gna基因在大豆上的转化及转化体系的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对大豆组织培养消毒处理方法对种子萌发的影响,来研究不同消毒剂及不同处理方法对大豆种子消毒效果的影响,从而减少由于种子消毒不彻底造成实验材料的浪费并影响后期的研究工作。利用大豆不同品种的下胚轴、顶芽、子叶节、原位再生等几种外植体进行诱导植株再生的实验,并通过添加不同浓度的6-BA来观察诱导愈伤组织和出芽的情况,为下一步的转化实验建立一个良好的组培平台。最后对大豆转化体系的几个因素进行优化实验,并以原位再生体系为平台进行gna基因的转化。实验主要结果如下:
    1.大豆组织培养最佳消毒处理方法为70%酒精预处理后饱和漂白粉溶液4℃处理1~2h;或用0.1%HgCl2溶液作消毒剂4℃条件下处理2h,能取得较好的消毒效果。
    2.各种外植体诱导愈伤组织和出芽最适6-BA浓度不同,其中子叶节为1.0mg/L,顶芽为2.0mg/L,原位为1.0mg/L至2.0mg/L;下胚轴为2.0mg/L。原位在1.0mg/L 6-BA的基础上添加0.1mg/L IBA时出芽率比单独加6-BA要高。
    3.大豆下胚轴、子叶、顶芽均较易诱导出愈伤组织,但这三种外植体出芽率较低,子叶节和原位再生出芽率较高,五种外植体出芽率依次为原位>子叶节>顶芽>下胚轴>子叶。
    
    
    4.不同基因型的外植体在诱导愈伤组织和出芽上存在着显著差异,分析品种间差异表现发现,基因型稳定性在不同外植体诱导愈伤组织和出芽上较一致,稳定性影响诱导愈伤组织和出芽,其中品种东农42号表现好。表明应该注重不同基因型稳定性上的差异。
    5.大豆品种对农杆菌的敏感性普遍较低,并且存在着较强的基因型依赖性。
    6.外植体不同的预培养时间、感染时间和共培养时间对大豆的转化有 明显的影响,以预培养1d,感染10min后共培养3d为宜。
    7.以再生频率较高的原位再生体系为平台进行gna基因的转化,通过卡那霉素进行抗性筛选后得到再生植株,随机选取15株进行PCR检测,9株呈现阳性反应。
To establish the most optimal methods of sterilization on soybean, variety Hefeng No.35 were taken as material to compare effects of seed germination with different disinfectants and different treating time at 28℃ or 4℃ in tissue culture.
    The different explants, hypocotyl, terminal bud, cotyledonary node, seedling were studied to induce bud or callus with different concentrations of 6-BA and to establish a better system for transformation. Several factors in transformation system of soybean were studied and gna gene was transferred into soybean with seedling explants. The results show:
    1. In soybean tissue culture , the most optimal methods of sterilization is one-two hour's treatment with saturate bleaching powder solution in 4℃ after 30 seconds' pretreatment with 70% ethanol or two hour's treatment with 0.1% aqueous mercuric chloride in 4℃.
    2. The different explants need different concentration of 6-BA to induce callus and bud, cotyledonary node is 1.0mg/L, terminal bud 2.0mg/L, seedling 1.0mg/L to bud-inducing, and hypocotyls is 2.0mg/L to induce callus. The effect is better with 6-BA 1.0mg/L supplemented with IBA 0.2mg/L for seedling explant's bud-inducing.
    
    
    3. Hypocotyl, cotyledon, terminal bud are all easy to induce callus, but the inducing rate of bud are lower than those of cotyledonary node and seedling. Regeneration rates of various explants were , in the order from high to low, seedling, cotyledonary node, terminal bud, hypocotyls, cotyledon.
    4. There exists obvious difference among different genotypes . these results indicates that the stability is uniform between callus and bud inducing with different explants and it affects callus and bud inducing. Dongnong 42 is better than other tested genotypes on its stability. It shows we should pay attention to the difference on the stability of genotypes.
    5. The sensitivity of soybean cultivars to Agrobacterium tumefaciens is commonly low and there is significant difference among genotypes.
