原发性高血压患者血清中抗AT_1受体自身抗体的生物学效应及其产生机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分原发性高血压患者中抗AT_1受体自身抗体刺激大鼠主动脉平滑肌细胞增殖及胞内信号分子研究
     背景及目的:在妊高征和恶性高血压患者血清中检测到抗血管紧张素Ⅱ1型受体自身抗体(AT_1-AA)的存在,同时有研究表明该自身抗体有类似血管紧张素Ⅱ(AngⅡ)的激动样作用并参与高血压免疫发病机制形成。在此我们将进一步阐述该自身抗体其激动样效应的细胞内信号机制。
     方法:大鼠主动脉细胞培养及鉴定。同时将收集原发性高血压病人血清经硫酸铵沉淀粗提、免疫亲和层析法纯化,ELISA检测其滴度后以1:40刺激细胞,并设立不同的处理组用BrdU法观察细胞增殖情况。经western印迹方法和电泳迁移率变动分析胞内信号分子激活及表达状况。
     结果:在0~24h的平滑肌细胞增殖实验中,AT_1-AA组有类似于AngⅡ的作用。Western及EMSA显示AT_1-AA组中NF-κB和磷酸化的JAK2、STAT1和STAT3水平分别较空白对照组明显增强,而表达可相应被PDTC(NF-κB拮抗剂)、AT_1受体阻滞剂Losartan和JAK2特异性拮抗剂AG490明显抑制。同时,NF-κB和磷酸化的STAT1和STAT3表达分别在不同的时间梯度达高峰,且磷酸化STAT3的活化较STAT1更为明显。
     结论:高血压病人血清中AT_1-AA确有类似血管紧张素Ⅱ致平滑肌细胞增殖激动样效应,并且在该效应中伴有NF-κB、JAK-STAT信号通路的活化。且不同于AngⅡ的是,胞内JAK-STAT途径中以STAT3活化为主。
     第二部分原发性高血压患者中抗AT_1受体自身抗体产生与HLA基因多态性间的关联性研究
     背景及目的:在妊高征、恶性高血压和原发性高血压患者血清中都可检测到抗血管紧张素Ⅱ1型受体自身抗体(AT_1-AA)的存在,然而其产生机制至今研究的甚少。本文主要分析其与免疫基因HLA多态性间的关联。
     方法:入选394例原发性高血压病人和224例正常血压健康体检者,并通过ELISA检测自身抗体滴度。我们收集入选者一般临床资料,包括性别、年龄、体重指数、血压、吸烟及糖尿病情况。高血压和正常对照组分别按抗体阴性和阳性进行分组。通过PCR序列特异性引物法(PCR-SSP)进行HLA基因分型。
     结果:13种HLA-DRB1基因型和7种HLA-DQB1基因型被检测。结果表明不同的HLA-DRB1和HLA-DQB1基因型在原发性高血压和正常人群中表达频率不同,且单倍型HLA-DQB1~*06-DRB1~*13是原发性高血压形成的独立危险因素(校正后P=0.014,OR 3.138,95%CI 1.259-7.819)。正常血压者中HLA-DRB1~*04和HLA-DRB1~*14基因型与AT_1-AA产生关联(分别P=0.001,OR 3.056,95%CI 1.562-5.974;P=0.033,OR2.528,95%CI 1.080-5.914),同时高血压患者中基因型HLA-DRB1~*04也与AT_1-AA产生相关,以P<0.1为检验水准则其P值经校正后仍存在统计学差异(校正后P=0.07,OR 1.629,95%CI0.954-2.780)。
     结论:上述结果表明高血压患者和正常人血清中自身抗体形成具有不同的免疫遗传背景,同时阐明了环境因素血压和基因易感因素HLA-DRB1~*04等位基因型与AT_1-AA产生密切相关。
     第三部分抗AT_1受体自身抗体与其受体基因AGTR1多态性的关联研究、及两者对药物Candesartan降压效应的影响
     背景及目的:不同的个体对降压药AT_1受体拮抗剂(ARB)的反应存在较大的差异,同时AT_1-AA在高血压的发生法发展中起到重要的作用,因此我的目的研究其降压个体差异产生的原因即降压效应与AT_1受体基因AGTR1多态性、AT_1受体自身抗体间的是否存在一定的关联性。
     方法:随机选取175名原发性高血压患者进行为期8周的Candesartan临床试验,并进行AT_1-AA阳性和阴性分组。收集其血样标本进行DNA提取并通过直接测序法对AGTR1基因中三个SNP位点rs1492078、rs5186和rs380400进行分型。通过ELISA法检测AT_1-AA滴度。
     结果:结果显示Candesartan治疗后抗体阳性组和阴性组间舒张压下降程度无明显差异,而收缩压的下降抗体阳性组显著多于抗体阴性组(P=0.014,校正后P=0.050)。在抗体阴阳性分组后检测到单倍型[GAC]与AT_1-AA的产生负相关(校正后P=0.028OR0.342,95%CI0.131-0.890),而三个SNP位点中单个点基因型与其自身抗体频率间无相关性。校正了年龄、性别和自身抗体对降压药物的影响后,rs5186(A/C)和单倍型[GCC]能显著增强Candesartan降收缩压效应(校正后分别P=0.028和P=0.026),而单倍型[AAC]则显示能增强Candesartan降舒张压效应(校正后P=0.016)。
     结论:AT_1-AA的产生可能与其受体基因AGTR1存在一定的关联性。而且,AT_1-AA与AGTR1基因多态性可能独立或共同影响Candesartan的降压效应。
PartⅠThe mechanism of signal transduction in rat VSMCproliferation induced by autoantibodies against angiotensin AT_1receptor from essential hypertensives
     Background and objective:The autoantibodies against angiotension AT_1 receptor(AT_1-AA) have been discovered in the patients with malignant hypertensive,preeclampsiaand essential hypertension (EH).Some studies have demonstrated the autoantiboies areinvolved in the immunopathogenesis of hypertension and have an agonist-like activityeffect similar to angiotensinⅡ(AngⅡ).We further expound the mechanism of signaltransduction induced by autoantibodies against angiotensin AT_1 receptor fromhypertensives.
