油菜田看麦娘的生物学特性及其对三种除草剂抗药性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
看麦娘(Alopecurus aequalis)为我国农田十大害草之一,危害大而又难以防除。尤其在我国长江中下游尤为严重。主要危害麦、油菜等夏收作物。本文以稻茬油菜田恶性禾本科杂草看麦娘为研究对象,研究了其种子休眠及萌发特性,开花生物学特性;并进行了看麦娘对高效盖草能、精禾草克及拿捕净产生抗药性的鉴定。结合形态解剖学、生理生化及分子生物学水平初步探讨了抗药性产生的机理。结果如下:
     打破休眠不仅与处理物质有关也与处理时间有很大的关系。看麦娘种子于4℃条件下800ppm浓度的GA,为浸种液浸种5天,发芽率能大大提高至达80%以上。在不同种子储藏方式中,室温下土壤中浸水保存有利于其越夏,提高萌发率,也是稻油(麦)田看麦娘易于发生的原因之一。
     采用种子测定法、整株测定法、花粉粒测定法进行了看麦娘对高效盖草能、精禾草克AOPP类除草剂产生的抗药性鉴定。表明采自溧阳(LYR)对高效盖草能产生高抗性,采自合肥的HFRⅠ,HFRⅡ,和江宁的JXRⅡ,JXRⅠ表现为中等水平的抗药性,抗性程度LYR>HFRⅠ>HFRⅡ>JXRⅠ>JXRⅡ。未使用除草剂处理过的油菜田或校园的看麦娘JJSⅠ,JJSⅡ,NAU,HFS均表现为敏感性。对精禾草克抗药性的研究表明JJSⅡ,NAU,HFS,JJSⅠ,仍为敏感性。LYR高抗;JXRⅡ>HFRⅡ>JXRⅠ>HFRⅠ表现为抗性。
     同时也进行了对拿捕净是否产生交互抗性的监测,发现南京江宁长期使用精禾草克、高效盖草能等乙酰辅酶A羧化酶抑制剂类除草剂约8年的油菜田里的看麦娘(JXRⅡ,JXRⅠ)对拿捕净产生较高水平的抗药性,HFRⅠ和HFRⅡ表现为中等水平的抗药性,LYR,JJSⅠ,JJSⅡ,NAU,HFS表现为敏感性。不同居群的看麦娘对拿捕净反应也有很大的区别,抗性程度JXRⅡ>JXRⅡ>HFRⅠ>HFRⅠ>LYR
     选取抗(JXRⅡ),感(JJSⅡ)两种看麦娘居群经高效盖草能茎叶处理(不用除草剂处理为对照),处理后第6天左右,JJSⅡ的叶片电解质泄漏率极显著上升,比对照提高了160%;MDA则比对照上升了4倍,膜脂过氧化加剧;JJSⅡ的叶片的叶绿素含量比对照下降了约1.6倍,类胡萝卜素含量下降了约2倍;JJSⅡ的GSH含量在处理后2天就开始下降,均比对照低,而JXRⅡ的GSH含量均比对照高;抗、感居群经除草剂处理后,二者可溶性糖含量均增加,但敏感性居群JJSⅡ可溶性糖含量增加的幅度
    
    远远大于杭性居群JX租I;二者的POD表现也不同,处理后JXRJI的POD酶活却没
    有JJSll上升幅度大。说明这两种群体经除草剂胁迫后,除草剂对敏感性居群的生理
    变化影响大。
     采用双向等位特异性聚合酶链式反应(B 1 d 1 reetional Axl ele一Specific PeR),
    检测对拿捕净产生的抗性分子生物学基础,JXRll、JxR工能增出约SO0bp的特异片断,
    而其它只能扩.嘈出约780bp。推测该杭拿捕净生物型JXR工工、JXRI可脆是由于靶标酶
    ACCa se位点发.生突变,在研究其对高效盖草能产生杭药性分子基础时发现LYR能增出
    约49obp的片断,其它只能扩增出约1100bP,进一步证实了靶标酶AcCase可能存在多
    个突变位点,而产生不同模式的抗药性,同时也表明AOPP类和CHD类除草剂的作用位
    点是有差异的,
Alopecurus Aequalis (S.) is one of the noxious weed in the field, which widely distributed in china, Japanese, kerora, and Turkey in Asian. Now it becomes a troublesome weed in our country, especially in the middle and lower region of Yangzi River. It mainly distributed in the field of wheat and oil rape. The Alopecurus Aequalis (S.) In the rape field was investigated in this paper, the dormancy, germination of the seed and biology of the anthesis of the species were studied, and the resistance to ACCase-inhibitor in Alopecurus Aequalis populations were identified. The modal anatomy, physiology and biochemistry, molecular biology was employed to discuss the mechanism of resistance. The results are as follows:
    There is exists 1-3 month's dormancy for seeds of Alopecurus Aequalis, so it is necessary to find a rapid method to break the seed dormancy to make it germinate consistently. The result showed that it is related to the substance and the time of the treatment. The seed need to be immersed in GA3 with 800ppm concentration about 5 days, and the germination percentage will be enhanced to 80%. Treated with different preservation ways, storage in soil with immersed water is benefit to get through the summer that is one of the reasons of its occurrence easily in the field of rice-rape or rice-wheat.