    6. The preculture, duration of infection and co-culture with Agrobacterium tumefaciens influences soybean transformation evidently. The best combination is preculture 1 day, infection 10 minutes and co-culture 3 days under the experimental conditions.
    7. gna gene was transferred with regeneration system of soybean seedling, whose regeneration is higher than others. After selected by kanamycin, Among the 15 putative transgenic plants, nine gave positive PCR reaction.
引文
1.
    Barwale UB, HR Kerns and JM Widholm. 1986. Pant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta. 167: 473-481
    2.
    Bechtold, N., J. Ellis and G. Pelletier. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris, Life Sci. 316:1194-1199
    3.
    Blades, R, M Moos and K Geider. 1987. Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Plant Mol. Biol. 9:135-145
    4.
    Boulter D, Gatchouse A M R, Gatehouse T A, et al. 1993. Genetically engineered insect resisitance to the brown plant hopper(BPH) and other sucking insect.Proceedings of Sixth Annual Meeting of the International Program on Rice Biotechnology.Chiang Mai Thailand, 9
    5.
    Broadway R M, Duffey S S. J 1986. Insect Physiol. 32: 827-833
    6.
    Chee PP, KA Fober, JL Slightom. 1989. Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. [J] Plant Physiol. (91):1212-1218
    7.
    Chen L, Y Dan, JM Tyler and NA Reichert. 1999. Transgenic soybean generated from hypocotyl explants. In Vitro Cell. Dev. Biol. 35:61A.
    8.
    Christianson ML, DA Warnick and PS Carlson. 1983. A morpho-genetically competent soybean suspension culture. Science. 222: 632-634
    9.
    Christou, P, JE Murphy and WF Swain. 1987. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA 84:3962-3966
    10.
    Clough, SJ and AF Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743
    11.
    Dan, Y and NA Reichert. 1998. Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell. Dev. Biol. 34P:14-21
    12.
    Di R, V Purcell, GB Collins and S Ghabrial. 1996. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. [J] Plant Cell Rep. (15):746-750
    13.
    Edward GA, Hepher A, Clerk SP, et al. 1991. Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants. Plant Mol. Biol. 17:89-100
    14.
    Finer JJ and A Nagasawa. 1988. Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tissue Organ. Cult. 15:125-136
    15.
    Finer JJ and MD McMullen. 1991. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P:175-182
    16.
    Fischhoff D A, Bowdish K S, Perlak F J, et al. 1987. Biotechnology. 5: 807-813
    17.
    Fukuoka H, T Ogawa, M Matsuoka, Y Ohkawa and H Yano. 1998. Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Reports. 17:323-328
    18.
    Gatehouse AMR, Davison GM, Newell CA, et al. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea; growth room trials. Molecular Breeding. 3:49-64
    
    
    Gatehouse AMR, Davison GM, Newell CA, et al. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea; growth room trials. Molecular Breeding. 3:49-64
    Hazel CB, TM Klein, M Anis, HD Wilde and WA Parrott. 1998. Growth characteristics and transformability of soybean embryogenic cultures. Plant Cell Reports. 17:765-772