     Methods:The rat VSMCs were cultured and identified.The autoantiboies against AT_1receptor were purified from sera of the primary hypertension patients by ammonium sulfateprecipitation and affinity chromatography.Then the AT_1-AA collected was detected byELISA and activated cells with 1:40 and judged the effect on rat VSMC proliferation bythe method of BrdU incorporation in different treatment groups.The activation of signalingmolecules were detected by western blotting and electrophoretic mobility shift assay(EMSA) in cultured rat VSMCs.
     Results:The AT_1-AA caused a significant rat VSMC proliferation similar to the AngⅡduring 0~24 h.The term levels of NF-κB,phosphorylated JAK2 (pJAK2),phosphorylated STAT1 (pSTAT1) and phosphorylated STAT3 (pSTAT3) molecules wereincreased in response to the autoantibodies.In contrast,the activation of NF-κB andJAK-STAT was blocked by Losartan,PDTC (Pyrrolidinedithiocarbamate,a specificinhibitor of NF-κB) and AG490 (a specific inhibitor of the JAK2 tyrosine kinase)respectively.The expressions of NF-κB,the pSTAT1 and pSTAT3 reached peak levels atdifferent time stages;Moreover,the gray relative value showed that activation of pSTAT3was more significant than that of STAT1 induced by AT_1-AA.
     Conclusion:These results suggest that the autoantiboies against AT_1-receptor have anagonist-like activity effect similar to AngⅡin VSMCs proliferation,and the NF-κB andJAK-STAT proteins play essential roles.Besides,it is different from AngI that STAT3 isthe main downstream activatory molecule in JAK-STAT signaling pathway.
     PartⅡHLA-DRB1,-DQB1 polymorphism and autoantibodiesagainst angiotension AT_1 receptors in Chinese patients with essentialhypertension
     Background and objective:The autoantibodies against angiotension AT_1 receptors(AT_1-AAs) have been discovered in patients with preeclampsia,malignant hypertensivesand essential hypertension (EH);however,the mechanism of autoantibody productionremains to be investigated.This study would analyze the association of AT_1-AAs and HLApolymorphism.
     Methods:We enrolled 394 patients with EH and 224 normotensives in this study.Autoantibodies in sera of donors were detected by ELISA.The subject's clinical data wascollected,including gender,age,body mass index,blood pressure,smoking and diabetes.The patients and the controls were classified respectively into the autoantibody positive group and autoantibody negative one.DNA typing for HLA-DRB1 and HLA-DQB1 alleleswas detected by PCR amplification with sequence-specific primers.
     Results:Thirteen HLA-DRB1 and seven DQB1 alleles were found in this population.We observed the differences of HLA-DRB1 and HLA-DQB1 allele frequency between EHand normotensives group.The haplotype HLA-DQB1~*06- DRB1~*13 was an independentrisk factor for EH (adjusted P=0.014,OR 3.138,95% CI 1.259-7.819) in the wholepopulation.HLA-DRB1~*04 and HLA-DRB1~*14 (respectively P=0.001,OR 3.056,95%CI1.562-5.974;P=0.033,OR 2.528,95%CI 1.080-5.914) were related to AT_1-AA productionin normotensives.HLA-DRB1~*04 was also positive related to AT_1-AA production inhypertensives after blood pressure,age and gender adjusted (P=0.07,OR 1.629,95% CI0.954-2.780).
     Conclsions:These results suggest a difference in the immunogenetic backgroundbetween the positive and negative autoatibodies with hypertension or normotension.Theblood pressure and HLA-DRB1~*04 allele increased the risk for AT_1-AA production.
