面向省级电网的跨流域水电群优化建模与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电群规模不断扩大为复杂的梯级联合调度带来了严峻的挑战,优化计算过程呈现出高维数、强约束、非线性、多阶段等特征给可靠实用的库群优化调度模型建立提出了越来越高的要求。智能算法由于模型结构复杂、参数选择困难、计算结果具有随机性等固有缺点使其实际应用受限,而理论成熟、原理清晰、实现容易且广泛应用的传统优化算法由于计算变量的增加存在维数灾问题,因此在分析传统方法特点的基础上,构建整合多种传统算法的实用最优化模型,用于求解大规模库群优化问题是亟待解决的问题。分别作为库群优化调度的前提条件及优化结果的合理检验方式,电网机组检修优化与电力电量平衡计算同样面临高维次、非凸性、离散性等特点,依靠传统的计算模式与经验已经无法满足实际计算需求。本文以云南电网、福建电网及贵州电网优化运行为背景,主要从跨流域库群联合优化调度建模、应用及其紧密相关问题进行深入研究,旨在结合计算机技术和优化理论为省级电网的库群优化调度及实际运行优化提供可靠实用的技术支持。主要内容概括如下:
     (1)针对电网备用不足时机组检修安排不合理可能产生大量缺电的情况,提出了基于启发式搜索和逐次逼近优化的机组检修缺电量最小模型,以等备用原则为基础,在系统存在缺电时以缺电量最小为目标,尽量使检修安排后的等效负荷曲线在系统装机容量以下,保证系统安全运行。模型求解过程中,充分结合启发式搜索与逐次逼近算法的优点,以启发式搜索获得的结果作为逐次逼近算法的初始可行解,通过不断迭代逐次寻优,获得满足各类约束的最优解。通过云南电网175台次机组检修优化安排结果表明,模型具有更好的实际应用效果。
     (2)针对规模库群的复杂调度要求,结合逐次逼近动态规划(DPSA)可以减少每次参与计算的电站数目,增量动态规划(DDDP)减少离散状态数目,而逐步优化算法(POA)减少计算时段数目等特点,以满足系统上下限带宽的发电量最大为目标,提出耦合DPSA,DDDP及POA的混合求解算法来建立梯级长期优化调度模型。模型以有向图技术描述复杂的梯级结构,并通过深度优先搜索技术从图中自动获得上下游的电站计算顺序,提高优化计算效率。以福建电网44座大型水电站为应用实例的计算结果表明,有向图描述的混合求解算法可以有效地克服维数灾问题和复杂约束条件问题,得到高性能的优化调度结果。
     (3)随着我国用电负荷的不断增加,相邻日之间平均负荷差不断扩大,导致两天之内火电开机方式的差异越来越大,给电网计划制作与实际调度带来一定的困难及不必要的经济损耗,针对这种情况提出了基于切负荷方式的库群中期发电优化调度调峰出力最大模型:在给定时间段内,为了让遗留给火电站的日电量尽量均匀,保证火电机组相邻日内的开机方式不变或者变化最少,以此减少火电机组启停期间的额外燃料消耗及磨损,节约发电成本,而使水电机组适应各日间的电量变化,达到中期负荷调峰的目的。模型求解过程中先根据电站调节性能及其在梯级中的位置进行分类,采用逐次切负荷方式确定电站的最优调峰位置,并通过以电定水对梯级水量进行平衡计算,对存在弃水的情况根据系统负荷特性进行修正,以获得接近最优结果的库群初始调度过程。最后以这一过程为基础,通过混合求解算法进行寻优求解。通过福建电网19座具有中期调节性能电站丰枯水期的计算结果显示调峰效果明显。
     (4)针对汛期电力系统中,水电在尽量减少或避免弃水的情况下调峰能力不够时,火电参与调峰,但各个时段出力不均匀,提出了基于负荷控制的三段调峰及递级调峰算法,以逐次切负荷法为基础,采用负荷控制的办法,避免了常规算法中对火电站计算结果进行逐个限制的复杂过程。该算法在尽可能减少火电站出力过程中连续开停机及连续升降的情况下,既能保证火电站相邻时段出力差满足爬坡速度要求,又保证了火电站全天各个时段出力尽量均匀,减少火电机组频繁启停或爬坡带来的额外燃料消耗及磨损,节约发电成本。通过云南电网实际运行检验,改进的调峰方式计算结果更为合理,更能满足实际电网的调峰要求。
     (5)以多个省级电网跨流域水电群发电优化调度系统为背景,从工程实用性出发,在分析国内外现有库群发电优化调度技术基础之上,运用计算机科学、人工智能技术,提出了能够求解复杂跨流域梯级水电站群发电优化调度系统的时空解析技术,主要包括描述梯级电站拓扑结构的有向图技术,条件约束自动设置的智能记忆方式及脚本控制技术,可扩展的优化算法接口设计及基于共享Model的MVC模式图表联动及梯级联调技术,开发了包括中长期径流预报、长中短期发电优化和实时调度的跨流域水电站群发电优化调度系统,并在福建、云南、贵州三个省级电网得到成功应用。
     最后对全文进行了总结,并对有待进一步研究的问题进行了展望。
With the increase of the hydropower station group scale in provincial power grids,the optimal operation of multi-basin is becoming intricate and facing urgent challenge.There are more requests to construct the reliable and applied model for the optimal operation of multi-hydropower stations because of the complicated optimal computational process which featuring by high-dimensional,strict restrictions,nonlinear and multi-phase characteristics. The intelligent algorithms,which have the fixed shortcomings of complex model structure, difficult preferences,stochastic optimal results,are hard to apply in practice.Nevertheless,the classical conventional optimal algorithms will face the "disaster-dimension" with the increasing variables.It is vital to construct a available optimal model for large scale operation hydropower stations.Moreover,the unit maintenance and power balance in power grids,as the previous condition and the method of verifying rationality for the optimal results respectively,are very complicated.It is very hard to satisfy the increasing requirements by traditional experience and management mode.In this paper,based on the project background of power grids in Yunnan,Fujian and Guizhou,the practical optimal problems including hydropower stations optimal operation,large scale units maintenance scheduling and adjusting discharge peak by hydrothermal plants are studied in-depth.The main contents and research progress are as follows:
