考虑间歇性能源接入和运行安全的多目标有功优化调度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有功优化调度是保证电力系统安全、经济、节能、高效运行的重要环节。近年来,能源危机和环境污染问题日益严峻,电网大停电事故频繁发生,传统的以提高经济效益为单一目标的有功优化调度已经不能满足新形势下电网调度运行的需求。在此背景下,本文针对考虑间歇性能源接入和电网运行安全的多目标有功优化调度问题展开研究,主要工作归纳如下。
     建立了求解电力系统多目标优化问题的一般框架。求解过程分为两个阶段,在第1阶段,提出一种自适应多目标差分进化算法来获取问题的帕累托(Pareto)最优解集,为各目标函数之间的权衡提供丰富的信息;在第2阶段,若Pareto最优解的数量较多,则首先采用聚类方法对Pareto最优解集进行分类,进而根据电力系统运行特性或应用多属性决策方法辅助决策者选择出折中方案。
     针对大规模风电接入对电力系统运行带来的不确定性因素,建立了基于机会约束规划的含风电场环境经济调度的随机优化模型。该模型采用威布尔分布描述风电出力的概率特性,以降低燃料成本和污染气体排放量为目标函数,引入正、负旋转备用约束以应对风电出力预测误差给系统调度带来的影响。利用风电出力的分布函数将随机模型转化为确定性模型进行求解。算例结果表明,所提环境经济调度策略可实现风电并网系统运行的经济性和清洁性综合最优。
     为避免电动汽车规模化应用后给系统运行带来的负面影响,建立了计及插电式混合动力汽车(Plug-in Hybrid Electric Vehicles,PHEVs)接入的动态优化调度模型。该模型将调度周期内各时段的PHEVs充电功率和燃煤机组出力作为决策变量,以降低燃料成本和日负荷曲线方差为目标函数,并引入考虑PHEVs行驶特性的约束条件。10机测试系统的计算结果表明,PHEVs有序充电可起到削峰填谷的作用。此外,算例中还探讨了PHEVs接入后的电力系统节能减排措施。
     针对电网运行中面临的随机故障以及传统确定性安全准则的缺点,将风险理论引入到有功优化调度中。从支路过载和节点电压越限的角度定义运行风险指标,采用效用函数度量故障后果以反映不同故障间的相对严重程度。以此为基础,建立了基于运行风险的经济调度模型。该模型以降低燃料成本和运行风险为目标函数,以系统N安全准则为运行约束条件,并在预想故障集中考虑了发生概率极小、后果却十分严重的多重故障。IEEE RTS-79测试系统的计算结果表明所提调度方法能给出全面的关于系统运行风险水平的量化信息,并且可辨识出电网中的薄弱环节。
     鉴于继电保护的不正确动作是导致电压崩溃的重要因素,建立了考虑距离保护动作特性的电压稳定约束最优潮流模型。该模型以降低燃料成本、有功网损和提高静态电压稳定裕度为目标函数,并计及距离Ⅲ段保护动作裕度约束。IEEE30节点测试系统的计算结果表明所提控制策略可有效降低重载网络中距离Ⅲ段保护不正确动作的风险。
Active power dispatch is one of the most important parts to ensure the security, economy, energy conservation, and high efficiency of power system operation. In recent years, energy crisis and environmental pollution are growing concerns, many blackouts happened around the world. The traditional optimal active power dispatch method which only considers minimizing the total fuel cost can not meet the requirements of power grid dispatching operation in the new situation. Therefore, multi-objective optimal active power dispatch with intermittent energy integration and operation security is analyzed in this dissertation.
     A general framework for solving power system multi-objective optimization problems is proposed. The solving process involves two stages. At the first stage, a self-adaptive multi-objective differential evolution algorithm is proposed to obtain the Pareto front, the valuable tradeoff information between objectives can be provided. At the second stage, if the Pareto-optimal set is large, the data clustering method is applied first to classify the Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the compromise solution is selected according to the operation characteristics of power system or through using multiple attribute decision making theory.