    The bioassay to whole individual, to seeds and to pollen were used to detect the resistance of Alopecurus aequalis populations to haloxyfop-R, quizolofop-R , the results indicated that Alopecurus aequalis from the rape field without herbicide treatment is susceptible, while that population from the rape field in LiYang county where it has being used with the haloxyfop-R about 10 years has high resistance. The resistance level is: LYR>HFRI> HFRII> JXRI > JXRII.
    The cross- resistance in Alopecurus aequalis populations was also identified. The results showed that population of Alopecurus aequalis from the rape field without herbicide treatment is still susceptible to sethoxydim, and those populations of JXRII, JXRI
    
    
    from Jiangning whose resistance have been detected resistance to haloxyfop-R are high resistant to sethoxydim, while populations from LYR whose resistance are high to haloxyfop, but is susceptible to sethoxydim. This result suggested that different herbicide-resistant modes exist mAlopecurus aequalis populations.
    There was remarkable difference to Electrical conductivity, MDA, GSH, POD, chK car, soluble protein and sugar between the resistant and susceptible populations (JXRII, JJSII) after treated by haloxyfop-R ,This suggested the herbicide strongly affected the physiological and biochemical aspects of the susceptible biotype.
    After treated with herbicide for 6d, the Electrical conductivity of leaf in JJSII increased rapidly. The content of MDA rose four times in contrasted to the control, this implied membrane-lipid peroxidation was intensified. The content of chal and car decreased 1.6and2 times respectively; Two days later after treatment, GSH become lower, while the GSH from JXRII was higher contrasted to the control .the soluble sugar were increased both the susceptible and resistant biotype. But the former increased higher than the later, the activity of POD from JXRII increased slowly than that population from JJSII.
    The Bi-directional Allele-specific PCR was used to detect the base in molecular level of the resistance to sethoxydim. Only JXRII, JXRI can be amplified the SOObp specific-fragment, while others amplified the 780bp fragment. It is concluded that there probably exist the ACCase mutation within JXRII, JXRI. The base in molecular fragement level of the resistance to haloxyfop-R was studied, only LYR can be amplified the 490bp specific-fragment, while others amplified the 1100bp fragment which further verify there are many mutation points in the ACCase. At the same time, It also illuminates the target sites are different between AOPP and CHD.
引文
1 波钦诺克著.荆家海,丁钟荣译.植物生物化学分析方法.北京:科学出版社,1981
    2 陈沁 刘友良 谷胱甘肽对盐胁迫人麦叶片活性氧清除系统的保护作用 作物学报 2000,26(3):365-371
    3 崔洪山译 有希望的野生看麦娘材料 牧草与饲料 1990 4:50—51
    4 董代文 郑永忠 郭建.浅析农药混配与抗药性治理对策 植物医生 2000 13(4):6-8
    5 高守云.黄瓜抗寒性的生理生化及形态指标的研究.北京:北京农业大学,1988.