     (1) For the situation of insufficient reserve capacity in many power grids at present,a minimum model for energy shortage is designed to optimize the unit maintenance scheduling. Based on equivalent reserve capacity method,the presented model can ensure the grid safety by adopting the objective of minimum energy shortage and putting the equivalent load curve from unit maintenance scheduling under the system capacity curve.The optimal result can be obtained through combining the heuristic search method(HSM) with the successive approximation method(SAM).The result gained from HSM is specified as the initial feasible solution in SAM and the optimal result meeting all constraints is achieved by iterative calculation.The experimental results of 175 units at Yunnan power grid indicate that the proposed model is more efficient in practical application.
     (2) In order to meet the complex requirements in hydropower stations optimal operation, a hybrid optimal model consisted DPSA,DDDP and POA organically with the system constrain of up-down bound is presented.The model is seized of the advantages including decreasing the number of hydropower stations by DPSA,minifying the discrete states by DDDP and reducing the computational time by POA.Using the directed-graph to describe the intricate topology of multi-basin,the model can obtain the calculating order quickly by the DFS method in the directed-graph and can calculate all the hydropower stations easily. Finally,the results of the Fujian hydropower system which consists of 44 hydropower stations show that the model can avoid the "dimension-disaster" and the trouble of complicated restricts.Furthermore,the optimal results are very satisfied.
     (3) With the demand load increasing,the gap of day-energy and the difference open-off in thermal units between two days become larger and larger.Accordingly,it will consume more fuel and it is very difficult to schedule in hydropower system.A medium-term generation model for the peak-power maximization is presented.In order to smooth the rest load curve for the thermal plants and saving the fuel,the model ensures the hydropower stations to fit the gap of system load curve.To achieve the results of the model,all the hydropower stations are classified into two types according the regulation and position in the drainage basin at first.Then the work location which will be as the initialization of HA is decided by the method of load shedding and the water balance is ensured through calculating water depending on power generation.Finally,the results of flood season and dry season in the Fujian hydropower system which consists of 19 up week-regulation hydropower stations show that the model is effective.
     (4) Thermal power plants should participate in adjusting discharge peak of power system in order to reduce or eliminate the water spill of hydro power plants in flood season.An improved algorithm of adjusting discharge peak of power system by thermal power plants is developed for eliminating fluctuating loads of thermal powers.This algorithm adopts the basic framework originated from the method of load shedding and appends the restriction conditions on loads when cutting system discharge,therefore avoiding difficult judgment in the normal method of electric power and energy balance algorithm and decreasing open-off frequency of thermal power plants.Furthermore,the method has not only ensured the difference on two neighbor hours less than the rising rate of thermal power plant,but also produced the uniform loads.The application results of Yunnan electric power system show that the present method is more reasonable and easily meets the demand of adjusting discharge peak.