     Integrating the power generated by large-scale wind farm into power grid introduces an extra factor of uncertainties for power system operation. Based on chance-constrained programming, an environmental/economic dispatch model is formulated for the system incorporating wind farm. In this model, Weibull distribution is used to describe the stochastic behavior of wind power, minimizing both the fuel cost and emission of atmospheric pollutants of thermal generators are considered as objective functions, the up spinning reserve and the down spinning reserve constraints are introduced to deal with the influence of wind power on economic dispatch. According to the cumulative distribution function of wind power, the stochastic optimization problem is transformed to a deterministic one. Numerical experiments demonstrate the effectiveness of the proposed dispatching approach.
     The widespread adoption of plug-in hybrid electric vehicles (PHEVs) will bring new challenges to the secure and economical operation of power systems. A multi-objective dynamic economic dispatch model with large-scale PHEVs penetration is formulated to minimize the fuel cost and to improve the load characteristic. In this model, the PHEVs charging loads and the generator outputs of each time period are selected as decision variables, the driving behavior of PHEVs is taken into account. To demonstrate the effectiveness of the proposed method, the generation scheduling problem is performed on the ten-unit system. At last, the emission-reduction strategies of PHEVs-penetrated power systems are discussed.
     In view of the uncertainties exist in the operation of power grid and the drawback of traditional deterministic security criterion, the risk theory is introduced into the optimal generation dispatch. The operation risk index is defined based on branch overload and bus voltage violation, the utility function is employed to measure the severity in order to reflect relative severity between different contingencies. Risk-based multi-objective economic dispatch model is formulated, minimizing both the operation risk and fuel cost are considered as objective functions, and the normal state constraints are taken into account. In addition, the post-contingency set comprises both single fault and multiple faults. The proposed generation dispatch approach is tested on IEEE RTS-79test system, the results obtained show that the quantitative index that reflects security level can be provided, and vulnerable parts of power grid can be identified.
     Since undesirable protective relay operation played a major role in voltage collapse, a voltage stability constrained optimal power flow model considering the operation characteristics of distance protection is formulated. Minimizing the fuel cost, active power loss and maximizing the static voltage stability margin are selected as objective functions. Operation margin of zone3impedance relay constraint is included in the model. Numerical results on IEEE30-bus test system are provided to validate the accuracy of the proposed model, the risk of mal-operation can be reduced in stressed power systems.
引文
[1]李文沅.电力系统安全经济运行—模型与方法[M].重庆:重庆大学出版社,1989.
    [2]帅军庆.特大型电网高级调度中心关键技术[M].北京:中国电力出版社2010.
    [3]康重庆,周天睿,陈启鑫.电力企业在低碳经济中面临的挑战与应对策略[J].能源技术经济,2010,22(6):1-8.
    [4]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[R].北京:中国可再生能源学会风能专业委员会,2012.
    [5]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [6]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用[J].中国电机工程学报,2012,32(4):1-10.
    [7]Chan C C, Bouscayrol A, Chen K. Electric, hybrid, and fuel-cell vehicles: architectures and modeling[J]. IEEE Transactions on Vehicular Technology, 2010,59(2):589-598.
    [8]赵俊华,文福拴,杨爱民,等.电动汽车对电力系统的影响及其调度与控制问题[J].电力系统自动化,2011,35(14):2-10,29.
    [9]国家电力调度通信中心.电网典型事故分析(1999~2007年)[M].北京:中国电力出版社,2008.
    [10]梅生伟,薛安成,张雪敏.电力系统自组织临界特性与大电网安全[M].北京:清华大学出版社,2009.
    [11]鲁宗相.莫斯科“5·25”大停电的事故调查及简析[J].电力设备,2005,6(8): 14-17.
    [12]葛睿,董昱,吕跃春.欧洲“11·4”大停电事故分析及对我国电网运行工作的启示[J].电网技术,2007,31(3):1-6.
    [13]曾庆禹.我国未来电网建设从巴西电网大停电应吸取的经验[J].电网与清洁能源,2010,26(2):3-8.
    [14]刘宇,舒治淮,程逍,等.从巴西电网“2·4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(14):2-10,29.
    [15]毛安家,张戈力,吕跃春,等.2011年9月8日美墨大停电事故的分析及 其对我国电力调度运行管理的启示[J].电网技术,2012,36(4):74-78.
    [16]孙元章,周家启.大型互联电网在线运行可靠性的基础理论[M].北京:清华大学出版社,2010.
    [17]Farhat I A, El-Hawary M E. Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power[J]. IET Generation, Transmission & Distribution,2010,4(9):989-999.
