基于空间分析和模型理论的大兴安岭地区林火分布与预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何科学有效的对林火进行预测预报,最大限度的减少林火发生数量以及由火灾带来的损失一直是我国林业管理部门和科研部门十分关注的问题。由于我国林火研究起步较晚,与发达国家相比还有较大的差距,因此本文基于ArcGIS、S-Plus、SAS、R、GWR2等空间分析和数学统计手段,应用国际最前沿的模型拟合与检验理论,突破以往研究方法和手段,创新性的对符合我国黑龙江大兴安岭地区林分特征和气象条件的林火空间分布状况及林火预测模型进行了深入分析,并得出了十分有价值和意义的结论,为林火预测预报提供了科学有效的理论依据。
     本文首先用传统手段对大兴安岭地区的林火数据进行了初步统计分析,得出了大兴安岭地区林火发生的时空分布情况及与气候因子的关系。
     运用K-函数和L-函数,结合S-plus软件对大兴安岭地区雷击火和人为火空间分布类型进行计算判断,根据Lhat分布曲线显示结果说明,1973-1975雷击火分布主要是聚集分布,距离尺度为200 Km时出现聚集峰点。尺度大于350 Km时成随机分布。1976-1981雷击火分布趋势与1973-1975年间近似,聚集峰值也出现在200 Km附近。1982-1984雷击火主要成聚集分布,但是无明显聚集峰点。1985-1987年间雷击火分布成聚集分布,但聚集程度较平缓。1988-2005年间,除1991-1993年间成随机分布外,其余各年雷击火整体上是成聚集状分布的。1988-1990年在距离尺度为350 Km时出现聚集峰点。1994-1996年间距离尺度小于450 Km时雷击火成聚集分布,大于450 Km时成均匀分布。1997-1999年间雷击火在300 Km距离尺度下成聚集分布,大于300 Km时成均匀分布。1999-2005年间同样在300 Km距离尺度下成聚集分布,大于该尺度成均匀分布。整体看1973-2005年间的雷击火发生分布情况,显示雷击火主要成聚集分布,以大约260 Km为距离尺度出现聚集峰点。即在小尺度下,大兴安岭地区雷击火空间分布形式为聚集分布。1972-1976人为火分布主要是聚集分布,距离尺度为200 Km时出现聚集峰点。1977-1981大兴安岭地区人为火的空间分布在400Km尺度下为聚集分布。1982-1991年间,人为火也成聚集分布。1992-1996这4年间大兴安岭地区人为火在空间上呈现随即分布的趋势,并且贯穿各个不同计算尺度。1997-2001年间在距离尺度小于300 Km时人为火成聚集分布,大于300 Km时成均匀分布。2002-2005年间大兴安岭地区人为火在不同尺度下均呈聚集分布。
     根据Kernel空间密度函数对大兴安岭雷击火和人为火发生的空间密度进行模拟推算,结果显示大兴安岭地区1973-1977年间雷击火空间分布密度存在几个“热点”和“次热点”地区,按行政区划分布在呼中北部和松岭西部,核心区经纬度坐标分别为123°23'E,52°12'N和123°58'E,51°11'N;1978-1982年间的雷击火分布存在两个明显的热点地区政区划分布在图强林业局西南大部和塔河林业局北部,核心区经纬度坐标分别为122°26'E,52°38'N和124°08'E,53°17'N。1983-1987年间的雷击火分布存在两个热点地区,坐标为124°06'E,52°04'N和124°04'E,52°23'N;行政区划位于呼中和新林北端交界处以及塔河南端与呼中东部交界处,1988-2005年间雷击火分布热点核心区地理坐标分别为123°06'E,52°20'N;123°41'E,51°34'N;124°08'E,50°48'N。大兴安岭地区1972-1976,1977-1981,1982-1986,1987-1991,4个时间间隔的人为火空间分布高密度地区即“热点区”基本相同,都集中在124°10'E,50°23'N;按照行政区划其位置为加格达奇林管局境内,1992-1996年间的人为火并无集中的分布区,而是零散分布于整个研究区域,并无“热点区”的存在。1997-2001年间人为火发生“热点地区”与前几个时间段的发生情况有所不同,该时期的“热点区”核心位置经纬度坐标为52°09'N,125°55'E,位于韩家园北部地区。2002-2005年此4年间人为火发生数量较大,且主要分布在大兴安岭地区南部,几个主要“热点区”的中心点经纬度坐标为51°35'N,125°25'E;51°13'N,125°27'E;51°07'N,124°38'E;50°34'N,125°26'E;51°16'N,123°41'E,其行政区划分别为,呼玛和松岭最北端交界处;松岭与加格达奇最东部交界处;松岭行政区中部;加格达奇东部和呼中与松岭交界带。
     除传统模型OLS外,本文还选用Poisson和零膨胀Poisson (Zero-Inflated Poisson,ZIP),负二项(NB)和零膨胀负二项(ZINB)模型对大兴安岭雷击火和人为火与气象因子进行建模分析,其中NB和ZINB在国内首次应用于林业领域的相关研究中。将5种模型的建模结果进行对比分析,应用AIC和Voung方法确定最优模型。研究结果表明,大兴安岭地区雷击火与气象因子建模研究的最优模型为ZINB,得到的预测模型为:log(λ=E(Y))=-3.637929+0.124678MAT+0.010395MAE和log it(p)=-72.175944+0.962976MARH人为火与气象因子建模研究表明,ZINB也是5种模型中对数据拟合效果最好的,预测模型为:log(λ=E(Y))=-0.6534+0.0056MAE和log it(p)=-20.4509+0.0175MAP-0.2615MAT+0.3183MARH
     应用ArcGIS, Arcmap技术和GWR2, Moran计算软件,对塔河地区的林火发生与空间因素的关系进行了详细的分析,文中主要分为不同尺度和空间模型进行计算和对比分析的,尺度主要为5Km×5Km和随机选取样点两种,模型选取Global Logistic模型和GWR模型。研究结果显示在5Km×5Km的栅格划分尺度下,只有距街区和铁路的距离对林火发生具有显著相关性。得到林火发生的Global Logistic模型概率表达式为:式中:x1为距街区的距离;x2为距铁路的距离。
     GWR模型拟合后的概率模型表达式是一个矩阵函数,截据的系数分为5个水平梯度,分别为IC≤-0.4;-0.4火发生概率方程为:式中:x1为距铁路的距离;x2为林型。GWR模型截据的系数分布为IC≤-0.4;-0.4火发生的预测结果,应用Kriging插值法对研究区域的林火发生概率进行的空间预测,并得到研究区域林火火险概率空间分布。
The biggest issues for our forestry management and research department are how to forecast the forest fire effectively and scientifically and limited the loss those caused by forest fire and decreased the number of forest fire greatly. There was a big disparity comparing with some developed country because of our study started relative late, so this paper made a deep research on the distribution of forest fire and modeling the relationship between forest fire and weather and some spatial factors in Daxing'an mountain in Heilongjiang Province of china basis on some statistic and spatial analysis software, for instance, ArcGIS, S-Plus, SAS, R, GWR2 and so on. The results of this paper are very meaningful and can provide a scientific thesis foundation for forest fire's forecast.