     (5) China's hydropower system,after nearly 20 years development,has formed a trans-basin,large-scale hydropower stations operation system,with complex scheduling relations and requiring a variety of methods and techniques to solve.Therefore,it is vital to construct a large scale operation hydropower system which is scientific,efficient,convenient, and available for practical system.On the background of the success experience in design and developed optimal operation systems in several provincial power grids,this paper puts forward a spatio-temporal resolution to solve the optimal operation problem of complex trans-basin cascade hydroelectric power stations.It based on analyzing the existed optimal operation technology and uses computer science as well as artificial intelligence.The resolution includes directed-graph technology to describe the topology of cascade hydropower stations;smart memory and script control technology to set the restrictions automatically; interface programming and the same model in MVC to handle the linkage between table and chart and multi-reservoir operation.The mid-long term runoff prediction system,long,medium and short term optimal operation system and real-time operation system which adopting these technologies have been applied successfully in provincial power grids of Fujian,Yunnan and Guizhou.
     Finally,a summary is given and some issues to be further studied are discussed.
引文
[1]国家电力信息网.http://www.sp.com.cn/dlsc/dltji.
    [2]贵州电力新闻网.http://www.gzdw.com.cn/default.aspx.
    [3]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990.
    [4]郭永基.电力系统可靠性原理与应用[M].北京:清华大学出版社,1986.
    [5]冯长有,王锡凡.电力市场下发电机组计划检修模型[J].电力系统自动化,2007,30(5):97-104.
    [6]丁明,冯永青.发电机组检修计划的可靠性和经济性研究[J].中国电力,2001,34(7):22-25.
    [7]Zurn H H,Quintana V H.Generator maintenance scheduling via successive approximations dynamic programming.IEEE Transaction on Power Apparatus and Systems,1975,94(2):665-671.
    [8]Chattopadhyay D.A practical maintenance scheduling program:mathematical model and case study.IEEE Transactions on Power Systems,1998,13(4):1475-1480.
    [9]吴龙,黄民翔.电力系统机组计划检修新模型[J].电力系统自动化,1998,2(2):26-28.
    [10]高军,刘文颖,王秀丽,等.发电系统检修计划优化问题实用研究[J].西北电力技术,2002,(1):22-26.
    [11]Garver L L.Adjusting Maintenance Schedules to Levelize Risk[J].IEEE Transactions on Power Apparatus and Systems,1972,91(5):2057-2063.
    [12]Yamayee Z A.Maintenance Scheduling:Description,Literature Survey,and Interface with Overall Operations Scheduling[J].IEEE Transactions on Power Apparatus and Systems,1982,101(8):2770-2779.
    [13]Endrenyi J,Aboresheid S,Allan R N,et al.The present status of maintenance strategies and the impact of maintenance on reliability[J].IEEE Transactions on Power Systems,2001,16(4):638-646.
    [14]Bretthauer G,Gamaleja T,Handschin E,et al.Integrated maintence scheduling system for electrical energy systems[J].IEEE Trans on Power Delivery,1998,13(2):655-660.
    [15]陈少华,杨澎.遗传算法在火力发电机组计划检修中的应用[J].武汉水利电力大学学报,1999,32(5):35-37.
    [16]陈少华,杨澎,周永旺,等.遗传和模拟退火算法在发电机组计划检修中的应用[J].电力系统自动化,1998,22(7):44-46.
    [17]左郑敏,吴耀武,熊信,等.机组检修计划问题的GA&SA组合算法[J].水电能源科学,2001,19(4):63-66
    [18]Kim H,Hayashi Y,Nara K.An Algorithm for Thermal Unit Maintenance Scheduling through Combined Use of GA,SA and TS[J].IEEE Trans on Power Systems,1997,120):329-335
    [19]Qi L Q,Xiao J.A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations[J].SIAM Journal on Control and Optimization,1995,33(2):402-418.
    [20]Yellen J,Khamis T M,Vemuri S,et al.A decomposition approach to unit maintenance scheduling[J].IEEE Transactions on Power Systems,1992,7(2):726-733.
    [21]Wang Y,Handsehin E.A New Genetic Algorithm for Preventive Unit Maintenance Scheduling of Power Systems[J].Intemational Journal of Electrial Power and Energy Sys,2000,22(5):343-348.
    [22]Fabriee F,Thierry E,Thierry S.Improving Lagrangian of Pressurized water Reactoroutages[J].IEEE Trans on Power Systems,1997,12(2):919-925.