     PartⅢAssociation about AngiotensinⅡReceptor GenePolymorphism,AT_1-receptor autoantibody production,and BloodPressure Response to Candesartan
     Background:The BP response to AT_1 receptor blockers (ARBs) varied markedlyamong individuals and autoantibodies against AT_1 receptor (AT_1-AAs) were important forthe development of hypertension,our purpose was to identify the association betweenanti-AT_1-receptor autoantibody production and angiotensinⅡreceptor genes (AGTR1)polymorphism,and to study whether they were contributions to the variation in bloodpressure (BP) response to candesartan in essential hypertensive patients.
     Methods:We random selected 175 essential hypertensive patients and enter an 8weeks clinical trial with candesartan treatment.We genotyped them for 3 SNPs(rs1492078,rs5186 and rs380400) in the AGTR1 genes by direct DNA sequencing. AT_1-AAs were detected by ELISA.
     Results:The diastolic BP reduction response to candesartan therapy was nosignificant difference between AT_1-AA positive and negative groups.The systolic BPreduction by candesartan was greater in AT_1-AA positive groups (-35.34±17.36 mmHg)than in AT_1-AA negative ones (-28.96±14.82 mmHg),and the difference reachedstatistical significance (P=0.014,adjusted P=0.050).According to the prevalence ofAT_1-AAs,only the haplotype [GAC] was significant association with AT_1-AAs and showedthe protective effect on the AT_1-AA production (adjusted P=0.028 OR 0.342,95% CI0.131-0.890).Meanwhile,SNP rs5186 (A/C) and haplotype [GCC] were significant SBPreduction to Candesartan (adjusted P=0.028 and P=0.026,respectively),and haplotype[AAC] showed a trend toward a greater DBP reduction in response to Candesartan therapy(adjusted P=0.016).
     Conclusion:AT_1-AA production might partially owe to AGTR1 gene polymorphism.Furthermore,AT_1-AAs and AGTR1 gene polymorphism could solely or jointly affectantihypertensive response to Candesartan.
引文
[1] Nicoletti A, Mandet C, Challah M, et al. Mediators of perivascular inflammation in the left ventricle of renovascular hypertensive rats. Cardiovascular Research, 1996, 31:585-595.
    [2] Fu ML, Herlitz H, Wallukat G, et al. Functional autoimmune epitope on alpha 1-adrenergic receptors in patients with malignant hypertension. Lancet, 1994, 344: 1660-1663.
    [3] Luther HP, Homuth V, Wallukat G. (?)-adrenergic receptor antibodies in patients with primary hypertension. Hypertension, 1997, 29: 678-682.
    [4] Wallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develope agonistic antibodies against the angiotension AT1 receptor. J Clin Invest, 1999,103: 945-952.
    [5] Dechend R, Homuth V, Wallukat G, et al. AT_1 receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation, 2000,101: 2382-2387.
    [6] Dechend R, Viedt C, Miiller DN, et al. AT_1 Receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation, 2003,107: 1632-1639.
    [7] Fu ML, Herlitz H, Schulze W, et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens, 2000,18: 945-953.
    [8] Liao YH, Wei YM, Wang M, et al. Autoantibodies against AT_1-receptor and alphal-adrenergic receptor in patients with hypertension. Hypertens Res, 2002,; 25:641-646.
    [9] Dragun D, Muller DN, Brasen JH, et al. Angiotensin Ⅱ Type 1-Receptor Activating Antibodies in Renal-Allograft Rejection. N Engl J Med, 2005, 352:558-69.
    [10] Wang B, Liao YH, Zhou ZH, et al. Arterial structure changes in rats immunized by AT_1 -receptor peptide. Heart Vessels, 2005, 20: 153-158.
    [11]Ralf Dechend, Volker Homuth, Gerd Wallukat, et al. Luft. Agonistic Antibodies Directed at the Angiotensin Ⅱ, AT_1 Receptor in Preeclampsia. J Soc Gynecol Investig,2006,13:79-86.
    [12]Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature,2005,435:584-589.
    [13]Gray C,Campbell DA,Spurr NK.Single nucleotide polymorphisms as tools in human genetics Hum.Mol.Genet,2000,9:2403-2408.
    [14]廖玉华,魏宇淼,王敏等.血清抗AT1-受体自身抗体在难治性高血压患者中的病理作用及临床干预研究.中国冶金工业医学杂志,2001,18(2):65-69.
    [15]De Gasparo M,Catt KJ,Inagami T,et al.International union of pharmacology.ⅩⅪⅡ.The angiotensin Ⅱ receptors.Pharmacol Rev,2000,52: 415-472.
    [16]Thway TM,Shlykov,Day MC,et al.Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation.Circulation,2004,110: 1612-1619.
    [1]Hilme E,Hansson L,Sanberg L,et al.Abnormal immune function in malignant hypertension.J Hypertens,1993,11: 989-994.