    [18]Chen C L, Lee T Y, Jan R M. Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity[J]. Energy Conversion and Management,2006,47(18-19):3456-3472.
    [19]周玮,彭昱,孙辉,等.含风电场的电力系统动态经济调度[J].中国电机工程学报,2009,29(25):13-18.
    [20]张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.
    [21]王魁,张步涵,周杨,等.基于混沌量子粒子群算法的含风电场电力系统实时调度[J].电力系统自动化,2011,35(22):141-146.
    [22]李智,韩学山,杨明,等.计及接纳风电能力的电网调度模型[J].电力系统自动化,2010,34(19):15-19.
    [23]刘新东,陈焕远,姚程.计及大容量燃煤机组深度调峰和可中断负荷的风电场优化调度模型[J].电力自动化设备,2012,32(2):95-99.
    [24]袁铁江,晁勤,吐尔逊·伊不拉音,等.大规模风电并网电力系统动态清洁经济优化调度的建模[J].中国电机工程学报,2010,30(31):7-13.
    [25]Kuo C C. Wind energy dispatch considering environmental and economic factors[J]. Renewable Energy,2010,35(10):2217-2227.
    [26]Lee J C, Lin W M, Liao G C, et al. Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system[J]. International Journal of Electrical Power & Energy Systems,2011, 33(2):189-197.
    [27]郑漳华,艾芊,徐伟华,等.基于伪并行SPEA2算法的含风电场多目标负荷调度[J].上海交通大学学报,2009,43(8):1222-1227.
    [28]Hetzer J, YuDC, Bhattarai K. An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion,2008,23(2): 603-611.
    [29]张昭遂,孙元章,李国杰,等.计及风电功率不确定性的经济调度问题求解方法[J].电力系统自动化,2011,35(22):125-130.
    [30]Liu X, Xu W. Economic load dispatch constrained by wind power availability:a here-and-now approach[J]. IEEE Transactions on Sustainable Energy,2010,1(1):2-9.
    [31]Liu X. Emission minimisation dispatch constrained by cost and wind power[J]. IET Generation, Transmission & Distribution,2011,5(7):735-742.
    [32]孟祥星,王宏.大规模风电并网条件下的电力系统调度[J].东北电力大学学报(自然科学版),2009,29(1):1-7.
    [33]周玮,孙辉,顾宏,等.计及风险备用约束的含风电场电力系统动态经济调度[J].中国电机工程学报,2012,32(1):47-55.
    [34]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-36.
    [35]王洪涛,何成明,房光华,等.计及风电预测误差带的调度计划渐进优化模型[J].电力系统自动化,2011,35(22):131-135.
    [36]江岳文,陈冲,温步瀛.基于随机模拟粒子群算法的含风电场电力系统经济调度[J].电工电能新技术,2007,26(3):37-41.
    [37]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.
    [38]龙军,莫群芳,曾建.基于随机规划的含风电场的电力系统节能优化调度策略[J].电网技术,2011,35(9):133-138.
    [39]Miranda V, Hang P S. Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers[J]. IEEE Transactions on Power Systems,2005, 20(4):2143-2145.
    [40]Wang L, Singh C. Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization[J]. Electric Power Systems Research,2008,78(8):1361-1368.
    [41]Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems,2010,25(1):371-380.
    [42]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-43.
    [43]Sortomme E, Hindi M M, James MacPherson S D, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J]. IEEE Transactions on Smart Grid,2011,2(1):198-205.
    [44]Acha S, Green T C, Shah N. Effects of optimised plug-in hybrid vehicle charging strategies on electric distribution network losses[C]//IEEE PES Transmission and Distribution Conference and Exposition, Louisiana, USA: IEEE,2010:1-6.
    [45]Richardson P, Flynn D, Keane A. Optimal charging of electric vehicles in low-voltage distribution systems[J]. IEEE Transactions on Power Systems, 2012,27(1):268-279.
    [46]邹文,吴福保,刘志宏.实时电价下插电式混合动力汽车智能集中充电策略[J].电力系统自动化,2011,35(14):62-67.
    [47]Karnama A, Resende F O, Pecas Lopes J A. Optimal management of battery charging of electric vehicles:a new microgrid feature[C]//IEEE PES Trondheim PowerTech 2011, Trondheim, Norway:IEEE,2011:1-8.