     The first step for this paper is make a simple analysis on forest fire data of Daxing'an Mountain in Heilongjiang Province, the results show that the number of spring forest fire was decreased after 1987 year and it was increased for summer fire. The change trend of climate for the study area also be studied, which include temperature, precipitation, relative humid.
     Computing and judging the types of distribution of lighting fire and human-caused fire using K-function and L-function meanwhile combine with S-plus software. The results show that lighting fire is cluster distribution and the peak in 200Km scale. It shows random distribution over that scale in the period of 1973-1975. The distribution type of lighting fire during 1976-1981 is similar with 1973-1975. The main distribution type of lighting fire is cluster and no obvious peak during 1982-1984. It is cluster distribution but the degree is not high in the period of 1985-1987. Except the random distribution of 1991-1993, the other periods are cluster during 1988-2005. When the distance scale is 350Km, it shows cluster peak during 1988-1990 and when the scale less than 450Km the lighting fire is cluster, greater than 450Km are uniform distribution in the period of 1994-1996. It is cluster distribution when the scale less than 300Km and it is uniform distribution when the scale greater than 300Km during 1997-1999 and the results are similar with the period of 1999-2005.the main distribution type of lighting fire is cluster in the period of 1973-2005, the cluster peak is in 260Km scale, namely the lighting fire are cluster distribution under small distance scale.
     The distribution of human-caused fire during 1972-1976 are cluster, the peak appears at 200Km scale. It is cluster distribution under 400Km scale during 1977-1981, and it also happens in the period of 1982-1991 but it is random distribution tendency of human-caused fire during 1992-1996. It is cluster distribution when the scale less than 300 Km and if scale is greater than 300 Km, it would be uniform distribution,1997-2001.The human-caused fire are cluster distribution in all different scales during 2002-2005.
     Computing and modeling the spatial density of lighting and human-caused fire occurrence by the use of Kernel spatial function and the results show that there are several hot points and lower hot points in Daxing'an mountain area during 1973-1977, the coordinates of cores of hot and lower hot points are 123°23'E,52°12'N和123°58'E,51°11'N,separately, and located in north HuZhong forestry bureau and west of SongLing forestry bureau. In the period of 1978-1982, the lighting fire exist two obvious hot points and the coordinates of cores are located in 122°26'E,52°38'N and 124°08'E,53°17'N, located in much area of southwest of TuQiang forestry bureau and north of Tahe bureau. Two hot points exist in Daxing'an mountain area during 1983-1987. One is in the junction of HuZhong and north of XinLin forestry bureau and the other is in the junction of north of TaHe and east of HuZhong bureau, the coordinates of cores are located in 124°06'E,52°04'N and 124°04'E,52°23'N, respectively. duringl988-2005, the coordinates of cores are 123°06'E,52°20'N,123°41'E,51°34'N and 124°08'E, 50°48'N. The hot points of human-caused fire in Daxing'an mountain area are similar each other among the period of 1972-1976,1977-1981,1982-1986,1987-1991, all the hot points are located in 124°10'E,50°23'N, inside JIaGedaqi forestry bureau. There are no hot points of human-caused fire in Daxing'an mountain during 1992-1996. It is different comparing with previous periods, the coordinates of cores of human-caused fire during 1997-2001 are 52°09'N,125°55'E, located in north of Hanjiayuan bureau. The number of human-caused fire occurrence during 2002-2005 is bigger than other periods, the fire happens mainly focus on south of Daxing'an mountain, the coordinates of cores are 51°35'N,125°25'E; 51°13'N, 125°27'E; 51°07'N,124°38'E; 50°34'N,125°26'E; 51°16'N,123°41'E and located in the north junction of HuMa and SongLing bureau, east junction of SongLing and JiaGedaqi bureau, in the middle of SongLing area and the junction of east of JiaGedaqi, HuZhong and SongLing bureau.