    [23]Egan G T.An Experimental Method of Determination of Optimal Maintenance Schedules in Power Systems Using the Branch and Bound Technique[J].IEEE Trans on man and Cybernetics,1976,SMC-6(8):538-547.
    [24]Baskar S,Subbaraj P,Rao M V C,et al.Genetie Algorithm Solution to Genera toMaintenance Seheduling with Modified Genetic Operators[y].IEEE Proeeedings:Generation,Transmission and Distribution,2003,150(1):56-60
    [25]Leou RC.A Flexible Unit Maintenance Scheduling Considering Uncertainties[J].IEEE Trans on Power Systems.2001,16(3):552-559
    [26]Sharkh M Y,Keib A A.Maintenance Scheduling of Generation and Transmission Systems Using Fuzzy Evolutionary Programming[J].IEEE Transon Power Systems,2003,18(2):862-866.
    [27]冯永青,张伯明,吴文传,等.电力市场发电机组检修计划的快速算法[J].电力系统自动化.2004,28(16):41-44
    [28]陈竞成,于尔铿,刘广一,等.检修计划新模型与算法的研究[J].电网技术,1997,21(11):66-69.
    [29]丁明,冯永青.发输电设备联合检修安排模型及算法研究[J].中国电机工程学报.2004,24(5):18-23.
    [30]彭卉,张焰,张彦魁,等.发电机组最佳计划维修周期研究[J].中国电机工程学报,2003,23(7):41-45.
    [31]王鹏,张粒子,鲍海,等.初级电力市场中机组检修计划的实用模型[J].中国电力.2000,33(11):79-81.
    [32]全宏兴,刘俊勇.电力市场中火电机组检修计划的研究[J].电力系统自动化,2002,26(14):35-39.
    [33]陶文斌,张粒子,黄弦超.发电机组检修市场的初步设计[J].电力系统自动化,2005.10(25):15-19.
    [34]全宏兴,刘俊勇.电力市场中火电机组检修计划的研究[J].电力系统自动化,2002.26(14):35-39.
    [35]Little J D C.The Use of Storage Water in a Hydroelectric System[J].Operational Research,1995,(3):187-197.
    [36]张勇传.优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社.1985.
    [37]Windsor J S.Optimization model for reservoir flood control[J].Water Resources Research,1973,9(5):1103-1114.
    [38]Dorman J and Ewing M.Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvania area[J].Journal of Geophysical Research.1962,67:5227-5241.
    [39]Naccarino J R,Cheung R T,Briggs W.Real-time monitoring,optimization and control of a hydroelectric generation complex.IEEE Transactions on Power Systems[J],1988,3(4):1769-1783.
    [40]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报,1998,1:10-22.
    [41]王金文,刘双全.短期水电系统发电调度的优化方法综述[J].水电能源科学,2008,26(6):137-143.
    [42]Habibollahzadeh H,Luo G X,Semiyen A.Hydro-thermal Optimal Power Flow Based on A Combined Linear and Nonlinear Programming Methodology[J].IEEE Trans on Power Systems,1989,4(2):530-537.
    [43]唐焕文,秦学志.实用最优化方法(第三版)[M].大连:大连理工出版社,2004.
    [44]Hreinsson E.B.Optimal short term operation of a purely hydroelectric system[J].Power Systems,IEEE Transactions on.1988,3(3):1072-1077.
    [45]Philpott A.B.,Craddock M.,Waterer H.Theory and methodology:hydroelectric unit commitment subject to uncertain demand I J].European Journal of Operational Research.2000,12(5):410-424.
    [46]Tufegdzic N,Frowd R.J,Stadlin W.O.A coordinated approach for real-time short term hydro scheduling[J].Power Systems,IEEE Transactions on.1996,11(4):1698-1704.
    [47]Yeh W W G.Reservoir management and operation models:a state of art review[J].Water Resource Research,1985,21(12):1797-1818.
    [48]Peng C and Buras N.Dynamic operation of a surface water resources system[J].Water Resources Research,2000,36(9):2701-2709.
    [49]Barros M T L,Tsai F T C,Yang S L.Optimization of large-scale hydro power system operations[J].Journal of Water Resources Planning and Management,2003,129(3).
    [50]王金文,石琦,伍永刚,等.水电系统长期发电优化调度模型及其求解[J].电力系统自动化,2002,26(24):22-30.
    [51]Brannlund H,Sjelvgren D,Bubenko J A.Short term generations cheduling with security constraints[j].IEEE Trans on Power Systems,1988,3(1):310-316.