    [48]罗卓伟,胡泽春,宋永华,等.大规模电动汽车充放电优化控制及容量效益分析[J].电力系统自动化,2012,36(10):19-26.
    [49]于大洋,宋曙光,张波,等.区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化,2011,35(14):24-29.
    [50]Cao Y, Tang S, Li C, et al. An optimized EV charging model considering TOU price and SOC curve[J]. IEEE Transactions on Smart Grid,2012,3(1): 388-393.
    [51]Rotering N, Ilic M. Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets[J]. IEEE Transactions on Power Systems, 2011,26(3):1021-1029.
    [52]Wu D, Aliprantis D C, Ying L, et al. Load scheduling and dispatch for aggregators of plug-in electric vehicles[J]. IEEE Transactions on Smart Grid, 2012,3(1):368-376.
    [53]Saber A Y, Venayagamoorthy G K. Optimization of vehicle-to-grid scheduling in constrained parking lots[C]//IEEE Power & Energy Society General Meeting, Calgary, Canada:IEEE,2009:1-8.
    [54]Ghanbarzadeh T, Goleijani S, Moghaddam M P. Reliability constrained unit commitment with electric vehicle to grid using hybrid particle swarm optimization and ant colony optimization[C]//IEEE Power & Energy Society General Meeting, Detroit, USA:IEEE,2011:1-7.
    [55]Saber A Y, Venayagamoorthy G K. Intelligent unit commitment with vehicle-to-grid—a cost-emission optimization[J]. Journal of Power Sources, 2010,195(3):898-911.
    [56]Sioshansi R, Miller J. Plug-in hybrid electric vehicles can be clean and economical in dirty power systems[J]. Energy Policy,2011,39(10): 6151-6161.
    [57]陆凌蓉,文福拴,薛禹胜,等.计及可入网电动汽车的电力系统机组最优组合[J].电力系统自动化,2011,35(21):16-20.
    [58]蔡秋娜,文福拴,薛禹胜,等.基于SCUC的可入网混合电动汽车优化调度方法[J].电力系统自动化,2012,36(1):38-46.
    [59]张舒,胡泽春,宋永华,等.考虑电动汽车换电站与电网互动的机组组合问题研究[J].中国电机工程学报,2012,32(10):49-55.
    [60]Li W. An on-line economic power dispatch method with security[J]. Electric Power Systems Research,1985,9(2):173-181.
    [61]李文沅,徐国禹,秦翼鸿.实时安全经济调度的惩罚线性规划模型[J].中国电机工程学报,1989,9(6):1-6.
    [62]Somasundaram P, Kuppusamy K. Application of evolutionary programming to security constrained economic dispatch[J]. International Journal of Electrical Power & Energy Systems,2005,27(5-6):343-351.
    [63]Gaing Z L, Chang R F. Security-constrained economic scheduling of generation considering generator constraints[C]//International Conference on Power System Technology, Chongqing, China:IEEE,2006:1-7.
    [64]Aganagic M, Awobamise B, Raina G, et al. Economic dispatch with generation contingency constraints[J]. IEEE Transactions on Power Systems, 1997,12(3):1229-1236.
    [65]Jabr R A, Coonick A H, Cory B J. A homogeneous linear programming algorithm for the security constrained economic dispatch problem[J]. IEEE Transactions on Power Systems,2000,15(3):930-936.
    [66]孙元章,杨新林,王海风.考虑暂态稳定性约束的最优潮流问题[J].电力系统自动化,2005,29(16):56-59,83.
    [67]Cai H R, Chung C Y, Wong K P. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems,2008,23(2):719-728.
    [68]Pizano-Martinez A, Fuerte-Esquivel C R, Ruiz-Vega D. A new practical approach to transient stability-constrained optimal power flow[J]. IEEE Transactions on Power Systems,2011,26(3):1686-1696.
    [69]Rosehart W, Canizares C, Quintana V. Costs of voltage security in electricity markets[C]//IEEE Power Engineering Society Summer Meeting,Seattle, USA:IEEE,2000:2115-2120.
    [70]Zhao J, Zhang B, Chiang H D. An optimal power flow model and approach with static voltage stability constraints[C]//IEEE/PES Transmission and Distribution Conference & Exhibition:Asia and Pacific, Dalian, China:IEEE, 2005:1-6.
    [71]Chattopadhyay D, Gan D. Dispatch optimization incorporating transient and voltage stability[C]//IEEE Power Engineering Society Summer Meeting. Seattle, USA:IEEE,2000:516-521.