     Besides traditional OLS model, we choose Poisson, Zero-inflated Poisson (ZIP), negative binomial (NB) and Zero-inflated negative binomial (ZINB) models to model and analysis the relationship between lighting fire, human-caused fire and weather factors, furthermore, comparing those five models by the use of AIC and Voung methods and find out the best model. The results show that ZINB is the best model for fitting lighting fire data and weather factors data, the prediction model as following: log(λ= E(Y))=-3.637929+0.124678MAT+0.010395 MAE and log it(p)=-72.175944+0.962976 MARH
     Meanwhile the ZINB model are also the best model for modeling and analyzing the relationship between human-caused fire and weather factors, the prediction models we get are log(λ=E(Y))=-0.6534+0.0056MAE and logit(p)=-20.4509+0.0175MAP-0.2615MAT+0.3183MARH.
     By the use of ArcGIS, Arcmap, GWR2 and Moran software to analyze the relationship between forest fire occurrence and spatial relative factors. This thesis to analyze compute and compare the models basis on different spatial scale which included 5KmX5Km grid and random choosing samples two scales. The models we choice were global logistic and GWR model. The result shows that the spatial factors, distance to street and distance to railway, have a significant correlation with fire occurrence, and the Global Logistic model we get is where x1is the distance to street; x2 is the distance to railway. The probability function we get from the model result of GWR is a matrix function, the intercept coefficient (IC) have five levels, they are IC≤-0.4,-0.4     We get fire occurrence probability function as following according to global logistic under the condition of choosing sample randomly. Distribution of intercept coefficient are IC≤-0.4,-0.4     To test the two models above by the use of Z test, the results show that GWR model are better than Global logistic model in fitting results no matter in 5Km×5Km or random samples scale, besides, using Kriging method to make a spatial prediction of fire occurrence probability according to the predict values from those models above and the distribution of fire risk in the study region.
引文
[1]Thonicke K.S, Venevsky, S.Sitch et al.The role of fire disturbance for global vegetation dynamics:coupling fire into a Dynamic Global Vegetation Model.Global Ecology and Biogeography,2001:661-677
    [2]Specht R. Changes in the Eucalypt forests of Australia as a result of human disturbance Cambridge:Cambridge University Press,1991,177-197
    [3]Drossel B.F.Schwabl.Self-organized critical forest-fire model.Physical Review Letters, 1992,69(11):1629-1632
    [4]宋卫国,范维澄.整数型森林火灾模型及其自组织临界性.火灾科学,2001,10(1):53-56
    [5]王明玉,李华,舒立福等.不同植被类型森林火灾及雷击火自组织临界性.生态学报,2004,24(8):1803-1807
    [6]赵茂盛,P.Neilson.气候变化对中国植被可能影响的模拟.地理学报,2002,57(1):28-38
    [7]王明玉,舒立福,田晓瑞等.林火在空间上的波动性及其对全球变化的响应(Ⅰ).火灾科学,2003,12(3):165-170
    [8]王明玉,舒立福,田晓瑞等.林火在空间上的波动性及其对全球变化的响应(Ⅱ).火灾科学,2003,12(3):171-176
    [9]王明玉,孙龙,舒立福等.林火在空间上的波动性及其区域化行为.林业科学,2006,42(5):98-103
    [10]赵凤君.气候变化对内蒙古大兴安岭林区森林火灾的影响研究.中国林业科学研究院博士学位论文,2006,1-92
    [11]Swetnam T.W. Fire history and climate change in giant sequoia groves.Science,1993, 262(5135):DOI:10.1126/science.262.5135.885:885-889.
    [12]Whitlocka C., M.M.Bianchib, P.J.Bartleinc et al. Postglacial vegetation, climate, and fire history along the east side of the Andes(lat41-42.5°S),Argentina Quaternary Research, 2006,66(2):187-201
    [13]Yalcin K. C.P., Wake K.J, Kreutz et al. A 1000-yr record of forest fire activity from eclipse icefield,Yukon,Canada.The Holocene,2006,16(2):200-209
    [14]Filion L. D, Saint-Laurent M.D esponts et al.The late Holocene record of aeolian and fire activity in northern Quebec,Canada.Holocene 1991.,1:201-208
    [15]Talon B., S.Payette, L.Filion et al. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Quebec,Canada,from charred wood in mineral soils Quaternary Research 2005,64(1):36-43
    [16]Millspaugh S.H., C.Whitlock, P.J.Bartlein.Variations in fire frequency and climate over the past 17,000 yr in central Yellowstone National Park.Geology,2000,28:211-214
    [17]Ruppa T.S., X.Chena, M.Olsona et al.Sensitivity of Simulated Boreal Fire Dynamics to Uncertainties in Climate Drivers.Earth Interactions,2007,11(3):1-21
    [18]Boer G. J., Flato, G., and Ramsden D. A Transient Climate Change Simulation with Greenhouse Gas and Aerosol Forcing: Projected Climate to the Twenty-First Century. Clim. Dyn,2000,16(6),427-450
    [19]Flannigan M. D., Bergeron Y., Engelmark O., and Wotton B. M. Future Wildfire in Circumboreal Forests in Relation to Global Warming. Vegetation Science,1998,9,469-476
    [20]Flannigan M. D., Stocks B. J., and Wotton, B. M. Forest Fires and Climate Change. Science of the Total Environment,2000,262(3),221-229
    [21]Wotton B. M. and Flannigan M. D. Length of the Fire Season in a Changing Climate. Forestry Chronicle,1993,69,187-192