    Hess D. 1980. Investigations on the intra and interspecific transfer of anthocyanin genes using pollen as vectors. Z. Pflanzenphysiol. Bd. 98s. 321-327
    Hichardson M. 1991. Seed storage proteins: the enzyme inhibitor[A]. In: Rogers L J(Ed). Methods in plant biochemistry: v.5. Amino acid proteins and nucleic acids. London: Academic Press. 259-305
    Hilder VA, Powell KS, Gatehouse AMR, et al. 1995. Expression of snow drop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research. 4:18-25
    Hinchee MAW, DV Conner-Ward, CA Newell, RE McDonnell, SJ Sato, CS Gasser, DA Fischoff, DB Re, RT Fraley and RB Horsch. 1988. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. BIO/TECHNOL. (6):915-922
    Horsch RB, et al. 1985. A simple and general method for transferring genes into plants. Science. 277:1229-1231
    Kartha KK, K Pahl, NL Leung et al. 1981. Plant regeneration from meristems of grain legumes: soybean, cowpean, peanut, chickpea and bean. Can J. Bot. 59:1671-1679
    Kim J, CE LaMotte and E Hack. 1990. Plant regeneration In Vitro from primary leaf nodes of soybean (Glycine max) seedlings. J. Plant Physiol. 136: 664-669
    Krattiger AF. Insect resisitance in crops: A case study of Bacillus thuringiensis and its transfer to developing countries. ISAAA Briefs No.2. ISAAA:I thaca, NY.1997,4-11
    Kumar, V, B Jones and MR Davey. 1991. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Reports. 10:135-138
    Liener I E. 1986. The lectins. Sandiego:Academic Press. 527-557
    Luo Zhongxun, Wu Ray. 1988. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Bio. Rep. 6(3):165-174
    Maughan, PJ, R Philip, M-J Cho, J.M. Widholm and LO Vodkin. 1999. Biolistic transformation, expression and inheritance of bovine ?-casein in soybean (Glycine max). In Vitro Cell. Dev. Biol. Plant
    McCabe DE, WF Swain, BJ Martinell and P Christou. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. BIO/TECHNOL. 6:923-926
    Meurer CA, RD Dindins and GB Collins. 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Reports. (18):180-186
    Ohata Y, et al. 1985. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. 83:715-719
    Owens, L.D. and D.E. Cress. 1985. Genotypic variability of soybean response to Agrobacterium strains harboring the Ti and Ri plasmids. Plant Physiol. 77:87-94
    Peteroen M. 1997. Progress and prospects for field use of B.t. genes in crops.Treds in Biotechnology. 15:173-177
    Powell KS, Gatehouse AMR, Hilder VA, et al. 1995. Different antimetabolic effects of related lectins towards nymphal stages of Nilaparoata lugens. Entomol Experi. Appl. 75:61-65
    
    
    Powell KS, Gatehouse AMR, Hilder VA, et al. 1995. Different antimetabolic effects of related lectins towards nymphal stages of Nilaparoata lugens. Entomol Experi. Appl. 75:61-65
    Pustzai A, Grant G, Brown D J, et al. 1992. Br J Nutr. 6:783-792
    Rech, EL, TJ Golds, N Hammatt, BJ Mulligan and MR Davey. 1988. Agrobacterium rhizogenes mediated transformation of the wild soybeans Glycine canescens and G. clandestina: production of transgenic plants of G. canescens. J. Exp. Bot. 39:1275-1285