    [72]Kim S, Song T Y, Lee B, et al. Development of voltage stability constrained optimal power flow (VSCOPF)[C]//IEEE Power Engineering Society Summer Meeting, Vancouver, Canada:IEEE,2001:1664-1669.
    [73]顾承红,艾芊.考虑电压稳定约束的最优潮流[J].电网技术,2006,30(16):29-34.
    [74]Huang G M, Nair N K C. Incorporating TCSC into the voltage stability constrained OPF formulation//IEEE Power Engineering Society Summer Meeting, Chicago, USA:IEEE,2002:1547-1552.
    [75]Avalos R J, Canizares C A, Anjos M F. A practical voltage-stability-constrained optimal power flow[C]//IEEE Power and Energy Society General Meeting. Pittsburgh, USA:IEEE,2008:1-6.
    [76]Tangpatiphan K, Yokoyama A. Optimal power flow with steady-state voltage stability consideration using improved evolutionary programming[C]//IEEE Bucharest Power Tech Conference, Bucharest, Romania:IEEE,2009:1-7.
    [77]何斌,张秀彬,赵兴勇.考虑故障条件下电压稳定约束的最优潮流[J].高电压技术,2009,35(2):435-440.
    [78]Abido M A. Multiobjective particle swarm optimization for optimal power flow problem[C]//12th International Middle-East Power Systems Conference, Aswan, Egypt:IEEE,2008:392-396.
    [79]Abido M A, Al-Ali N A. Multi-objective differential evolution for optimal power flow[C]//International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal:IEEE,2009:101-106.
    [80]Kumari M S, Maheswarapu S. Enhanced genetic algorithm based computation technique multi-objective optimal power flow solution[J]. International Journal of Electrical Power & Energy Systems,2010,32(6):736-742.
    [81]Sivasubramani S, Swarup K S. Multi-objective harmony search algorithm for optimal power flow problem[J]. International Journal of Electrical Power & Energy Systems,2011,33(3):745-752.
    [82]Roman C, Rosehart W. Evenly distributed Pareto points in multi-objective optimal power flow[J]. IEEE Transactions on Power Systems,2006,21(2): 1011-1012.
    [83]李智欢.无功优化进化计算的局部搜索策略及多目标处理方法[D].武汉:华中科技大学,2010.
    [84]谢亮.基于内点理论最优潮流的算法及应用研究[D].上海:上海交通大学,2011.
    [85]Heydt G T. Multiobjective optimization:an educational opportunity in power engineering[J]. IEEE Transactions on Power Systems,2009,24(3): 1631-1632.
    [86]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [87]Singh D, Singh D, Verma K S. Multiobjective optimization for DG planning with load models[J]. IEEE Transactions on Power Systems,2009,24(1): 427-436.
    [88]Lakshminarayana C, Mohan M R. A genetic algorithm multi-objective approach for efficient operational planning technique of distribution systems[J]. European Transactions on Electrical Power,2009,19(2):186-208.
    [89]Munoz Moro L, Ramos A. Goal programming approach to maintenance scheduling of generating units in large scale power systems[J]. IEEE Transactions on Power Systems,1999,14(3):1021-1028.
    [90]炱志皓,刘玉田,牟宏.基于线性目标规划的二级电压多目标控制[J].电力系统自动化,2008,32(9):25-29.
    [91]刘艳,高倩,顾雪平.基于目标规划的网架重构路径优化方法[J].电力系统自动化,2010,34(11):33-37.
    [92]Chiang H D, Jean-Jumeau R. Optimal network reconfigurations in distribution systems. Part 1:a new formulation and a solution methodology[J]. IEEE Transactions on Power Delivery,1990,5(4):1902-1909.
    [93]孙欣,吕跃春,高军,等.电网经济性与安全性的精益化协调方法[J].电网技术,2009,33(11):12-17.
    [94]胡国强,贺仁睦.梯级水电站多目标模糊优化调度模型及其求解方法[J].电 工技术学报,2007,22(1):154-158.
    [95]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-76.
    [96]Zhang W, Liu Y. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J]. International Journal of Electrical Power & Energy Systems,2008,30(9):525-532.
    [97]崔逊学,林闯,方廷健.多目标进化算法的研究与进展[J].模式识别与人工智能,2003,16(3):306-314.