    [2]Fu ML,Leung PS,Wallukat G,et al.Agonist-like activity of antibodies to angiotensin Ⅱ receptor subtype 1(AT1)from rats immunized with AT_1 receptor peptide.Blood Press.1999,8,317-324.
    [3]Bin Wang,Yu-Hua Liao,Zihua Zhou,et al.Arterial structural changes in rats immunized by ATl-receptor peptide.Heart Vessels,2005,20:153-158.
    [4]Fu ML,Herlitz H,Wallukat G,et al.Non-desensitized positive chronotropic effect of anti-angiotensin Ⅱ receptor autoantibodies in patient with malignant hypertension.Circulation,1996,94:40-46.
    [5]Wallukat G,Homuth V,Fischer T,et al.Patients with preeclampsia develop agonistic antibodies against the angiotension AT_1 receptor.J Clin Invest,1999,103: 945-952.
    [6]Liao YH,Wei YM,Wang M,et al.Effects of autoantibodies against AT1-receptor and angiotensin Ⅱ on refractory hypertension.South China J Cardiol,2001,2: 84-88.
    [7]T Mario B,Marrero,Bernhard Schleffer,et al.Direct stimulation of Jak/STAT pathway by the angiotensin Ⅱ AT_1 receptor.Nature,1995,375: 247-250.
    [8]孙艳香,廖玉华,张海燕,等.NFκB和Jak-STAT信号途径参与血管紧张素Ⅱ介导的大鼠主动脉平滑肌细胞增殖效应.中华高血压杂志,2006,14:477-482.
    [9]Marlo BM,Bernhard S,William GP,et al.Direct stimulation of Jak/Stat pathway by the angiontension Ⅱ AT_1 receptor.Nature,1995,375: 247-250.
    [10]Zahradka P,Werner JP,Buhay S,et al.NF-κB activation is essential for angiotensin Ⅱdependent proliferation and migration kof vascular smooth muscle cells.J Mol Cell Cardiol,2002,34: 1609-1621.
    [11]刘虹,杨宇,陈珑珑.AT_1-受体自身抗体于原发性高血压的关系.湖南医科大学学报,2003,28(3):255-258.
    [12]Ralf Dechend,Volker Homuth,Gerd Wallukat,et al.Agonistic Antibodies Directed at the Angiotensin Ⅱ,AT_1 Receptor in Preeclampsia.J Soc Gynecol Investig,2006,13: 79-86.
    [13]Yu-Hua LIAO,Yu-Miao WEI,Min WANG,et al.Autoantibodies against AT_1-Receptor and al-Adrenergic Receptor in Patients with Hypertension.Hypertens Res,2002,25: 641-646.
    [14]廖玉华,魏宇淼,王敏,等.血清抗AT_1-受体自身抗体在难治性高血压患者中的病理作用及临床干预研究.中国冶金工业医学杂志,2001,18(2):65-67.
    [15]Makino N,Sugano M,Otsuka S,and Hata T.Molecular mechanism of angiotensin Ⅱ type Ⅰ and type Ⅱ receptors in cardiac hypertrophy of spontaneously hypertensive rats.Hypertension,1997,30:796-802.
    [16]Toshiyuki Sasaguri,Hiroshi Teruya,Akio Ishida,et al.Linkage between α1 Adrenergic Receptor and the Jak/STAT Signaling Pathway in Vascular Smooth Muscle Cells.Biochem Biophys Res Commun,2000,268: 25-30.
    [1] Fu ML, Herlitz H, Wallukat G, et al. Functional autoimmune epitope on α_1-adrenergic receptors in patients with malignant hypertension. Lancet, 1994, 344:1660-1663.
    [2] Luther HP, Homuth V, Wallukat G. α_1-Adrenergic Receptor Antibodies in Patients With Primary Hypertension. Hypertension, 1997, 29: 678-682.
    [3] Fu ML, Herlitz H, Schulze W, et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens, 2000,18: 945-953.
    [4] Wallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodes against the angiotensin AT_1 receptor. J Clin Invest, 1999,103: 945-952.
    [5] Dechend R, Homuth V, Wallukat G, et al. AT_1 receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation, 2000,101: 2382-2393.
    [6] Theingi MT, Sergiy GS, Mary-Clare D, et al. Antibodies From Preeclamptic Patients Stimulate Increased Intracellular Ca2+ Mobilization Through Angiotensin Receptor Activation. Circulation, 2004,110:1612-1619.
    [7] Dechend R, Homuth V, Wallukat G, et al. Agonistic Antibodies Directed at the Angiotensin Ⅱ, AT_1 Receptor in Preeclampsia. J Soc Gynecol Investig, 2006, 13: 79-86.
    [8] Sun YX, Zhang HY, Wei YM, et al. The mechanism of signal transduction during vascular smooth muscle cell proliferation induced by autoantibodies against angiotensin AT_1 receptor from hypertension. Chin Med J, 2008,121(1):43-48.