    [52]Lohannesen A,Gjelsvik A,Fosso O B.Optimal short term hydro scheduling including security constraints[J].IEEE Trans on Power Systems.1991,6(2):576-583.
    [53]朱继忠,徐国禹.用网流法求解水火电力系统有功负荷分配[J].系统工程理论与实践,1995,15(1):69-73.
    [54]Lamond B F and Sobel M.J.Exact and approximate solutions of affine reservoir models[J].Operations Research,1995,43(5):771-780.
    [55]罗强,宋朝红,雷声隆.水库群系统非线性网络流规划法[J].武汉大学学报(工学版),2001,34(3):22-26.
    [56]Oliveira G G,Soares S.A Second2order Network Flow Algorithm for Hydrothermal Scheduling[J].IEEE Trans on Power Systems,1995,10(3):1635-1641
    [57]Bellman R E.Dynamic Programming[C].Princeton University Press,1957.
    [58]叶秉如.水资源系统优化规划和调度[M]北京:中国水利水电出版社,1999.
    [59]董子敖.水库群调度与规划的优化理论和应用[M].济南:山东科学技术出版社,1989.
    [60]张勇传.水电站经济运行原理[M]北京:中国水利水电出版社,1998.
    [61]谢新民.混联水电站水库群系统优化调度问题的研究[J].水电能源科学.1992,10(2):86-93.
    [62]李钰心.水电站经济运行[M].北京:中国电力出版社,1999.
    [63]谭维炎.应用随机动态规划进行水电站水库群的最优调度[J].水利学报,1982,970:1-7.
    [64]张玉新,冯尚友.多维决策的多目标动态规划及其应用[J].水利学报,1986,(7):1-10.
    [65]周之豪,沈曾源,施熙灿.水利水能规划[M].北京:中国水利水电出版社,1997.
    [66]黄强.水能利用[M].北京:中国水利水电出版社,1998.
    [67]梅亚东.梯级水库优化调度的有后效性动态规划模型及应用[J].水科学进展,2000,11(2):194-198.
    [68]纪昌明,冯尚友.混联式水电站群动态指标和长期调度最优化(运用离散微分动态规划法)[J].武汉大学学报(工学版),1984,(3):87-95.
    [69]解建仓,田峰巍,黄强,等.大系统分解协调算法在黄河干流水库应用[J].西安理工大学学报:1998,14(1):1-5.
    [70]徐鼎甲,张玉山.混合水电站群实时优化调度[J].水力发电学报,2001,(3):68-74.
    [71]Young G K.Finding reservoir operating rules[J].Journal Hydraulic Div.Am.Soc.Civ End.1967,93(HY6):297-321.
    [72]Turgeon A.Optimal short-term hydro scheduling from the principle of progressive optimality[J].Water Resource Research.1981,17(3):481-486.
    [73]张勇传,熊斯毅.优化理论在水库调度中的应用:拓溪水库水电站优化调度[M].长沙:湖南科学技术出版社,1985:1-4.
    [74]施熙灿,林翔岳,梁青福,等.考虑保证律约束的马氏决策规划在水电站水库优化调度中的应用[J],水力发电学报,1982,(2):1-11.
    [75]Davis M R.The Dynamic response of constant resistance anemometers[J].Journal Phys.E:Sci.Instrum.1970,3:15-20.
    [76]Yeh W and Trott W.Optimization of water resources development:Optimization of capacity specification for components of regional,complex,integrated,multi-purpose water resources system[M].Univ.of califonia,Los Angeles,1972.
    [77]梅亚东,朱教新.黄河上游梯级水电站短期优化调度模型及迭代解法[J].水力发电学报,2000,(2):1-6.
    [78]Larson R E,Kecklerv W G.Applications of dynamic programming to control of water resource systems[J].Int.Fed.Automat.Control,1969,5(1):15-26.
    [79]董子熬,阎建生.计入径流时间空间相关关系的梯级水库群优化调度的多层次法[J].水电能源科学.1987.5(1):29-40.
    [80]Heidari M,Chow V T,Kokotovi C V,et al.Discrete differential dynamic programming approach to water resources systems operation[J].Water Resource Research,1971,7(2):273-282.
    [81]Chow V T,Maidment D R,Tauxe G W.Computer time and memory requirements for DP and DDDP in water resources systems analysis[J].Water Resource Research,1975,11(5):621-628.
    [82]万俊,陈惠源.梯级水电站群优化补偿大系统分解协调模型软件研究[J].人民长江,1994,(10):36-40.