    [98]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//1st International Conference on Genetic Algorithms. Pittsburgh, USA:Lawrence Erlbaum Associates,1985:93-100.
    [99]Abido M A. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch[J]. Electric Power Systems Research, 2003,65(1):71-81.
    [100]Abido M A. A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch[J]. International Journal of Electrical Power & Energy Systems,2003,25(2):97-105.
    [101]Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Transactions on Power Systems,2003,18(4): 1529-1537.
    [102]Ah King R T F, Rughooputh H C S, Deb K. Evolutionary multi-objective environmental/economic dispatch:stochastic versus deterministic approaches[C]//3rd International Conference on Evolutionary MultiCriterion Optimization. Guanajuato, Mexico:Springer,2005:677-691.
    [103]Basu M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-Ⅱ[J]. International Journal of Electrical Power & Energy Systems,2008,30(2):140-149.
    [104]Agrawal S, Panigrahi B K, Tiwari M K. Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J]. IEEE Transactions on Evolutionary Computation,2008,12(5):529-541.
    [105]Krami N, El-Sharkawi M A, Akherraz M. Pareto multiobjective optimization technique for reactive power planning[C]//IEEE Power and Energy Society General Meeting. Pittsburgh, USA:IEEE,2008:1-6.
    [106]Azzam M, Mousa A A. Using genetic algorithm and TOPSIS technique for multiobjective reactive power compensation[J]. Electric Power Systems Research,2010,80(6):675-681.
    [107]Ramesh S, Kannan S, BaskarS. Application of modified NSGA-Ⅱ algorithm to multi-objective reactive power planning[J]. Applied Soft Computing,2012, 12(2):741-753.
    [108]Kannan S, BaskarS, McCalley J D, etal. Application of NSGA-Ⅱ algorithm to generation expansion planning[J]. IEEE Transactions on Power Systems, 2009,24(1):454-461.
    [109]Meza J L C, Yildirim M B, Masud A S M. A multiobjective evolutionary programming algorithm and its applications to power generation expansion planning[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans.2009,39(5):1086-1096.
    [110]王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15.
    [111]王一,程浩忠.计及输电阻塞的帕累托最优多目标电网规划[J].中国电机工程学报,2008,28(13):132-138.
    [112]黄映,李扬,翁蓓蓓,等.考虑电网脆弱性的多目标电网规划[J].电力系统自动化,2010,34(23):36-41.
    [113]Maghouli P, Hosseini S H, Buygi M O, et al. A multi-objective framework for transmission expansion planning in deregulated environments[J]. IEEE Transactions on Power Systems,2009,24(2):1051-1061.
    [114]Maghouli P, Hosseini S H, Buygi M O, et al. A scenario-based multi-objective model for multi-stage transmission expansion planning[J]. IEEE Transactions on Power Systems,2011,26(1):470-478.
    [115]Milosevic B, Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J]. IEEE Transactions on Power Systems, 2003,18(1):69-75.
    [116]Peng C, Sun H, Guo J. Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm[J]. International Journal of Electrical Power & Energy Systems,2010,32(8):886-892.
    [117]Benabid R, Boudour M, Abido MA. Optimal location and setting of SVC and TCSC devices using non-dominated sorting particle swarm optimization[J]. Electric Power Systems Research,2009,79(12):1668-1677.
    [118]张鹏翔,江全元,曹一家,等.基于多目标进化算法的TCSC非线性控制 器设计[J].电力系统自动化,2003,27(13):40-44.
    [119]Panda S. Multi-objective evolutionary algorithm for SSSC-based controller design[J]. Electric Power Systems Research,2009,79(6):937-944.
    [120]Panda S. Multi-objective PID controller tuning for a FACTS-based damping stabilizer using non-dominated sorting genetic algorithm-Ⅱ[J]. International Journal of Electrical Power & Energy Systems,2011,33(7):1296-1308.
    [121]Sebaa K, Boudour M. Robust power system stabilizers design using multi-objective genetic algorithm[C]//IEEE Power Engineering Society General Meeting. Tampa, USA:IEEE,2007:1-7.
    [122]Yassami H, Darabi A, Rafiei S M R. Power system stabilizer design using Strength Pareto multi-objective optimization approach[J]. Electric Power Systems Research,2010,80(7):838-846.