    [22]Podur J., Martell D. L., and Knight K. Statistical Quality Control Analysis of Forest Fire Activity in Canada. Can. J. Forest Res,2002,32,195-205
    [23]Stocks B. J., Lawson B. D., Alexander M. E., et al. The Canadian Forest Fire Danger Rating System:An Overview. Forestry Chronicle,1989,65,450-457
    [24]Flannigan M. D. and Van Wagner C. E. Climate Change and Wildfire in Canada. Can. J.Forest Res,1991,21,66-72
    [25]Stocks B. J., Fosberg M. A., Lynham T. J., et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim.Change,1998,38 (1),1-13
    [26]Wotton B. M., Stocks B. J., Flannigan M. D, et al. Estimating Current and Future Fire Climates in the Boreal Forest of Canada Using a Regional Climate Model, in Proceedings 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, pp.1998,1207-1221
    [27]Price C. and Rind D. A Simple Lightning Parameterization for Calculating Global Lightning Distributions. J. Geophys. Res,1992,97,9919-9933
    [28]Price C. and Rind, D. Modelling Global Lightning Distributions in a General Circulation Model. Mon. Wea. Rev,1993,122,1930-1939
    [29]Price C. and Rind D. The Impact of a 2×CO2 Climate on Lightning-Caused Fires. J. Climate,1994,7,1484-1494
    [30]Wotton B.M., Martell D.L, Logan K.A. Climate Change and People-Caused Forest Fire Occurrence in Ontario. Climate Change,2003,60(3):10.1023/A:1026075919710:275-295
    [31]Brown T.J., Hall B.L.,Westerling A.L.The Impact of Twenty-First Century Climate Change on Wildland Fire Danger in the Western United States:An Applications Perspective Climatic Change,2004,62(1-3):365-388
    [32]Fried J.S., Torn M.S., E.Mills.The Impact of Climate Change on Wildfire Severity:A Regional Forecast for Northern California. Climatic Change,2002,8(5):423-437
    [33]Williams A.A.J., Karoly D.J., Tapper N.The Sensitivity of Australian Fire Danger to Climate Change. Climatic Change,2001,49(1-2):171-191
    [34]Mouillot F., Rambal S., Joffre R.Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem Global Change Biology 2002,8(5):423-437
    [35]Thonicke K., Cramer W. Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg(Germany)Under a Changing Climate Natural Hazards,2006,38(1-2):283-300
    [36]翟盘茂,江吉喜,张人禾.ENSO监测和预测研究北京:气象出版社,2000,10-50
    [37]李超.埃尔尼诺对我国汛期降水的影响.海洋学报,1992,14(5):45-51
    [38]林学椿,于淑秋.厄尔尼诺与我国汛期降水.气象学报,1993,51(4):434-441
    [39]刘永强,丁一汇.ENSO事件对我国季节降水和温度的影响.大气科学,1995,19(2):200-208
    [40]王述洋.厄尔尼诺—南方涛动异常对森林火灾年际活动规律的影响.世界林业研究,1993,6(1):31-38
    [41]Hess J.C., Scott C.A., Hufford G.L, et al. ENSO and its impact on fire weather conditions in Alaska, International Journal of Wildland Fire,2001,10(1):1-13
    [42]Skinner W.R., Shabbar A., Flannigan M.D, et al. Large forest fires in Canada and the relationship to global sea surface temperatures. J.Geophys.Res., 2006,111(D14106):doi:10.1029/2005JD006738
    [43]Beckage B., Platt W., Slocum M., et al. Influence of the ENSO southern oscillation on fire regimes in the Florida Everglades.Ecology,2003,84(12):3124-3130
    [44]Kodandapani N., Cochrane M.A, Sukumar R. Conservation Threat of Increasing Fire Frequencies in the Western Ghats,India.Conservation Biology,2004,18(6):1553-1561
    [45]Kitzberger T., Brown P.M., Heyerdahl E.K. et al.Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America PNAS, 2007,104(2):543-548
    [46]Schoennagel T., Veblen T., Romme W. et al. ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. ECOLOGICAL APPLICATIONS,2005,15(6):2000-2014
    [47]田晓瑞,舒立福,阿力甫江.林火研究综述(Ⅱ)——ENSO对森林火灾的影响.世界林业研究,2003,16(5):22-25
    [48]TURNER M.G., AND ROMME W.H. Landscape dynamics in crown fire ecosystems. Landscape. Ecol.1994,9(1):59-77
    [49]GUYETTE, R.P., R.M. MUZIKA, AND D.C. DEY. Dynamics of an anthropogenic fire regime. Ecosystems,2002,5:472-486
    [50]RYAN K.C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica,2002,36(1):13-39
    [51]LARJAVAARA M., KUULUVAINEN T. and RITA H. Spatial distribution of lightning-ignited forest fires in Finland. For.Ecol. Manage,2005,208(1-3):177-188
    [52]MERMOZ M., KITZBERGER T. and VEBLEN T.T. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrub lands. Ecology, 2005,86(10):2705-2715
    [53]KUSHLA J.D. and RIPPLE W.J. The role of terrain in a fire mosaic of a temperate coniferous forest. For. Ecol. Manage,1997,95(2):97-107
    [54]DIAZ-AVALOS C., PETERSON D.L., ALVARADO E., FERGUSON S.A. and J.E. BESAG. Space-time modelling of lightningcaused ignitions in the Blue Mountains, Oregon. Can. J. For.Res,2001,31:1579-1593
    [55]LATHAM D. and WILLIAMS E. Lightning and forest fires.P.376-418 in Forest fires: Behavior and ecological effects, Johnson, E.A., and K. Miyanishi (eds.). Academic Press, SanDiego.2001
    [56]WOTTON B.M. and MARTELL D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res,2005,35(6):1389-1401
    [57]TANSKANEN H., VENALAINEN A., PUTTONEN P. and GRANSTROM A. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern Finland. Can. J. For. Res,2005,35(2):410-420