    [9] Okruhlicova L, Morwinski R, Schulze W, et al. Autoantibodies against G-Protein-Coupled Receptors Modulate Heart Mast Cells. Cell Mol Immunol, 2007, 4(2):127-133.
    [10] Dzielak D. The immune system and hypertension. Hypertension, 1992, 19 (suppl I):136-144.
    [11] Fu ML. Do immune system changes have a role in hypertension? J Hypertens, 1995,13: 1259-1265.
    [12] Price P, Witt C, Allcock R, et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases.Immunol Rev, 1999,167: 257-274.
    [13] Ogata T, Gregoire L, Goddard KAB, et al. Evidence for association between the HLA-DQA locus and abdominal aortic aneurysms in the Belgian population: a case control study. BMC Med Genet, 2006, 7: 67-80.
    [14] Warrens A, Lechler R. HLA in health and disease. Elsevier, Academic Press. 1999.
    [15] Van Eden W. Immunoregulation of Autoimmune Diseases. Human Immunology, 2006,67(6): 446-453.
    [16] Eric M. Jacobson, Amanda Huber, Yaron Tomer.The HLA gene complex in thyroid autoimmunity : from epidemiology to etiology. JAutoimmun,. 2008, 30(1-2): 58-62.
    [17] Martinuzzi E, Lemonnier FA, Boitard C, et al. Measurement of CD8 T cell responses in human type 1 diabetes. Ann N YAcad Sci, 2008,1150: 61-67.
    [18] Trowsdale J, Powis SH. The MHO. relationship between linkage and function. Curr Opin Genet Dev, 1992, 2: 492-497.
    [19] Janeway CA, Travers P, Walport M, et al. Immunobiology 6th Ed: The Immune System in Health and Disease. New York: Garland Publishing. 2005.
    [20] O'Hanlon TP, Rider LG, Mamyrova G, et al. HLA Polymorphisms in African Americans with Idiopathic Inflammatory Myopathy. Arthritis Rheum, 2006, 54: 3670- 3681.
    [21] Liu W, Li WM, Sun NL. HLA-DQA1, -DQB1 Polymorphism and Genetic Susceptibility to Idiopathic Dilated Cardiomyopathy in Hans of Northern China. Ann Hum Genet, 2005, 69:382-388.
    [22] Fanning GC, Welsh KI, Bunn C, et al. HLA association in three mutually exclusive autoantibody subgrouos in UK systemic sclerosis patients. Br J Rheumatol, 1998, 37:201-207.
    [23] Gerbase-DeLima M, DeLima JJ, Persoli LB, et al. Essential hypertension and histocompatibility antigens. A linkage study. Hypertension, 1989,14: 604-609.
    [24] Gerbase-DeLima M, Ladalardo MA, DeLima JJ, et al. Essential hypertension and histocompatibility antigens. An association study. Hypertension, 1992, 19: 400-402.
    [25] Gerbase-DeLima M, Paiva RLF, Bortolotto LA, et al. Human leukocyte antigens and malignant essential hypertension. Am J Hypertens, 1998,11: 729-731.
    [26] Liao YH, Wei YM, Wang M, et al. Autoantibodies against AT1-receptor and alphal-adrenergic receptors in patients with hypertension. Hypertens Res, 2002, 25:641-646.
    [27] Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific prmers (PCR-SSP) in 2 hours: An alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantion. Tissue Antigens, 1992, 39: 225-235.
    [28] Bunce M, O'Neill CM, Barnardo MCNM, et al. Phototyping: Comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 and DQB1 by PCR with 144 primer mixes utilising sequence-specific primers (PCR-SSP). Tissue Antigens, 1995,46: 355-367.
    [29] Olerup O, Aldener A, Fogdell A. HLA-DQB1 and DQA1 typing by PCR amplifications with sequence specific primers (PCR-SSP). Tissue Antigens, 1993, 41:119-134.
    [30] Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphic loci. Cell Res, 2005,15: 97-98.
    [31] Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB J, 1998, 12:1255-1265.
    [32] Hilme E, Hansson L, Sandberg L, et al. Abnormal immune function in malignant hypertension. J Hypertens, 1993,11: 989-994.
    [33] Lefkos N, Boura P, Boudonas G, et al. Immunopathogenic Mechanisms in Hypertension. Am J Hypertens, 1995, 8:1141-1145.
    [34] Andersson EC, Hansen BE, Jacobsen H, et al. Definition of MHC and T cell receptor contacts in the HLA-DR4 restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice. Proc Natl Acad Sci USA, 1998, 95: 7574-7569.
    [35] Fugger L, Rothbard JB, McDevitt GS. Specificity of an HLADRBl~*0401 -restricted T cell response to type Ⅱcollagen. Eur J Immunol, 1996, 26: 923-933.
    [36] Jun KR, Choi SE, Cha CH, et al. Meta-analysis of the association between HLA-DRB1 allele and rheumatoid arthritis susceptibility in Asian populations. J Korean Med Sci, 2007, 22(6):973-80.