    [123]Hazra J, Sinha A K. Congestion management using multiobjective particle swarm optimization[J]. IEEE Transactions on Power Systems,2007,22(4): 1726-1734.
    [124]Coello Coello C A. Evolutionary multi-objective optimization:a historical view of the field[J]. IEEE Computational Intelligence Magazine,2006,1(1): 28-36.
    [125]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
    [126]张学工.模式识别[M].3版.北京:清华大学出版社,2010.
    [127]徐玖平,吴巍.多属性决策的理论与应用[M].北京:清华大学出版社,2006.
    [128]公茂果,程刚,焦李成,等.基于自适应划分的进化多目标优化非支配个体选择策略[J].计算机研究与发展,2011,48(4):545-557.
    [129]Iorio A W, Li X. Solving rotated multi-objective optimization problems using differential evolution[C]//17th Australian joint conference on Advances in Artificial Intelligence. Cairns, Australia:Springer,2004:1-12.
    [130]Robic T, Filipic B. DEMO:differential evolution for multiobjective optimization[C]//3rd International Conference on Evolutionary MultiCriterion Optimization. Guanajuato, Mexico:Springer,2005:520-533.
    [131]Kukkonen S, Lampinen. JGDE3:the third evolution step of generalized differential evolution[C]//IEEE Congress on Evolutionary Computation. Edinburgh, UK:IEEE,2005:443-450.
    [132]龚文引,蔡之华.基于ε占优的正交多目标差分演化算法研究[J].计算机研究与发展,2009,46(4):655-666.
    [133]姚峰,杨卫东,张明.多目标差分进化在热连轧负荷分配中的应用[J].控制理论与应用,2010,27(7):897-902.
    [134]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation,2006,10(6): 646-657.
    [135]Zimmerman R D, Murillo-Sanchez C E, Thomas R J. MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems,2011,26(1):12-19.
    [136]国家电网公司. 风电发展路径: 建设大基地, 融入大电网[EB/OL]. [2012-4-11]. http://www.sgcc.com.cn/ztzl/newzndw/zndwzx/gnznd wzx/2011/08/252747.shtml.
    [137]国家发展和改革委员会能源研究所.中国风电发展路线图2050[R].2011.
    [138]王彩霞,乔颖,鲁宗相,等.低碳经济下风火互济系统日前发电计划模式分析[J].电力系统自动化,2011,35(22):111-117.
    [139]中华人民共和国环境保护部.GB 13223-2011火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2011.
    [140]Celik A N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey[J]. Renewable Energy, 2003,29(4):593-604.
    [141]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003:79-88.
    [142]Yu H, Chung C Y, Wong K P, et al. A chance constrained transmission network expansion planning method with consideration of load and wind uncertainties[J]. IEEE Transactions on Power Systems,2009,24(3): 1568-1576.
    [143]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-36.
    [144]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报,2002,22(5):32-35.
    [145]Wirasingha S G, Schofield N, Emadi A. Plug-in hybrid electric vehicle developments in US:trends, barriers, and economic feasibility//IEEE Vehicle Power and Propulsion Conference, Harbin, China:IEEE,2008:1-8.
    [146]Kempton W, Tomic J G. Vehicle-to-grid power fundamentals:calculating capacity and net revenue[J]. Journal of Power Sources,2005,144(1):268-279.
    [147]New York Independent System Operator. Alternate route:electrifying the transportation sector-potential impacts of plug-in hybrid electric vehicles on New York State's electricity system[R]. New York:New York Independent System Operator,2009.
    [148]林秀丽,汤大钢,丁焰,等.中国机动车行驶里程分布规律[J].环境科学研究,2009,22(3):377-380.
    [149]Callaway D S, Hiskens I A. Achieving controllability of electric loads[J]. Proceedings of the IEEE,2011,99(1):184-199.
    [150]Letendre S, Watts R A. Effects of plug-in hybrid electric vehicles on the Vermont electric transmission system//Transportation Research Board 88th Annual Meeting, Washington D.C., USA,2009.
    [151]李文沅.电力系统风险评估:模型、方法和应用[M].北京:科学出版社,2006.
    [152]朱淑珍.金融创新与金融风险:发展中的两难[M].上海:复旦大学出版社,2002:142-143.
