Colloid Interface Sci, 1995, 170:569-574
    29 Zhang Y, Miller R M. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes, Appl Environ Microbiol, 1995, 61:2247-2251
    30 Ishigami Y, Gama Y, Ishii F, etc. Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant. Langmuir, 1993, 9:1634-1636
    31 Susumu I, Shigeo I. Sophorolipids from Torulopsis bornbicola: possible relation to alkanes uptake. Appl Environ Microbiol, 1982, 43:1278-1283
    32 Zhang Y, Miller R M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol, 1994, 60: 2101-2106
    33 Rosenberg M, Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol, 1981, 148:51-57
    34 Barness R, Avrahamy N, Matsuyama T, etc. Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol, 1988, 170: 4361-4364
    35 Neu T. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev, 1996, 60:151-166
    36 Christina C L, Finnerty W R. A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J General Microbiol, 1976, 94:342-350
    37 Tahhan R A, Sandrin T R, Bodour A A, etc. Rhamnolipid-induced removal of lipopolysaccharide from Pseudornonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol, 2000, 66:3262-3268
    38 Cooper D G, Macdonald C R, Duff S J, etc. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol, 1982, 42:408-412
    39 Itoh A, Honda H, Tomita F, etc. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. J Antibiot, 1971, 24:855-859
    
    
    40 Mulligan C N, Mahmourides G, Gibbd B F. Biosurfactant production by a chloramphenicol tolerant strain of Pseudomonas aeruginosa. J Biotechnol, 1989, 12:37-44
    41 Manresa M A, Bastida J, Mercade M E, etc. Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Industrial Microbiol, 1991, 8:133-136
    42 Roubin M R, Mulligan C N, Gibbs B F. Correlation of enhanced surfactin production with decreased isocitrate dehydrogenase activity. Can J Microbiol, 1989, 35:854-859
    43 Mulligan C N, Gibbs B F. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol, 1989, 55:3016-3019
    44 陈陶声.近代工业微生物学(下).上海:上海科学技术出版社,1982
    45 石油发酵研究会编.石油发酵[日].北京:科学出版社,1973
    46 易祖华.烷烃代谢和发酵生产二元酸.工业微生物学成就,北京:科学出版社,1988,38-49
    47 Ochsner U A, Koch A K, Fiechter A, etc. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol, 1994, 176:2044-2054
    48 Ochsner U A, Reiser J, Fiechter A, etc. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterogeneous hosts. Appl Environ Microbiol, 1995, 61: 3503-3506
    49 Sullivan E R. Molecular genetics of biosurfactant production. Current Opinion Biotechnol, 1998, 9:263-269
    50 Olvera C, Goldberg J B, Sanchez R, etc. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiology Letters, 1999, 179:85-90
    51 Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol, 1999, 51:553-563
    52 Cooper D G, Paddock D A. Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol, 1984, 47:173-176
    53 Linhardt R J, Bakhit R, Daniels L. Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng, 1989, 33:365-368
    54 Ramana V K, Karanth N O. Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Tech Biotechnol, 1989, 45:
    
    249-257
    55 薛燕芬,王修垣.石蜡酪杆菌B126产生糖脂的适宜条件.微生物学报,1995,35:465-469
    56 Sen R. Response surface optimization of the critical media components for the production of surfactin. J Chem Tech Biotechnol, 1997, 68:263-270
    57 Robert M, Mercade M E, Bosch M P. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett, 1989, 12:871-874
    58 Davis D A, Lynch h C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Tech, 1999, 25:322-329
    59 Wei Y H, Chu I M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb Tech, 1998, 22:724-728
    60 张可旭.氨基酸发酵工艺学.北京:中国轻工业出版社,1992,79-85
    61 卫扬保.微生物生理学.北京:高等教育出版社,1989,38-39
    62 Syldatk C, Lang S, Matulovic U, etc. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch, 1985, 40c: 61-67
    63 李祖义,施邑屏,夏寅等.一株球拟酵母菌产生的胞外糖脂.生物工程学报,1986,2:47-51
    64 Ramana V K, Karanth N G. Production of biosurfactants by the resting cells of Pseudomonas aeruginosa CFTR-6. Biotechnol Lett, 1989, 11:437-442
    65 Santos L G, Kappeli O, Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol, 1984, 48: 301-305
    66 Reiling H E, Wyss U T, Santos L G, etc. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol, 1986, 51:985-989
    67 Walsum G P, Cooper D G. Self-cycling fermentation in a stirred tank reactor. Biotechnol Bioeng, 1993, 42:1175-1180
    68 Chopineau J C, McCafferty F D, Therisod M, etc. Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnol
    