    [37] Lin L, Chen Y, Xiao Z, et al. The association of HLA-DRB1 alleles with rheumatoid arthritis in the Chinese Shantou population: a follow-up study. Biochem Cell Biol,2007, 85(2):227-238.
    [38] Kilpatrick DC, Liston WA, Gibson F, et al. Association between susceptibility to pre-eclampsia within families and HLADR4. Lancet, 1989, 2(8671):1063-1065.
    [39] Limas C, Limas CJ, Boudoulas H, et al. Anti-beta-receptor antibodies in familial cardiomyopathy: correlation with HLA-DR and HLA-DQ gene polymorphisms. Am Heart J, 1994,127(2):382-386.
    [40] Limas CJ, Limas C. HLA-DR antigen linkage of anti-beta receptor antibodies in idiopathic dilated and ischaemic cardiomyopathy. Br Heart J, 1992, 67(5): 402- 405.
    [41] Takakuwa K, Honda K, Ishii K, et al. Studies on the HLA-DRB1 genotypes in Japanese women with severe preeclampsia positive and negative for cardiolipin antibody using a polymerase chain reaction-restriction fragment length polymorphism method. Hum Reprod, 1999,14: 2980-2986.
    [42] Petrone A, Giorgi G, Mesturino CA, et al. Association of DRB1~*04-DQB1~*0301 Haplotype and Lack of Association of Two Polymorphic Sites at CTLA-4 Gene with Hashimoto's Thyroiditis in an Italian Population. THYROID, 2001,11:171-175.
    [43] Ou D, Mitchell LA, Tingle AJ. HLA-DR restrictive supertypes dominate promiscuous T cell recognition: association of multiple HLA-DR molecules with susceptibility to autoimmune diseases. J Rheumatol, 1997, 24(2): 253-261.
    [44] Cornelia MW, Jorg JG. Association of MHC and rheumatoid arthritis: HLA polymorphisms in phenotypic variants of rheumatoid arthritis. Arthritis Res, 2000,2(3): 212-216.
    [45] Schork NJ. Genetically complex cardiovascular traits: origins, problems, and potential solutions. Hypertension, 1997, 29:145-149.
    [46] Vidan-Jeras B, Gregoric A, Jurca B, et al. Possible influence of genes located on chromosome 6 within or near to the major histocompatibility complex on development of essential hypertension. Eur J Physiol, 2000, 439 (Suppl): 60-62.
    [1] Guyton AC, Hall JE, Lohmeier TE, et al. Blood pressure regulation: basic concepts. Fed Proc, 1981, 40: 2252-2256.
    [2] Dzielak D. The immune system and hypertension. Hypertension, 1992, 19 (suppl I) :I-36-I-44.
    [3] Fu ML. Do immune system changes have a role in hypertension? J Hypertens, 1995,13:1259-1265.
    [4] Fu ML, Herlitz H, Schulze W, et al, Autoantibodies against the angiotensin receptor (AT_1) in patients with hypertension. J Hypertens, 2000,18: 945-953.
    [5] Wallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodes against the angiotensin AT_1 receptor. J Clin Invest, 1999,103: 945-952.
    [6] Dechend R, Homuth V, Wallukat G, et al. AT1 receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation, 2000, 101: 2382-2393.
    [7] Theingi M. Thway, Sergiy G. Shlykov, Mary-Clare Day, et al. Antibodies From Preeclamptic Patients Stimulate Increased Intracellular Ca2+ Mobilization Through Angiotensin Receptor Activation. Circulation, 2004,110:1612-1619.
    [8] Ralf Dechend, Volker Homuth, Gerd Wallukat, et al. Agonistic Antibodies Directed at the Angiotensin Ⅱ, AT_1 Receptor in Preeclampsia. J Soc Gynecol Investig, 2006, 13: 79-86.
    [9] Turner ST, Schwartz GL, Chapman AB, et al. Antihypertensive pharmacogenetics:getting the right drug into the right patient. J Hypertens, 2001,19:1-11.
    [10] Ulrika Liljedahl, Julia Karlsson, H(?)kan Melhus, et al. A microarray minisequencing system for pharmacogenetic profiling of anti-hypertensive drug response. Pharmacogenetics, 2003,13: 7-17.
    [11] Kurland L, Melhus H, Karlsson J, et al. Angiotensin converting enzyme gene polymorphism predicts blood pressure response to angiotensin Ⅱ receptor type Ⅰ antagonist treatment in hypertensive patients. J Hypertens, 2001,19: 1783-1787
    [12] Frazier L, Turner ST, Schwartz GL, et al. Multilocus effects of the renin-angiotensin -aldosterone system genes on blood pressure response to a thiazide diuretic.Pharmacogenomics J, 2004, 4:17-23.
    [13] Judith A Miller, Kerri Thai, James W Scholey. Angiotensin Ⅱ type 1 receptor gene polymorphism predicts response to losartan and angiotensin Ⅱ. Kidney International, 1999, 56: 2173-2180.