    [83]Howson H R and Sancho N G.New algorithm for the solution of multi-state dynamic programming problems[J].Mathematical Programming,1975,8(1):104-116.
    [84]张勇传,邴凤山,刘鑫卿,等.水库群优化调度理论的研究-SEPOA方法[J].水电能源科学,1987,5(3):234-244.
    [85]宗航,周建中,张勇传.POA改进算法在梯级电站优化调度中的研究和应用[J].计算机工程.2003,29(17):105-109.
    [86]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报,2007,26(2):1-4.
    [87]吴正佳,周建中,杨俊杰,等.调峰容量效益最大的梯级电站优化调度[J].水力发电,2007,33(1):74-76
    [88]Guan X,Ni E,Li R.An optimization-based algorithm for scheduling hydrothermal power systems with cascaded reservoirs and discrete constraints[J].IEEE Transactions on Power Systems.1997,12(4):1775-1780.
    [89]Cheng C P,Liu C W,Liu C C.Unit commitment by lagrangian relaxation and genetic algorithms[J].IEEE Transactions on Power Systems.2000,15(2):707-713.
    [90]Guan X,Ni E,Li R,et al.An Optimization-based Algorithm for Scheduling Hydrothermal Power Systems with Cascaded Reservoirs and Discrete Hydro Constraints[J].IEEE Trans on Power Systems,1997,12(4):1775-1780.
    [91]张勇传,李福生,熊斯毅,等.水电站水库群优化调度方法的研究[J].水力发电,1981,11:48-52.
    [92]冯尚友.水资源系统工程.武汉:湖北科学技术出版社,1991.
    [93]黄强.黄河干流水库联合实施调度及智能决策支持系统研究[D].西安:西安理工大学,1995.
    [94]Liang R H and Hsu Y Y.Scheduling of hydroelectric generations using artificial neural networks.IEE Proceedings-Generation,Transmission and Distribution,1994,141(5):452-458.
    [95]朱敏,王定一.基于人工神经网络的梯级水电厂日优化运行[J].电力系统自动化,1999,23(10):35-40.
    [96]Park J H,Kim Y S,Lee K Y.Economic load dispatch for piecewise quadratic cost function using Hopfield neural network.IEEE Transactions on Power Systems,1993,8(3):1030-1038.
    [97]Naresh R and Sharma J.Short term hydro scheduling using two-phase neural network.Electrical Power & Energy Systems,2002,24(6):583-590.
    [98]韦柳涛,梁年生,虞锦江.人工智能在水库控制中的应用[J].华中理工大学学报,1994,22(4):25-29.
    [99]胡铁松,万永华,冯尚友.水库群优化调度函数的人工神经网络方法研究[J].水科学进展,1995,6(1):53-60.
    [100]彭天波.基于Hopfield网络的浠水梯级水电站实施优化调度[J].华中电力.1997,10(3):14-18.
    [101]伍永刚,王定一.基于ANN的梯级水电站实施优化调度[J].系统工程,2000,18(3):78-80.
    [102]Metropolis N.,Rosenbluth A.,Rosenbluth M.Equation of state calculations by fast computing machines.Journal of chemical physics,1953,21:1087-1092.
    [103]Metropolis N C.Analyzed binary computing[J].IEEE Transactions on Computers,1973,C-22(6):573-576.
    [104]Wong K P,Wong Y W.Short-term hydrothermal scheduling part 1:simulated annealing approach.IEE Proceedings-Generation,Transmission and Distribution.1994,141(5):497-501.
    [105]Wong K P,Wong Y W.Short-term hydrothermal scheduling part 2:paralel simulated annealing approach.IEE Proceedings-Generation,Transmission and Distribution.1994,141(5):502-506.
    [106]Liang R H.A Noise Annealing Neural Network for Hydroelectric Generation Scheduling with Pumped storage Units[J].EEE Trans on Power Systems,2000,15(3):1008-1013
    [107]Mantawy A H,Abdel-Megid Y.L.,Selim S.Z.A simulated annealing algorithm for unit commitment.IEEE Trans.on Power Systems.1998,13(1):197-204.
    [108]张双虎,黄强,孙廷容.基于并行组合模拟退火算法的水电站优化调度研究[J].水力发电学报.2004,23(4):16-19.
    [109]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展.1997,(3):275-280.
    [110]王大刚,程春田,李敏.基于遗传算法的水电站优化调度研究[J].华北水利水电学院学报.2001,22(1):5-10.