    [153]Zhang J, Pu J, McCalley J D, et al. A Bayesian approach for short-term transmission line thermal overload risk assessment[J]. IEEE Transactions on Power Delivery,2002,17(3):770-778.
    [154]吴耀武,娄素华,余永泉,等.电力市场环境下输电线路过载风险评估[J].电工技术学报,2012,27(2):198-203.
    [155]Wan H, McCalley J D, Vittal V. Risk based voltage security assessment[J]. IEEE Transactions on Power Systems,2000,15(4):1247-1254.
    [156]余娟,李文沅,颜伟.静态电压稳定风险评估[J].中国电机工程学报,2009,29(28):40-46.
    [157]Dissanayaka A, Annakkage U D, Jayasekara B, et al. Risk-based dynamic security assessment[J]. IEEE Transactions on Power Systems,2011,26(3): 1302-1308.
    [158]Fu W, Zhao S, McCalley J D, et al. Risk assessment for special protection systems[J]. IEEE Transactions on Power Systems,2002,17(1):63-72.
    [159]赵明欣,鲁宗相,吴林林,等.基于风险评估的输变电设备维修技术[J].电力系统自动化,2009,33(19):30-35.
    [160]陈为化.基于风险的电力系统静态安全分析与预防控制[D].杭州:浙江大学,2007.
    [161]Li Y, McCalley J D. Risk-based unit commitment[C]//IEEE Power and Energy Society General Meeting, Tampa, USA:IEEE,2007:1-7.
    [162]Xiao F, McCalley J D. Risk based multi-objective optimization for transmission loading relief strategies[C]//IEEE Power and Energy Society General Meeting, Tampa, USA:IEEE,2007:1-7.
    [163]Xiao F, McCalley J D. Risk-based security and economy tradeoff analysis for real-time operation[J]. IEEE Transactions on Power Systems,2007,22(4): 2287-2288.
    [164]Xiao F, McCalley J D. Power system risk assessment and control in a multiobjective framework[J]. IEEE Transactions on Power Systems,2009, 24(1):78-85.
    [165]戴剑锋,周双喜,鲁宗相,等.基于风险的电力系统无功优化问题研究[J].中国电机工程学报,2007,27(22):38-43.
    [166]Ni M, McCalley J D, Vittal V, et al. Online risk-based security assessment[J]. IEEE Transactions on Power Systems,2003,18(1):258-265.
    [167]Ni M, McCalley J D, Vittal V, et al. Software implementation of online risk-based security assessment J]. IEEE Transactions on Power Systems,2003, 18(3):1165-1172.
    [168]齐先军,丁明.发电系统中旋转备用方案的风险分析与效用决策[J].电力系统自动化,2008,32(3):9-13,25.
    [169]张国华,段满银,张建华,等.基于证据理论和效用理论的电力系统风险评估[J].电力系统自动化,2009,33(23):1-4,47.
    [170]中华人民共和国国家经济贸易委员会.DL/T 755-2001电力系统安全稳定导则[S].北京:中国电力出版社,2001.
    [171]汤涌,仲悟之,孙华东,等.电力系统电压稳定机理研究[J].电网技术,2010,34(4):24-29.
    [172]Ajjarapu V, Sakis Meliopoulos A P. Preventing voltage collapse with protection system that incorporate optimal reactive power control[R]. USA:Power System Engineering Research Center,2008.
    [173]周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及其控制[M].北京:中国电力出版社,2004.
    [174]冯治鸿,刘取,周双喜,等.多机电力系统电压静态稳定性的特征结构分 析法[J].清华大学学报(自然科学版),1991,31(4):19-27.
    [175]李生虎,丁明,张维,等.可控串补潮流控制对距离三段动作裕度的影响[J].电力系统保护与控制,2009,37(3):5-10,26.
    [176]李生虎.线路距离Ⅲ段保护动作裕度的节点功率控制算法[J].电力系统自动化,2006,30(16):27-31,80.
    [177]Jha D K, Shrestha R. Measuring efficiency of hydropower plants in Nepal using data envelopment analysis[J]. IEEE Transactions on Power Systems,2006, 21(4):1502-1511.
    [178]刘艳,顾雪平,张丹.基于数据包络分析模型的电力系统黑启动方案相对有效性评估[J].中国电机工程学报,2006,26(5):32-37,94.
    [179]Crow M. Computational methods for electric power systems[M]. Boca Raton: CRC Press,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700