    [58]MORITZ M.A., KEELEY J.E., JOHNSON E.A. and SCHAFFNER A.A. Testing a basic assumption of shrubland fire management:How important is fuel age? Frontiers Ecol. Environm,2004,2:67-72
    [59]刘元春.气候变化对我国林火时空分布格局的影响,东北林业大学硕士论文,2007
    [60]张艳萍.黑龙江大兴安岭地区气候变化对森林火灾的影响研究,东北林业大学硕士论文,2008
    [61]邸雪颖,孙希国,孙建.大兴安岭塔河林业局林火时空动态研究.林火研究,2008,(3):33-35
    [62]许东蓓.甘肃省森林火灾特征及火险预报方法研究.信息工程大学优秀硕士论文,2006,20-35
    [63]寇晓军.黑龙江省林火时空格局分析-时间分布[J].森林防火,1997(4):13-15
    [64]胡远方.黑龙江省林火面积分布格局[J].森林防火,1998(2):19-23
    [65]柴造坡等.黑河地区林火分布规律.林业科技,2009,34(4):38-41
    [66]田晓瑞,舒立福,王明玉,赵凤君.西藏森林火灾时空分布规律研究.火灾科学,2007,16(1):10-13
    [67]胡海清,金森.黑龙江林火规律研究Ⅱ林火动态与格局影响因素的分析.林业科学, 2002,38(2):98-102
    [68]金森.黑龙江省林火规律研究Ⅲ.大尺度水平林火与森林类型之间的关系研究[J].林业科学,2002,38(4):171-175
    [69]王明玉.气候变化背景下中国林火响应及特征.中国林科院博士论文,2009
    [70]郭福涛,胡海清,马志海.应用空间点模式方法对大兴安岭雷击火空间分布格局的研究.生态学报.2009,29(12):6741-6747
    [71]Weber M.G, Stocks B.J. Forest fires and sustainability in the boreal forests of Canada. Ambio,1998,27:545-550
    [72]Komarek E.V. Lightning and fire ecology in Africa. Proc Tall Timbers Fire Ecol.Conf. 1974,11:473-511
    [73]Morris W.G. Lightning storms and fires on the national forests of Oregon and Washington. USDA Forest Service, Pacific Northwest Forest Experment Station, Portland,1934
    [74]舒立福,王明玉,田晓瑞等.我国大兴安岭呼中林区雷击火发生火环境研究.林业科学,2003,39(6):94-99
    [75]Justin Podur, David L, Martell et al. Spatial patterns of lightning-caused forest fire in Ontario,1976-1998. Ecol. Model,2003,164:1-20
    [76]Giuseppe Amatulli, Juan de la Riva, et al. Mapping lighning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol. Model,2007,200:321-333
    [77]Cressie N. A. C. Statistics for Spatial Data. Wiley, New York,1993
    [78]Allard D., Brix A, Chadoeuf J. Testing local independence between two point processes. Biometrics,2001,57(2):508-517
    [79]Stoyan D., Penttinen A. Recent applications of point process methods in forestry statistics. Statist.Sci,2000,15(1):61-78
    [80]Myers N.,1997. The world's forests and their ecosystem services.In:Daly,GC(Ed.), Nature's Services. Island Press, Washington, DC, pp.215-235
    [81]Pyne S.J. Fire in America:A Cultural History of Wildland and Rural Fire.Princeton University Press, Princeton, NJ.1982
    [82]Chou, Y., Minnich, R., Chase, R. Mapping probability of fire occurrence in san Jacinto Mountains, California, USA. Environ.Man.1993,17,129-140
    [83]Vega Garcia C.,Woodard P., Lee B.Geographic and temporal factors that seem to explain human-caused fire occurrence in Whitecourt Forest, Alberta.In:Proceedings of Symposium on GIS'93 International.Vancouver,Canada,Vol.1,pp.115-119,1993
    [84]Martell D.L., Otukol S., Stocks B.J. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can.J.For.Res,1987,17,394-401
    [85]Lawson B.D., Armitage O.B., Dalrymple GN. Ignition probabilities for simulated people-caused fires in British Columbia's lodgepole of the 12th conference on Fire and Forest Meteorology. Society of American Foresters, Bethesda, MD, pp.493-505,1993
    [86]Vega Garcia C., Woodard P.M., Titus S.J., Adamowicz W.L., Lee B.S. A logistic model for predicting the daily occurrence of human caused foresst fires. Int.J.Wildland Fire,1995,5, 101-111
    [87]Hamilton M.P., Salazar L.A., Palmer K.E. Geographic information systems:providing information for wildland fire planning. Fire technol,1989,25,5-23
    [88]Lee and Anderson,1989. A spatial analysis approach for forest fire preparedness planning. In: Proceedings of the 10th Conference of Fire and Forest Meteorology. Society of American Foresters, Bethesda, MD, pp.339-345
    [89]Hawkes and Beck. A wildfire threat rating system. Technology Transfer Note No.1. Forestry Researc Applications, Pacific Forestry Center, Can. For. Serv., Victoria,6 pp, 1997
    [90]VEBLEN T.T., KITZBERGER T., VILLALBA R., and J. DONNEGAN. Fire history in northern Patagonia:The roles of humans and climatic variation. Ecol. Monogr.1999, 69(1):47-67
    [91]Guyette R.P., Muzika R.M. and D.C. Dynamics of an anthropogenic fire regime. Ecosystems 5:472-486
    [92]BERGERON Y., GAUTHIER S., FLANNIGAN M. and KAFKA V. Fire regimes at the transition between mixed wood and coniferous boreal forest in Northwestern Quebec. Ecology,2004,85(7):1916-1932
    [93]HESSBURG P.F., AGEE J.K. and FRANKLIN J.F. Dry forests and wildland fires of the inland Northwest USA:Contrasting the landscape ecology of the pre-settlement and modem eras.For. Ecol. Manage.2005,211(1-2):117-139
    [94]WEBER M.G. and STOCKS B.J. Forest fires and sustainability in the boreal forests of Canada. Ambio,1998,27(7):545-550
    [95]WESTIN S. Wildfire in Missouri. Missouri Department of Conservation, Jefferson City. 161 p.1992
    [96]DONOGHUE L.R. and MAIN W.A. Some factors influencing wildfire occurrence and measurement of fire prevention effectiveness. J. Environ. Manage,1985,20:87-96.