    Bioeng, 1988, 31:208-214
    69 Persson A, Molin G, Andersson N, etc. Biosurfactant yields and nutrient consumption of Pseudomonas fluorescens 378 studied in a microcomputer controlled multifermentation system. Biotechnol Bioeng, 1990, 36:252-255
    70 Drouin C M, Cooper D G, Biosurfactants and aqueous two-phase fermentation. Biotechnol Bioeng, 1992, 40:86-90
    71 Ghurye G L, Vipulanandan C. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol Bioeng, 1994, 44:661-666
    72 Daniel H J, Reuss M, Syldatk C. production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett, 1998, 20:1153-1156
    73 Tan H, Champion J T, Artiola J F, etc. Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci Technol, 1994, 28:2402-2406
    74 Bognolo G. Biodurfactants as emulsifying agents for hydrocarbons. Colloids Surfaces, 1999, 152:41-52
    75 Nakata K. Two glycolipids increase in the bioremediation of halogenated aromatic compounds. J Biosci Bioeng, 2000, 89:577-581
    76 Vipulanandan C, Ren X. Enhanced solubility and biodegradation of naphthalene with biosurfactant. J Environ Eng, 2000, 6:629-634
    77 钱欣平,孟琴.甲基戊糖的双波长紫外分光光度分析法.分析测试学报,2000,19:41~44
    78 罗利民.过碘酸钾测定甘油含量的重复利用.日用化学工业,1989,38:38~39
    79 Yamamota Y, Uchikawa S, Akabori K. A new colorimetric determination of nitrate ions by solvent extraction with crystal violet. Analyst Abs, 1966, 13: 1718~1719
    80 李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社,2000
    81 赵翔龙.Fortran 90学习教程.北京:北京大学出版社,2000
    82 Goldberg D. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley, 1989
    83 Michalewicz Z. Genetic algorithms+data structures = evolution programs. 3rd ed. Berlin:
    
    Springer, 1996
    84 阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000
    85 陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1999
    86 钱欣平.发酵法制备鼠李糖.浙江大学硕士学位论文,1999
    87 Mulligan C N, Mahmourides G, Gibbs B F. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol, 1989, 12:199-210
    88 第四次全国抗生素学术会议论文集.上海:上海科学技术文献出版社,1982
    89 Bazin M J. Microbial population dynamics. Florida, CRC Press, 1982, 16-30
    90 Schugerl K. Bioreaction engineering: reactions involving microorganisms and cells.vol, 1: fundamentals, thermodynamics, formal kinetics, idealized reactor types and operation modes. Great Britain, John Wiley & Sons, 1985
    91 王树青.生化反应过程模型化及计算机控制.杭州:浙江大学出版社,1998
    92 戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社,1995
    93 王树青,元英进.生化过程自动化技术.北京:化学工业出版社,1999
    94 Junker B, Mann Z, Gailliot P, Byme K, etc. Use of soybean oil and ammonium sulfate additions to optimize secondary metabolite production. Biotechnol Bioeng, 1998, 60: 580-588
    95 Winkler M A. Chemical engineering problems in biotechnology. Critical reports on applied chemistry 29. New York, ELSEVIER Applied Science,1990
    96 Kleinstreuer C. Analysis of biological reactors. Adv Biochem Eng, 1987, 33-79
    97 Vogel H C, Ridge P. Fermentation and Biochemical Engineering Handbook Principles, process design, Equipment. New Jersey, USA, NOYES publications, 1983, 55-143
    98 Schugerl K. Bioreaction engineering: bioreactors. Great Britain, John Wiley & Sons, 1985
    99 梅乐和,姚善泾,林东强.生化生产工艺学.北京:科学出版社,1999
    100 李再资.生物化学工程基础.北京:化学工业出版社,1999,139-154
    101 王建华,化学反应器设计化学反应工程下册.成都:成都科技大学出版社,1989,318-371
    102 毛德明.多层桨搅拌釜内流动与混合的基础研究.浙江大学博士学位论文,1998
    103 欧舒 J Y.流体混合技术.北京:化学工业出版社,1991
    104 高孔荣.发酵设备.北京:中国轻工业出版社,1998
    