    [111]畅建霞,黄强,王义民.基于改进遗传算法的水电站水库优化调度[J].水力发电学报.2001,74(3):85-90.
    [112]Wardlaw R,Sharif M.Evaluation of genetic algorithms for optimal reservoir system operation[J].Journal of Water Resources Planning and Management.1999,125(1):25-33.
    [113]Chen P H,Chang H C.Genetic aided scheduling of hydraulically coupled plants in hydrothermal coordination[J].IEEE Trans.on Power Systems.1996,11(2):975-981.
    [114]Chang H C,Chen P H.Hydrothermal generation scheduling package:a genetic based approach.IEEE Proceedings-Generation,Transmission and Distribution.1998,145(4):451-457.
    [115]Wu Y G,Ho C Y,Wang D Y.A diploid genetic approach to short-term scheduling of hydro-thermal system[J].IEEE Trans.on Power Systems.2000,15(4):1268-1274.
    [116]Desouky A A E,Aggarwal R,Elkateb M M,et al.Advanced hybrid genetic algorithm for short-term generation scheduling[J].IEE Proceedings-Generation,Transmission and Distribution.2001,148(6):511-517.
    [117]陈立华,梅亚东,董雅洁,等.改进遗传算法及其在水库群优化调度中的应用[J].水利学报,2008,39(5):550-556.
    [118]宋朝红,罗强,纪昌明.基于混合遗传算法的水库群优化调度研究[J],2003,36(4):28-31.
    [119]王少波,解建仓,孔坷.自适应遗传算法在水库优化调度中的应用[J].水利学报,2006.37(4):480-485.
    [120]王凌,郑大钟,李清生.混沌优化方法的研究进展[J].计算技术与自动化.2001,20(1):1-5.
    [121]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用.1997,14(4):613-615.
    [122]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策.1999,14(3):285-288.
    [123]许海平,朱奕,张彤.变尺度混沌优化方法在电站经济运行中的应用[J].哈尔滨工业大学学报.2000,32(4):55-58.
    [124]Yuan Z Q,Hou Z J,Jiang C W.Economic Dispatch and Optimal Power Flow Based on Chaotic Optimization[J].IEEE Proceedings PowerCon.2002,4:2313-2317.
    [125]钱富才,费楚红,万百五.利用混沌搜索全局最优的一种混合算法[J].信息与控制.1998,27(3):232-235.
    [126]Dorigo M,aniezzo V M,Colorn A.Ant-system:optimization by a colony of cooperation agents[J].IEEE Trans.Systems,Man and Cybernetics,part B.1996,26(1):29-41.
    [127]Song Y H,Chou C S,Min Y.Large-scale economic dispatch by artificialant colony search algorithms[J].Electric Machines and Power Systems.1999,27(2):679- 690.
    [128]Song Y H,Chou C S,Stonham T J.Combined heat and power economic dispatch by improved ant colony search algorithm[J].Electric Power Systems Research.1999,52(3):115-121.
    [129]Huang S J.Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches[J].IEEE Trans.on Power Systems.2001,16(3):296-301.
    [130]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展.2005,16(3):397-400.
    [131]徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题[J].水利学报.2005,36(8):978-987.
    [132]王德智,董增川,丁胜祥.基于连续蚁群算法的供水水库优化调度[J].水电能源科学.2006,24(2):77-79.
    [133]林剑艺,程春田,于滨,等.基于改进蚁群算法的梯级水库群优化调度[J].水电能源科学,2008,26(4):53-55.
    [134]Kennedy J,Eberhart R."Particle swarm optimization." Paper presented at Neural Networks,Proceedings.,IEEE International Conference,1995.
    [135]袁晓辉,王乘,张勇传,等.粒子群优化算法在电力系统中的应用[J].电网技术.2004,28(19):14-19.
    [136]武新宇,程春田,廖胜利,等.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术.2006,30(20):25-28.
    [137]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,25(2):94-98.
    [138]张双虎,黄强,吴洪寿,等.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007,26(1):1-5
    [139]Kumar D N,Reddy M J.Multipurpose reservoir operation using particle swarm optimization[J].Journal of Water Resources Planning and Management-Asce.2007.133(3):192-201.
    [140]杨俊杰,周建中,方仍存,等.MOPSO算法及其在水库优化调度中的应用[J].计算机工程,2007,33(18):249-250.
    [141]张勇传,邴凤山,熊斯毅.模糊集理论与水库优化问题[J丁.水电能源科学,1984(1).
    [142]吴信益.模糊数学在水库调度中的应用[J].水力发电,1983,(5):13-17.