    [97]CARDILLE J.A., VENTURA S.J. and TURNER M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Applic,2001,11(1):111-127
    [98]STURTEVANT B.R., ZOLLNER P.A., GUSTAFSON E.J. and CLELAND D.T. Human influence on the abundance and connectivity of high-risk fuels in mixed forests of northern Wisconsin, USA. Landscape Ecol,2004,19:235-253.
    [99]PRESTEMON J.P. and BUTRY D.T. Time to burn:Modeling wildland arson as an autoregressive crime function. Am. J.Agric. Econ.,2005,87(3):756-770
    [100]Prestemon J.P., and Butry D.T., Holmes T.P., and Mercer D.E. Understanding broad scale wildfire risks in a human-dominated landscape. For. Sci,2002,48:685-693
    [101]MERCER D.E. and PRESTEMON J.P. Comparing production function models for wildfire risk analysis in the wildland-urban interface. For. Policy Economics, 2005,7(5):782-795
    [102]BUTRY D.T. and PRESTEMON J.P.2005. Spatio-temporal wildland arson crime function. Paper presented at the Annual Meeting of the American Agricultural Economics Association, July 26-29,2005. Providence, RI.18 p.
    [103]舒立福,张小罗,戴兴安,田晓瑞,王明玉.林火研究综述(Ⅱ)林火预测预报.世界林业研究,2003,16(4)34-37
    [104]郑焕能.林火灾变域值.火灾科学,1999,8(3):1-5
    [105]白尚斌,张晓丽,林火预测预报研究综述,森林防火,2008,(2):22-25
    [106]林其钊,舒立福.林火概论.合肥:中国科学技术大学出版社.2003.
    [107]HOELZEMANN J.J, SCHULTZ M.G, BRASSEUR GP, et al.Global wildland fire emision model(GWEM):evaluating the use of global area burnt satellite data. Journal of Geophysics Research,2004,109:1-18
    [108]Barid LA, Calting P.C, Ive J.R. Fire Planing for Wildfire Management. A Decision Support System For Nadgee Nature reserve.Australia:International Journal of Wildlnad Fire,1994,4(2):107-122
    [109]Brown J, Debyle N.Fire damage,mortility and suckering in aspen.Canada:Journal of Forest Research,1987,17(9):1100-1109
    [110]叶兵.国内外森林防火技术及其发展趋势.北京:中国林业科学院,2000
    [111]姚树人,文定元.森林消防管理学.北京:中国林业出版社,2002
    [112]Venables W. N. and Ripley B. D. Modern Applied Statistics with S-Plus.Springer,1997
    [113]薛毅.统计建模与R软件.北京:清华大学出版社,2007
    [114]周爽,贾克云,阮桂海.SAS数据挖掘与分析.北京:清华大学出版社,2007
    [115]丁炳录,康健.大兴安岭资源植物.北京:气象出版社,1994,3-10
    [116]周以良等.中国大兴安岭植被.北京:科学出版社,1991:3-6
    [117]中国植被编委会.中国植被.北京:科学出版社,1983:159-210
    [118]冯林,韩铭哲.兴安落叶松及其群落的基本特征.见:林业部科技司编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,583-589
    [119]韩铭哲,冯林.兴安落叶松基本林型的探讨.见:林业部科技司编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:590-597
    [120]张喆.基于RS的森林可燃物类型划分的研究.东北林业大学硕士学位论文.2007
    [121]Houghton J T, Ding Yihui, D Griggs. The Scientific Basis Summary for Policymakers and Technical Summary of Working Group 1 Report. Climate Change.Cambridge:Cambridge University Press,2001,1-98
    [122]丁一汇.中国西部环境变化的预测.北京:科学出版社,2002,238-239
    [123]孙凤华,杨素英,陈鹏狮.东北地区近44年的气候暖干化趋势分析及可能影响.生态学杂志,2005,24(7):751-755
    [124]E.C.Plelo.数学生态学(卢泽愚译)[M].北京:科学出版社,1988
    [125]Pielou, E.C. A single mechanism to account for regular, random and aggregated populations. J.Ecol,1960,48:575-584
    [126]Pielou, E.C. Segregation and symmetry in two-species population as studied by nearest-neighbor relatinnships.J.Eeol,1961,49:255-269
    [127]Stoyan, D. and Penttinen A. Recent ApplieationsofPointProeessMethods in Forest Statistics.StatisticalSelenee,2000,15:61-78
    [128]Legendre P. and Fortin M.J. Spatial pattern and ecofogical analysis.Vegetatio, 1989,80:107-138
    [129]Baddeley A., Gill R.D. Kaplan-meier estimators of distance distributions for spatial point processes.Annl.Statistics,1997,25:263-292
    [130]Wiegand T., MoloneyK.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos,2004,104:209-229
    [131]Barbini P., CeveniniG.E. and Massai M.R. Nearest-neighbor analysis of spatial point patterns:application to biomedical image interpretation. Computers and Biomedical Research,1996,29:482-493
    [132]Bliss C.1., Fisher R.A. Fitting the Negative Binomial Distribution to Biological Data.Biometrics,1953,9:176-200
    [133]He F. and K.J. Gaston.Occupancy-abundance relationships and sampling scales.Ecography,2000,23:503-511
    [134]Dacey F.M. Modified poission probability law for point pattern in more regular than random. Annals of Assoe.of Ameri.Geogrs,1964,54:559-565
    [135]He, F. and Gaston K.J. Estimating species abundance from occurrence. American Naturalist,2000,156:553-559
    [136]Archibald E.E.A. Plant populations LA new application of Neyman's contagious distribution. Annais of Botonr,1948,12:221-235
    [137]Thomas M. A generalization of Poission's binomial limit for use in ecology. Bfometrka, 1949,36:18-25
    [138]Boswell M.T. and Patil GP. Chance mechanisms generating the negative binomial distributions.Pages 3-22 in GP.Patil, ed. Random counts in models and structures.Pennsylvania State University Press, University Park.1970
    [139]Quenouille M.H. A relation between the logarithmic, Poission, and Negative Binomial series.Biometries,1949,5:162-164
    [140]Tang M. P, Tang S. Z, Lei X. D. Edge correction of Ripley's K(d)function on population spatial pattern allalysis. Acta Ecologica Sinica,2003,23(8):1533-1538.