    [14] Xiaowen Su, Liming Lee, Xiaohui Li, et al. Association Between Angiotensinogen, Angiotensin Ⅱ Receptor Genes, and Blood Pressure Response to an Angiotensin-Converting Enzyme Inhibitor. Circulation, 2007,115: 725-732
    [15] Vincent M, Samani N, Gauguier D, et al. A pharmacogenetic approach to blood pressure in Lyon hypertensive rats. J Clin Invest, 1997,100: 2000-2006.
    [16] Arnett DK, Claas SA, Glasser SP. Pharmacogenetics of antihypertensive treatment.Vascular Pharmacology, 2006, 44:107-118.
    [17] Perloff D, Grim C, Flack J, et al. Human blood pressure determination by sphygmomanometry. Circulation, 1993, 88: 2460- 2470.
    [18] Liao YH, Wei YM, Wang M, et al. Autoantibodies against AT_1-receptor and alpha1-adrenergic receptor in patients with hypertension. Hypertens Res, 2002, 25: 641-646.
    [19] Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin Ⅱ type 1 receptor gene polymorphisms in human essential hypertension. Hypertension, 1994, 24: 63-69.
    [20] Wang WY, Zee RY, Morris BJ. Association of angiotensin Ⅱ type 1 receptor gene polymorphism with essential hypertension. Clin Genet, 1997,51: 31-34.
    [21] Sua Shaoyong, Chena Jianhong, Zhao Jiangong, et al. Angiotensin Ⅱ type Ⅰ receptor gene and myocardial infarction: tagging SNPs and haplotype based association study.The Beijing atherosclerosis study. Pharmacogenetics, 2004,14: 673-681.
    [22] Zhang Xun, Erdmann Jeanette, Regitz-Zagrosek Vera, et al. Evaluation of three polymorphisms in the promoter region of the angiotensin Ⅱ type I receptor gene. J Hypertens, 2000,18: 267-272.
    [23] Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphic loci. Cell Res, 2005,15: 97-98.
    [24] Sun YX, Zhu F, Wang M, et al. Increased autoantibody production against AT (1)-receptors and alpha (1)-adrenergic receptors in hypertensive patients. Zhonghua Xin Xue Guan Bing Za Zhi, 2008, 36(1): 16-19.
    [25] Sun YX, Zhang HY, Wei YM, et al. The mechanism of signal transduction during vascular smooth muscle cell proliferation induced by autoantibodies against angiotensin AT1 receptor from hypertension. Chinese Medical J, 2008,121(1): 43-48.
    [26] Geng Q, Jiang WY. Human gene haplotype map project and significance. Section Genet Goreign Med Sci, 2005,28:1-5.
    [27] Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin Ⅱ type 1 receptor gene poly-morphisms in human essential hypertension. Hypertension, 1994, 24: 63-69.
    [28] Kainulainen K, Perola M, Terwilliger J, et al. Evidence for involvement of the type 1 angiotensin Ⅱ receptor locus in essential hypertension. Hypertension, 1999, 33: 844- 849.
    [29] Poirier O, Georges JL, Ricard S, et al. New polymorphisms of the angiotensin Ⅱ type 1 receptor gene and their associations with myocardial infarction and blood pressure: the ECTIM study. Etude Cas-Temoin de l'Infarctus du Myocarde. J Hypertens, 1998, 16:1443-1447.
    [30] Jiang Z, Zhao W, Yu F, et al. Association of angiotensin Ⅱ type 1 receptor gene polymorphism with essential hypertension. Chin Med J (Engl), 2001, 114: 1249 -1251.
    [31] Tsai CT, Fallin D, Chiang FT, et al. Angiotensinogen gene haplotype and hypertension: interaction with ACE gene I allele. Hypertension, 2003,41: 9-15.
    [32] Delmonico MJ, Ferrell RE, Meerasahib A, et al. Blood Pressure Response to Strength Training May Be Influenced by Angiotensinogen A-20C and Angiotensin Ⅱ TypeⅠ Receptor A1166C Genotypes in Older Men and Women. J Am Geriatr Soc, 2005, 53:204-210.
    [33] De Denus S, Zakrzewski-Jakubiak M, Dube MP, et al. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan. Ann Pharmacother, 2008, 42(7): 925-32.
    [1]郑幼兰,林建峰,朱惠等.抗高血压药物血管紧张素Ⅱ的1型受体阻断剂研究进展.海峡药学,2003;15(3):1-5.
    [2]Maria GD,Maria AL,Jose JG,et al.Essential hypertension and histocompatibility antigens.Hypertension,1992;19: 400-402.
    [3]FuML,Herlitz H,Wallukat G,Hilme E,et al.Non-desensitized positive chronotropic effect of anti-angiotension Ⅱ receptor autoantibodies in a patient with malignant hypertension.Circulation,1996;94: 40-46.