    6 胡林军 油菜田杂草综合管理技术的初步探讨 杂草科学 1999,(2):37-39
    7 胡守洲,李求文,谢瑞礼,黄贤文,罗盛中 稻秆潜蝇对杂交水稻制种田的危害与防治措施 种子科技 2002,(5):297
    8 黄炳球,林韶湘 我国稻区稗草对禾草丹的抗药性研究.农药科学与管理,1993,(1):29-33
    9 黄炳球等 我国稻区稗草对丁草胺抗药性现状 植物保护学报 1995,22(3).281-289。
    10 黄春艳 杂草抗药性研究概况 黑龙江农业科学 1997,(6):45-47
    11 黄建中 农田杂草抗药性—产生机理、测定技术、综合治理 中国农业科技出版社 1995
    12 黄建中 杂草学 中国农业科技出版社 1996
    13 金红,杜胜利,陈峥等 转基因黄瓜主要农艺性状观察及其种子抗性研究 天津农业科学 2003,9(1)9-11
    14 靳莉,任天瑞,向文胜,陈馥衡 乙酰辅酶A羧化酶抑制剂的研究进展 农药学学报 20024(1):9-17
    15 李美茹,刘鸿先,王以柔等钙对水稻幼苗抗冷性的影响.植物生理学报,1996,22(4):379-384
    16 李宜慰 陈以峰 李永丰等 罔草与日本看麦娘愈伤组织对绿黄隆的诱导抗性 江苏农业学报 1997 13(2):85-89
    17 李宜慰 梅传生 李永丰等.麦田罔草和日本看麦娘对绿黄隆抗性的初步研究 江苏农业学报1996,12(2):34-38
    18 李永丰、李宜慰、刘正道 抗药性杂草的种群发展及其防治对策 江西农业大学学报 1999,21(1):42-46
    19 马晓渊 农田杂草抗药性的发生为害、原因与治理 杂草科学 2002(1):5-9
    20 谬详儒 万怡震 朱新产 植物古胱甘肽转移酶 1996,16(6):22-23
    21 欧晓明 唐德秀.除草剂作用机理研究的新进展 世界农业 2000,(10):28-30
    22 钱希 杂草抗药性研究的进展 生态学杂志 1997,16(3):58-62。
    23 强胜 江苏省沿海棉区杂草群落的发生规律.江苏农业学报,1998,14(2):108~111
    24 强胜 李扬汉 安徽沿江芋江农区夏收作物田杂草群落分布规律的研究 植物生态学与地植物
    
    学报 1990,14(3):22—219
    25 强胜 主编.杂草学.北京:中国农业出版社,2001 杂草学
    26 沈国辉 等.不同耕作型油菜田杂草的发生消长及除草剂对杂草种群变化的影响.杂草学报,1994,8(1):6~1
    27 苏少泉 除草剂作用靶标的分类与使用 农药 1998,37(11):1-7。
    28 苏少泉 杂草抗药性及其治理 世界农业a 1996,2 31-33
    29 苏少泉,宋顺祖 中国农田杂草化学防治 北京:中国农业出版社,1996 b
    30 苏少泉,杂草防治的发展趋势,世界农业 1996c (7) 30-31
    31 苏少泉.除草剂概论.北京科学出版社,1989.299-305
    32 孙丙耀 麦田看麦娘属杂草种群消长原因及其抗药性鉴定的研究 博士学位论文 1996 南京农业大学
    33 孙诚 多胺浸种对大麦幼苗盐害缓解的效应及其机理 硕士学位论文2001南京农业大学
    34 唐洪元 中国农田杂草 上海科技出版社 1991
    35 唐洪元、王学鄂等上海市小麦、油菜田杂草群落变化及放出对策的研究,杂草学报 1991,5(1):1~7
    36 唐正辉,张泽溥.农田杂草抗药性研究方法简介.植物保护.1991(3):43~44
    37 王开金 江苏省麦田潜显性杂草群落特征及防除技术的研究 硕士学位论文 2001 南京农业大学
    38 王林 六安地区油菜田杂草动态监测与分析 杂草科学 2000,(4):7-9
    39 王小荣 湖南省禾本科药用植物简介 湖南中医药导报 2001,7(10):520—521
    40 向梅梅 广东农田杂草上的病原真菌 华南农业大学学报 2002,23(1) 41-44
    41 许长城,邹琦,程炳嵩 干旱条件下大豆叶片代谢变化及其同抗旱性的关系。植物生理学报,1993,24(1):216-220
    42 杨晓英 江苏海滩野大豆耐盐性鉴定与耐盐机理的研究 硕士学位论文 2002 南京农业大学
    43 姚建仁,唐正辉.杂草抗药性机制的研究.世界农业,1992,(10):32—36
    44 张朝贤 钱益新 胡祥恩 农田化学除草与可持续发展农业 农药 1998,37(4)8-12
    45 张朝贤,钱益新.中国农田化学除草现状与努力方向.植保技术与推广,2001,21(10):35~37
    46 张宏政主编.作物生理研究法.北京,农业出版社 1990,142
    47 张礼福,胡承孝 磷肥对看麦娘与小麦研究相互关系的相互研究 华中农业大学学报 1996,15(5):450—453
    48 张明生,谢波,谈锋,张启堂 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究 中国农业科学 2003,36(1):13-16
    49 张泽溥 农田抗药性杂草种群的发展值得重视 植物保护 1990(5):41。
    
    