    [141]Venables W.N, Ripley B.D. Modern Applied Statistics with S-Plus. Springer & New York,1999,500 pp.
    [142]Min T.Z. Developing a scientific basis for sustainable management of tropical forest. Universitaetsverlages Goettingen,2005,32-37
    [143]Bailey T.C, Gatrell A.C. Interactive Spatial Data Analysis. Longman Group Limited & Essex,1995.
    [144]Hardle W. Smoothing Techniques, With Implementations in S, Springer [M].New York: Springer Verlag,1990
    [145]Colin O.Wu. A cross-validation bandwidth the choice for kernel density estimates with selection biased data [J].Jomal of Multivariate Analysis,1997,61(1):38-60
    [146]Kirsten T, Sergey V, Stephen S, et al. The role of fire disturbance for global vegetation dynamics coup ling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography,2001,10:661-677
    [147]Grant C.D, LoneraganW.A. The effects of burning on the understory composition of 11-13 year-old rehabilitated bauxite mines in Western Australia. Plant Ecology,1999,145: 291-305
    [148]舒立福,田晓瑞,马林涛.林火生态的研究与应用.林业科学研究,1999,12(4):422-427
    [149]Flannigan M.D,Wagner Van C.E. Climate Change and Wildfire in Canada.Canada Journalof Forest Research,1991,21,66-72
    [150]Stocks B.J, Fosberg M.A, Lynham T.J, et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Climatic Change,1998,38(1),1-13
    [151]Flannigan M.D, Bergeron Y, Engelmark O, et al. Future Wildfire in Circumboreal Forests in Relation to Global Warming. Journal of Vegetation Science,1998,9,469-476
    [152]Flannigan M.D, Stocks B.J, Wotton B.M. Forest Fires and Climate Change. Science of the Total Environment,2000,262(3),221-229
    [153]Wotton B.M, Stocks B.J, Flannigan M.D, et al. Estimating Current and Future Fire Climates in the Boreal Forest of Canada Using a Regional Climate Model, in Proceedings 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, pp.1207-1221
    [154]Albright D, Meisner B.N. Classification of fire simulation systems. Fire Manage,1999, 59(2),5-12
    [155]Gardner R.H, Romme W.H, Turner M.G. Predicting forest fire effects at landscape scales// Mladenoff D.J, Baker W.L, Spatial Modeling of Forest Landscapes:Approaches and Applications. UK, Cambridge:Cambridge University Press,1999:163-185
    [156]赵慧颖.大兴安岭东部森林火灾发生的气候条件辨识.森林防火,2006,2:18-20
    [157]于成龙,胡海清,魏荣华.大兴安岭塔河林业局林火动态气象条件分析.东北林业大学学报,2007,35(8):23-27
    [158]傅泽强,陈动,王玉彬.大兴安岭森林火灾与气象条件的相互关系.东北林业大学学报,2001,29(1):12-15
    [159]傅泽强,戴尔阜.大兴安岭森林火险季节动态特征及其气候条件分析.自然灾害学报,2001,10(4):113-116
    [160]Alan J.Miller. Algorithm AS 274:Least squares routines to supplement those of gentleman. Applied Statistics,1992,41:458-478
    [161]Jesper R, Igor R. A note on estimation of intensities of fire ignitions with incomplete data. Fire Safety Journal,2006,41:399-405
    [162]Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics,1986,33:341-365
    [163]Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics,1992,34:1-14
    [164]Van den Broek J. Van DB. A score test for zero zero-inflation in a Poisson distribution. Biometrics,1995,51:738-743
    [165]Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics,1986(33):341-365
    [166]Van D.B. A score test for zero inflation in a Poisson distribution. Biometrics,1995(51): 738-743
    [167]Welsh A.H, Cunningham R.D, Chambers R.L. Methodology for estimating the abundance of rare animals:seabird nesting on North East Herald Cay. Biometrics, 2000(56):22-30
    [168]Van I.M.W, Oetting R.D, Hall D.B. Imidacloprid applications by subirrigation for control of silverleaf whitefly Homoptera:Aleyrodidae on poinsettia. J Econ Entomol, 2000(93):813-819
    [169]Van I. M.W, Oetting R.D, Hall D.B,et al. Application technique and irrigation method affect imidacloprid control of silverleaf whiteflies (Homoptera:Aleyrodidae) on poinsettias.J Econ Entomol,2001(94):666-672
    [170]Vieira A.M.C, Hinde J.P, Demetrio C.G.B. Zero-inflated proportion data models applied to a biological control assay. J Appl Stat,2000(27):373-389