    [143]陈守煜.模糊水文学与水资源系统模糊优化原理[J].大连:大连理工大学出版社,1990.
    [144]陈守煜,麦瑛琪.系统层次分析模糊优选模型[J].水利学报.1988,(10):1-10.
    [145]陈守煜,麦瑛琪.模糊优选理论与模型[J].应用数学[J].1993,6(1):1-6.
    [146]周惠成,陈守煜.具有模糊约束的多阶段多目标系统的模糊优化理论与模型[J],水利学报,1992(2)
    [147]许士国,陈守煜.模糊数学在工程技术领域中的方法论作用[J].大连理工大学学报,1991,31(6):694-699.
    [148]王本德.水文中长期预报模糊数学方法(M).大连:大连理工大学出版社,1993.
    [149]谢新民,陈守煜,王本德,等.水电站水库群模糊优化调度模型与目标协调-模糊规划法[J].水科学进展,1995,6(3):189-197.
    [150]程春田,王本德,陈守煜,等.长江中上游防洪系统模糊优化调度模型研究[J].水利学报,1997,(2):58-62.
    [151]邱林,陈守煜,聂相田.模糊模式识别神经网络预测模型及其应用[J].水科学进展,1998,9(3):258-264.
    [152]袁晓辉,袁艳斌,权先璋,等.基于混沌进化算法的梯级水电系统短期发电计划[J].电力系统自动化,2001.16:34-38.
    [153]邱林,田景环,段春青,等.混沌优化算法在水库优化调度中的应用[J].中国农村水利水电,2005,7:17-20.
    [154]王本德,周惠成,程春田.梯级水库群防洪系统的多目标洪水调度决策的模糊优选[J].水利学报,1994,(2):31-39.
    [155]黄强,张洪波,原文林,等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008,27(6):13-18.
    [156]王文川,程春田,徐冬梅.基于混沌遗传算法的水电站优化调度模型及应用[J].水力发电学报,2007,26(6):7-11.
    [157]廖胜利,程春田,蔡华祥,等.改进的火电调峰方式.电力系统自动化,2006,30(1):89-93.
    [158]朱成章.究竟什么叫缺电[J].中国能源,2005,27(2):44-45.
    [159]Thomas H,Charles R E L,Clifford L R,et al.算法导论[M].北京:机械工业出版社,2005.
    [160]周惠成,彭勇,王国利.基于图论的水库群洪水预报调度系统集成研究[J].大连理工大学学报,2005,45(6):871-876.
    [161]陈森林.电力电量平衡算法及其应用研究[J].水力发电,2004,30(2):8-10.
    [162]万永华,张祥,温鹏,等.水火电联合调峰探讨[J].水力发电学报,2001,2:1-9.
    [163]吴东平,万永华.日电力电量平衡的余荷逐次后移法[J].水利发电学报,1994,(3):31-36.
    [164]蔡建章,蔡华祥.电力电量平衡算法研究与应用[J].云南电力技术,1994,3:8-11.
    [165]马光文,王黎.水电站群在电力系统中工作位置的确定[J].水力发电学报,1992,(1):39-46.
    [166]庞峰.电力电量平衡新方法[J].水力发电学报,2001,4:117-123
    [167]裴哲义.水库调度工作的回顾与展望[J].水电能源科学,2000,18(3):50-53.
    [168]程春田.面向对象技术在水库防洪调度系统中的应用[J].水电能源科学,1998,16(3):10-15.
    [169]陈森林,邱瑞田,万海斌,等.全国水库防洪调度决策支持系统[J]_水力发电,2003,29(5):1-5.
    [170]程春田,欧春平,王本德.水库洪水调度系统的集成管理[J].水利学报,2001,(3):77-81.
    [171]谢新民,蒋云钟,闫继军,等.流域水资源实时监控管理系统研究[J].水科学进展,2003,14(3):255-259
    [172]Cheng C T,Chau K W,Li X Y,et al.Developing a Web-based flood forecasting system for reservoirs with J2EE[J].Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2004,49(6):973-986.
    [173]严冬,周建中,李利军,等.基于Web的疏勒河灌区灌溉管理系统[J].中国农村水利水电,2008,(10):45-49.
    [174]程春田,廖胜利,李刚,等.基于Web的水库洪水预报调度系统的关键技术.水电自动化与大坝监测.2007,31(2):15-19.
    [175]李熙春,郭王勇,熊纬,等.基于MVC模式实现新型通信管理单元设计[J].电力系统自动化.2008,32(9):61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700