    [4]Wallukat G,Homuth V,Fischer T,et al.Patients with preeclampsia develope agonistic antibodies against the angiotension AT1 receptor.J Clin Invest,1999;1103: 945-952.
    [5]Yu-Hua Liao,Yu-Miao Wei,Min Wang,et al.Autoantibodies against AT_1-receptor and alphal-adrenergic receptor in patients with hypertension.Hypertens Res,2002; 25: 641-646.
    [6]Duska Dragun,Dominik N.M(u|¨)ller,Jan Hinrich Br(a|¨)ien,et al.Angiotensin Ⅱ Type 1-Receptor Activating Antibodies in Renal-Allograft Rejection.N Engl J Med,2005; 352: 558-69.
    [7]张麟,吴雅峰,缪国斌等.心力衰竭患者与心脏beta2、a1肾上腺素能受体和血管紧张素1型受体的自身抗体.中华心血管病杂志,2003;31:17-20
    [8]赵林双,廖玉华,王敏等.血清抗AT1、a1、beta1和M2受体自身抗体与慢性肾功能不全的相关研究.中国免疫学杂志,2005,21:631-633.
    [9]赵林双,廖玉华,王敏等.糖尿病肾病患者抗血管紧张素的1型受体和肾上腺素能A受体自身抗体改变的观察.中国糖尿病杂志,2006,14:185-187.
    [10]周子华,廖玉华,王敏等.高血压脑卒中患者血浆抗血管紧张素Ⅱ受体AT1型自身抗体的作用.中国临床康复,2004,8:6944-6949.
    [11]刘虹,杨宇,陈珑珑.AT1受体自身抗体与原发性高血压的关系.湖南医科大学学报,2003;28(3):255-258.
    [12]孙艳香,朱峰,王敏,等.原发性高血压患者血清抗α1受体和血管紧张素Ⅱ1受体自身抗体的临床观察.中华心血管病杂志,2008;36:16-18.
    [13]Pratt RE.Regulation of vascular smooth-muscle cell growth by angiotensin Ⅱ.Blood Press,1996;2: 6-9.
    [14]Mario B.Marrero,Bernhard Schieffer,Bing Li.Role of Janus kinase/singal transducer and activator of transcription and MAPK cascades in angiotensin Ⅱ and Platelet-derived Growth Factor-induced VSMC proliferation.J Biological Chemistry,1997;272(39): 24684-24690.
    [15]Bin Wang,Yu-Hua Liao,Zihua Zhou,et al.Arterial structure changes in rats immunized by AT_1-receptor peptide.Heart Vessels,2005;20: 153-158.
    [16]罗余生,廖玉华,王敏,等.AT1-受体多肽诱导大鼠免疫损伤反应及其药物干预的研究.高血压杂志,2002;10:143-148.
    [17]Theingi M.Thway,Sergiy G.Shlykov,Mary-Clare Day,et al.Antibodies From Preeclamptic Patients Stimulate Increased Intracellular Ca2~+ Mobilization Through Angiotensin Receptor Activation.Circulation,2004;110: 1612-1619.
    [18]Thomas Walther,Gerd Wallukat,Alexander Jank,et al.Angiotensin Ⅱ Type 1 Receptor Agonistic Antibodies Reflect Fundamental Alterations in the Uteroplacental Vasculature.Hypertension,2005;46: 1275-1279.
    [19]Ralf Dechend,Petra Gratze,Gerd Wallukat,et al.Agonistic Autoantibodies to the AT1 Receptor in a Transgenic Rat Model of Preeclampsia.Hypertension,2005;45: 742-746.
    [20]Ralf Dechend,Volker Homuth,Gerd Wallukat,et al.Agonistic Antibodies Directed at the Angiotensin Ⅱ,AT1 Receptor in Preeclampsia.J Soc Gynecol Investig,2006; 13(2): 79-86.
    [21]Sun Yanxiang,Zhang Haiyan,Wei Yumiao,et al.The mechanism of signal transduction during vascular smooth muscle cell proliferation induced by autoantibodies against angiotensin AT1 receptor from hypertension.Chinese Medical Journal,2008;121(1): 43-48.
    [22]王静,尖子刚,刘兆昶.血管紧张素拮抗剂在心血管疾病的临床应用.华厦医学, 2001;9(6):981.
    [23]顾明.AT1受体阻滞剂对高血压患者室性早搏的影响.中国综合临床,2002;18(1):48.
    [24]廖俊林,鲁立新,刘金桥等.抗血管紧张素Ⅱ1受体自身抗体在原发性高血压中的作用.临床心血管病杂志,2005;21(7):435-436.
    [25]廖玉华,魏宇淼,王敏等.血清抗AT1-受体自身抗体在难治性高血压患者中的病理作用及临床干预研究.中国冶金工业医学杂志,2001;18(2):65-69.
    [26]Irani RA,Xia Y.The functional role of the renin-angiotensin system in pregnancy and preeclampsia.Placenta.2008;29(9): 763-771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700