    Reddy, MSS, RD Dinkins and GB Collins. 1998. Optimization of genetic transformation of soybean by particle bombardment of embryonic axes. p. C-9, Abstract Book, 8 th Gatlinburg Symposium, Molecular & Cellular Biology of the Soybean, Univ. Tenn., Knoxville, TN
    Savka, MA, B Ravillion, GR Noel and SK Farrand. 1990. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathol. 80:503-508
    Schnepf H E, Whiteley H R. 1981. Proc. Natl. Acad. Sci. USA. 78:2893-2897
    Touraev, A, E Stoger, V Voronin and E Heberle-Bors. 1997. Plant male germ line transformation. Plant Journal. 12:949-956
    Trick, HN and JJ Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max [L.] Merrill) embryogenic suspension culture tissue. Plant Cell Rep. (17):482-488
    Vadlamudi R K, Weber E, Ji I. 1995. J Biol Chem. 270:5490-5494
    Vaeck M, Reynaerts A, Hofte H, et al. 1987. Nature. 328:33-37
    Wei Zhi-ming and Xu Zhi-hong. 1988. Plant regeneration from protoplasts of soybean (Glycine max L.). Plant Cell Rep. 7:348-351
    Wei, Z.-M., J.-Q. Huang, S.-P. Xu and Z.-H. Xu. 1997. The transformation of protoplasts of Glycine max with B.T. gene and regeneration of transgenic plants. Abstracts, 3 rd Asia-Pacific Conference on Plant Physiology, p 53
    Wright MS, DV Ward, MA Hinchee, MG Carnes and RJ Kaufman. 1987. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep. 6:83-89
    Zhang Zhanyuan, Xing Aipiu, et al. 1999. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell, Tissue and Organ Culture. (56):37-46
    程林梅, 孙毅等. 1998. 大豆不同外植体植株再生的研究. 中国油料作物学报. 6(2)
    崔洪志, 郭三堆. 1998. Bt毒蛋白抗虫植物基因工程研究(综述). 农业生物技术学报 6(2):166-172
    邓向阳, 卫志明. 1998. 大豆转化技术. 植物生理学通讯. 34(5):382-387
    段晓岚, 陈善葆等. 1985. 外源DNA导入水稻引起性状变异. 中国农业科学. (3):6-10
    郝建平, 张江涛. 2001. 8种甜荞的种子消毒及愈伤组织诱导和增殖条件. 木本植物研究. 21(1):65-69
    何玉科等. 1991. 高等植物在发根农杆菌介导下的遗传转化. 细胞生物学杂志. 13(3): 97-101
    雷勃钧, 尹光初等. 1991. 外源DNA直接导入大豆的研究. 大豆科学. 10(1):58-62
    李宝健等. 1991. 应用电注射法将外源基因导入水稻种胚及获得转基因水稻植株研究. 中国科学(B). 3:270-275
    李集林等. 1993. 发根农杆菌Ri质粒及其应用. 生物工程进展. 14(2):8-14
    李学宝, 郑世学, 董五辈等. 1999. 遗传学报. 26:262-268
    
    
    61.
    刘海坤, 卫志明. 2002. 一种大豆成熟种子的消毒方法. 植物生理学通讯. 38(3):160-161
    62.
    卢雄斌, 龚祖埙. 1998. 植物转基因方法及进展. 生命科学. 10(3):125-131
    63.
    莫良玉, 吴良欢. 2000. 植物有机营养研究中供试种子组合灭菌方法比较. 浙江大学学报:农业与生命科学版. 26(6) :643-646
    64.
    钱海丰, 陈小荣, 田振涛等. 2002. 蛋白酶抑制剂在抗虫基因工程中的应用. 生命科学. 14(5):308-310
    65.
    苏彦辉, 王慧丽等. 1999. 苏云金芽孢杆菌杀虫晶体蛋白基因导入大豆的研究. 植物学报. 41(10):1046-1051
    66.
    王关林, 方宏筠. 植物基因工程原理与技术. 180
    67.
    王利民, 周毅, 陈龙友, 等. 2002. 组织培养中消毒剂的运用. 贵州师范大学学报. 20(1):15-17
    68.
    王连铮, 邵启全等. 1993. 大豆科学. 3:194-199
    69.
    王忠华, 舒庆尧, 崔海瑞. 1999. Bt杀虫基因与Bt转基因抗虫植物研究进展. 植物学通报. 16(10):51-58
    70.
    卫志明,许智宏. 1988. 大豆顶芽组织培养植株再生的研究. 植物生理学通讯. (3):17-20
    71.
    徐琼芳, 李连城, 陈孝等. 2001. 基因枪法获得转基因小麦植株的研究. 中国农业科学. 34(1):5-8
    72.
    杨长登, 唐克轩, 吴连斌等. 1998. 农杆菌介导将雪莲凝集素基因转入籼稻单倍体微芽的初步研究. 中国水稻科学. 12(3):129-133
    73.
    袁鹰,刘德璞,郑培和等. 2001. 大豆组织培养再生植株的研究. 大豆科学. 20(1):9-12
    
    曾军祉, 王东江等. 1993. 用花粉管途径获得小麦转基因植株. 中国科学(B辑). 23(3): 256-262
    74.
    张宏宇, 李中奎, 喻子牛. 1997. 转苏云金芽孢杆菌杀虫晶体蛋白基因抗虫植物的研究进展与商品化. 生物技术通报. (3):13-15
    75.
    周达峰, 卜学贤, 陈维伦. 1993. 发根农杆菌Ri质粒的分子生物学及其应用前景. 生物学通报. 10(2): 24-34
    76.
    周光宇等. 1998. 农业分子育种-受粉后外源DNA导入植物的技术. 中国农业科学. 21(3): 1-6
    77.
    周思军. 2001. 大豆遗传转化的主要障碍及研究进展. 黑龙江农业科学. (3):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700