    50 张泽溥 中国农田草害及其防除 杂草学报 1991 5(1):
    51 赵世杰,许长成等.植物组织中丙二醛测定方法的改进。植物生理学通讯。1994,30(3):207-210
    52 中国农业年鉴,1993—1999,中国农业出版社
    53 周博如 李永镐 刘太国等 不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究 大豆科学 2000,19(2):111-114
    54 周国民,吴福民,李华等 12%快乐通乳油防除油菜田禾本科杂草的药效实验 杂草科学 2002,(3):36-37
    55 Abdur R., Donovan J. T. O', Khan A. A., Sharma M. P. Response of triallate-resistant and-susceptible wild oat (Avena fatua) populations to difenzoquat and EPTC in a seedling bioassay., Weed Technology. 1997, 11:527-531.
    56 Andrews T.S.; Morrison I.N.; Penner G.A. Monitoring the spread of ACCase inhibitor resistance among wild oat (Avena fatua) patches using AFLP analysis. Weed-science 1998, 46(2): 196-199.
    57 Bradford MM.A. A rapid and sensitive method for the quantitaion of microgram of protein utilizing the principle of protein dye binding. Anal biochem. 1976,72:248~254
    58 Bravin F.; Zanin G.; Preston C. Resistance to diclofop-methyl in two Lolium spp. populations from Italy: Studies on the mechanism of resistance Weed Research, 2001,41 (5) 461-473.
    59 Brown A. C.; Moss S.R.; Wilson Z. A. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim. Pesticide Biochemistry & Physiology. 2002,72(3), 160-168.
    60 Burke JJ, Gamble PE, Hatfieldetal JL. Plant morphological and biochemical responses to field water defitcits.PlantPhysiol, 1985,79:415~419
    61 Cavan G; Biss P; Moss SR; Localized origins of herbicide resistance in Alopecurus myosuroides. Weed-Research 1998, 38(3): 239-245.
    62 Christoffers M.J.; Berg M.L. Messersmith C.G. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat. Genome. 2002, 45 (6) 1049-1056
    63 Christophe Delye; Xiao Q.; Zhang, C. Chalopin An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors Plant-physiology. 2003, 132(3): 1716-1727.
    64 Christopher J. T; Holtum J. A M. The dicotyledonous species Erodium moschatum (L) L'Her. ex Aiton is sensitive to haloxyfop herbicide due to herbicide-sensitive acetyl-coenzyme Acarboxylase. Planta 1998,207(2): 275-279.
    65 Christopher J.T Holtum-J.A.M; Dicotyledons lacking the multisubunit form of the herbicide-target
    
    enzyme acetyl coenzyme A carboxylase may be restricted to the family Geraniaceae. Australian-Journal-of-Plant-Physiology. 2000, 27(8): 845-850.