    [171]缪柏其,韦剑,宋卫国等.林火数据的Logistic和零膨胀Poisson(ZIP)回归模型.火 灾科学,2008,17(3):143-149
    [172]Dean C.B, Lawless J.F. Tests for detecting over-dispersion in Poisson regression models. Journal of the American Statistical Association,1989,84:467-472
    [173]Martin R, John H, Clarice G.B. A Score Test for Testing a Zero-Inflated Poisson Regression Model against Zero-Inflated Negative Binomial Alternatives, Biometrics, 2001,57(1):219-223
    [174]Kelvin K.W. Yau, Kui Wang and Andy H. Lee. Zero-Inflated Negative Binomial Mixed Regression Modeling of Over-Dispersed Count Data with Extra Zeros, Biometrical Journal, 2003,45 (4):437-452
    [175]Hall D.B. Zero-inflated Poisson and binomial regression with random effects:a case study. Biometrics,2000,56:1030-1039
    [176]Liang K.Y, Zeger S.L.Longitudinal data analysis using generalized linear models. Biometrika,1986,73:13,222
    [177]Prentice R.L. Correlated binary regression with covariates specific to each binary observation. Biometrics,1988,44:1033-1048
    [178]陈启光.纵向研究中重复测量资料的广义估计方程分析.中国卫生统计,1995,12(1):22
    [179]熊林平,曹秀堂,徐勇勇等.纵向观测计数数据的对数线性模型.中国卫生统计,1999,16(2):68
    [180]陈峰,任仕泉,陆守曾.非独立试验的组内相关与广义估计方程.南通医学学报,1999,19(6):359-362
    [181]郜艳晖,姜庆五.用广义估计方程估计数量形状的家庭相关.中华流行病学杂志,2003,24(8):729-733
    [182]张文彤,田晓燕.基于广义估计方程的多重应答资料统计分析方法.2004,21(3):139-141
    [183]宋喜芳,李建平,胡希远.模型选择信息量准则AIC及其在方差分析中的应用.西北农林科技大学学报,2009,37(2):88-92
    [184]Akaike H. Stochastic theory of minimal realization [J]. IEEE Trains on Automatic Control,1974,19(6):667-674
    [185]Bozdogan H. Model selection and Akaike's information criterion (AIC):the general theory and its analytical extension [J].Psychometrika,1987,52:345-570
    [186]Vuong, Quang H. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica,1989,57:2:307-333
    [187]赵松山,白雪梅.关于多重共线性检验方法的研究.中国煤炭经济学院学报,2001,15(4):296-300
    [188]Jesper R, Igor R. A note on estimation of intensities of fire ignitions with incomplete data. Fire Safety Journal,2006(41):399-405
    [189]Martin R, John H, Clarice G.B. Demetrio. A Score Test for Testing a Zero-Inflated Poisson Regression Model Against Zero-Inflated Negative Binomial Alternatives. BIOMETRICS,2001(57):219-223
    [190]Jeffrey S, Simonoff. Analysis Categorical Data. NewYork:Springer,2003
    [191]Cameron A.C. and Trivedi P.K. Regression Analysis of count Data. Cambridge University Press.1998
    [192]Nocedal J, Wright S. Numerical optimization. Springer-Verlag.1999
    [193]陈景武.卫生管理多因素分析.山东大学出版社,1994
    [194]陈锋.医用多元统计分析方法.中国卫生统计出版社,2001
    [195]方积乾.医学统计学与电脑试验第2版.上海科学技术出版社,2001
    [196]李晓毅.Bayes判别分析及其在疾病诊断中的应用.中国卫生统计,2004,21(6):356-357
    [197]Brunsdon C., Fotheringham, A.S., and Charlton M.E. Geographically weighted regression-modelling spatial non- stationarity, Journal of the Royal Statistical Society, Series D-The Statistician,1998,47(3),431-443
    [198]Brunsdon C., Fotheringham, A.S., and Charlton, M.E. Some notes on parametric signficance tests for geographically weighted regression, Journal of Regional Science, 1999,39(3),497-524
    [199]Brunsdon C., Fotheringham A.S. and Charlton M.E. Spatial nonstationarity and autoregressive models. Environment and Planning,1998,30(6),957-993
    [200]Fotheringham A.S., Brunsdon C. and Charlton M.E. Geographically Weighted Regression:The Analysis of Spatially Varying Relationships, Chichester:Wiley.2002
    [201]CLIFF A.D. AND J.K. ORD. Spatial processes:Models and applications. Pion, London. 266 p.1981
    [202]LEE J. AND WONG D.W.S. Statistical analysis with ArcView GIS. John Wiley and Sons, Inc., New York.192 p.2001
    [203]ANSELINL. Local indicator of spatial association-LISA. Geog. Anal,1995,27:93-115
    [204]TIEFELSDORMF, IWD B. BOOTS. A note on the extremities of local Moran's and their impact on global Moran's I. Geog. Anal,1997,29:248-257
    [205]BOOT S. B. Local measures of spatial association. EcoScience,2002,9:168-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700