    
    105 陈甘棠,王樟茂.多相流反应工程.杭州:浙江大学出版社,1996
    106 张成芳.气液反应和反应器.北京:化学工业出版社,1985,294-331
    107 陈仁学.化学反应过程与反应器.北京:国防工业出版社,1988,235-254
    108 姜信真等,气液反应理论与应用基础,北京:烃加工出版社,1989,405-549
    109 史子瑾.聚合反应工程基础.北京:化学工业出版社,1991
    110 陈甘棠.化学反应工程.北京:化学工业出版社,1990
    111 李元广,曹竹安,袁乃驹.双液相发酵体系氧传递过程分析.生物工程进展,1994,14:31-36
    112 Meer A B, Beenackers A A, Burghard R, etc. Gas/liquid mass transfer in a four-phase stirred fermentor: effects of organic phase hold-up and surfactant concentration. Chem Eng Sci, 1992, 47:2369-2374
    113 李元广,曹竹安,袁乃驹.以纯烷烃为基质的石油发酵体系动力学分析.清华大学学报,1994,34:63-73
    114 李元广,曹竹安,袁乃驹等.十三碳二元酸发酵过程菌体生长期动力学模型及其应用.生物工程学报,1994,10:250-257
    115 李元广,曹竹安,袁乃驹等.十三碳二元酸发酵过程产酸期拟均相动力学模型及其应用.生物工程学报,1994,10:318-325
    116 Park A J, Cha D K, Holsen T M. Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environ Res, 1998, 70:351-355
    117 Schippers C, Gebner K, Muller T, etc. Microbial degradation ofphenanthrene by addition of a sophorolipid mixture. J Biotechnol, 2000, 83:189-198
    118 Southam G, Whitney M, Knickerbocker C. Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. International Biodeterioration Biodegradation, 2001, 47: 197-201
    119 Li K Y, Zhang Y, Xu T. Bioremediation of oil-contaminated soil—a rate model. Waste Management, 1995, 15:335-338
    120 Jahan K, Ahmed T, Maier W J. Modeling the influence of nonionic surfactants on biodegradation of phenanthrene. Wat Res, 1999, 33:2181-2193
    
    
    121 Ochoa F G, Casas J A. Unstructured kinetic model for sophorolipid production by Candida bombicola. Enzyme Microbial Technol, 1999, 25:613-621
    122 Maachi R, Abousseoud M, Chaabane T. Kinetics of biodegradation of petroleum by Pseudomonas sp. Desalination, 2001, 139:367
    123 Banerjee I, Modak J M, Bandopadhyay K, etc. Mathematical model for evaluation of mass transfer limitation in phenol biodegradation by immobilized Pseudomonas putida. J Biotechnol, 2001, 211-223
    124 Zhang Y, W J Maier, Miller R M. Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol, 1997, 31: 2211-2217
    125 Sekelsky A M, Shreve G S. kinetic Model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng, 1999, 63:401-409
    126 Goswami P, Singh H D. Different modes of hydrocarbon uptake by two Pseudomonas Species. Biotechnol Bioeng, 1991, 37:1-11
    127 Bai G, Brusseau M L, Miller R M. Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. J Contaminant Hydrology, 1998, 30:265-279
    128 McCray J E, Bai G, Maier R M, etc. Biosurfactant-enhanced solubilization of NAPL mixtures. J Contaminant Hydrology, 2001, 48:45-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700