    66 Christophye D. D; Calmes E.; Matejicek A.: SNP markers for black-grass (Alopecurus myosuroides Huds.) genctypes resistant to acetyl CoA-carboxylase inhibiting herbicides. Theor-appl-genet. 2002,104 (6/7). 1114-1120
    67 Christophye D. D; Wang T.y.; Darmency H. An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta 2002.214 (3): 421-427.
    68 Christophye D. D; Annick M.J. PCR-based detection of resistance to acetyI-CoA carboxylase-inhibiting herbicides in black-grass and ryegrass Pest Management Science 2002, (58): 474-478.
    69 Cocker-K.M; Coleman-J.O.D; Blair-A.M; Clarke-J.H; Moss-S.R; Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed-Research 2000, 40(4) 323-334.
    70 Colbach N; Durr C; Chauvel B; Richard G. Effect of environmental conditions on Alopecurus myosuroides germination. Ⅱ. Effect of moisture conditions and storage length. Weed Research. 2002,42(3) 222-230.
    71 Cotterman J.C., Saari L.L. Rapid metabolic inactivation is the basisf or cross -risistance to chlorsulfuron in diclofop-mathyl-resistant rigid ryegrass biotype SR4/84. Pesticide Biochemistry &Physiology. 1992, (43): 189-192.
    72 Cummins I. Cole D.J. Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant Journal. 1999, 18(3): 285-92.
    73 Cummins I. Moss S. Glutathione Transferases in Herbicide-Resistant and Herbicide-Susceptible Black-grass. Pest Science 1997(51): 244-250.
    74 Devine M. D. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: A review. Pesticide Science. 1997,51(3) 259-264.
    75 Donovan, O' J. T., Abdur R., Nguyen v. H. A seedling bioassay for assessing the response of wild oat (Arena fatua) populations to triallate. Weed Technology. 1996,10:931-935
    76 Dotray, P.A.; DiTomaso,-J.M.; Gronwald,-J.W.; Effects of acetyl-coenzyme A carboxylase inhibitors on root cell transmembrane electric potentials in graminicide-tolerant and -susceptible corn (Zea mays L.) Plant-physiology 1995, 109(3) 927-935.
    77 Egli M.A., Gegenbach B.G, Gronwald J.W., Somers D.A, Wyse D.L Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol 1993, 101:499-506
    
    
    78 Evenson K.J., Gronwald J.W., Wyse D.L. Isoforms of acetyl-coenzyme A carboxylase in Lolium multiflorum. Plant Physiol Biochem 1997, (35) 265-272
    79 Evenson, K.J; Gronwald, J.W; Wyse, D.L Purification and characterization of acetyl-coenzyme A carboxylase from diclofop-resistant and -susceptible Lolium multiflorum. Plant physiology. 1994,105 (2) 671-680
    80 Friesen L. F; Jones T. L.; Van A. R. C; Morrison 1. N. Identification of Avena fatua populations resistant to imazamethabenz, fiamprop, and fenoxaprop-P. Weed Science. 2000. 48(5). 532-540.
    81 Gengenbach B.G.; VanDee K.L.; Egli M.A.; Genetic relationships of alleles for tolerance to sethoxydim herbicide in maize. Crop-sci. 1999.39 (3) 812-818.
    82 Hassan G.; Mueller W. G.; Griffith S. Differential sensitivity of Italian ryegrass (Lolium multiflorum) cultivars to fenoxaprop. Weed Science. 2002,50(5). 567-575.
    83 Heap I. M. The occurrence of herbicide-resistant weeds worldwide. Pesticide Science. 1997, 51(3) 235-243
    84 Heap I.M International survey of herbicide-resistant weeds: lessons and limitations, http://www. Weedscience.com 2002
    85 Heap I.M; Morrison I.N Resistance to aryloxyphenoxpropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed science 1996, 44 (1): 25-30
    86 Heap I.M; Murray B.G; L0eppky H.A; Morrison I.N Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oats (Avena fatua). Weed Science. 1993, 41(2): 232-238.
    87 Herbert D.; Cole D.J.; Pallett K.E; Harwood J.L. Susceptibilities of different test systems from maize (Zea mays), Poa annua, and Festuca rubra to herbicides that inhibit the enzyme acetyl-coenzyme A carboxylase. Pesticide biochemistry and physiology 1996, 55 (2) 129-139
    88 Holt, J.S herbicide resistance. Weed technology, 1990,(4) 139-140
    89 Incledon B.J.; Hall J.C. Acetyl-coenzyme A carboxylase quaternary structure and inhibition by graminicidal herbicides. Pestic-biochem-physiol. 1997,57 (3): 255-271..
    90 John P.H.; Read A. H. C.. New quick tests for herbicide resistance in blackgrass based on increased GST activity and abundance. Pest Management Science 2001(58): 26-32.
    91 Jose L; Prado D. The Effect of Diclofop on Membrane Potential, Ethylene Induction, and herbicide phytotoxicity in risistant and susceptible biotypes of grasses Pesticide-Biochemistry -and-Physio
    92 Joseph, Evidence Against a Direct Membrane Efefect in the Mechanism of Action of Graminicides weed science 1994(42)302-309
    93 Kar PK, Chowdhuri MA Plant physiology, 1987,70:729-734
    94 Kawano T, Sahashi N Takahashi K et.al salicylic acid induces extracellular superoxide generation
    
    followed by an increase in cytosolic cal0.008 ml/L cium ion intobacco suspension culture the eatliest events in salicylic acid signal transduction plant cell physiol I998,39:721-730
    95 Konishi T, Shinohara K, Yamada K, Sasaki Y Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 1996, (37) 117-122
    96 Kuk Y. I.; Wu J.Ri. Derr J. F. Hatzios K.K. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry & Physiology. 1999,64(2). 112-123
    97 Kuk Y.I.; Burgos N.R; Talbert R.E; Kuk Y.I Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed-Science. 2000, (48):412-419
    98 Leach G..E.; Devine M.D.; Kirkwood R.C. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica. Pestic-biochem-physiol. Feb 1995.51 (2) 129-136.
    99 Lebaron H.M; Gressel J; Smale B.C; Horne D.M International organization for resistant pest managernent (IORPM) - a step toward rational resistance management recommendations. Weed-Technology. 1992, 6(3) 765-770
    100 Letouze A; Gasquez J. A pollen test to detect ACCase target-site resistance within Alopecurus myosuroides populations. Weed Research. 2000, 40(2) : 151-162.
    101 Letouze A; Gasquez J. Inheritance of fenoxaprop-P-ethyl resistance in a blackgrass (Alopecurus myosuroides Huds.) population. Theoretical & Applied Genetics. 2001,103(2/3) 288-296.
    102 Letouze A; Gasquez-J. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. populations. Weed-Research 1999, 39: 1, 37-48
    103 Liu LW, Guo WZ, Zhu XF, Zhang TZ. Inheritance and Fine Mapping of Fertility Restoration for Cytoplasmic Male Sterility in Gossypium hirsutum L. Theor Appl Gene, 2002,9.1-9-Logy, 1999.63:1-14
    104 Marles M A S, Herbicide resistance in Setaria viridis conferred by a less sensitive form of ACCase Pesticide-Biochemistry-and-Physiology 1993,46(1)7-14
    105 Matthews J.M.; Holtum J.A.M.; Liljegren D.R. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). I. Properties of the herbicide target enzymes acetyl-coenzymes A carboxylase and acetolactate synthase. Plant-Physiol. 1990, 94 (3) 1180-1186.
    106 Menéndez J, De P. R Characterization of two acetyl-CoA carboxylase isoforms in diclofop--methyl-resistant and -susceptible biotypes of Alopecurus myosuroides. Pestic Biochem Physiol 1999,65:82-89,
    107 MishraPN, TFatma, GSSinghal.Physiot.Plant, 1995,95:777~821
    
    
    108 Moss, S.R Wilson Z.A; Field, LM An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim Pesticide Biochemistry and Physiology 2002.72 (3) 160-168.
    109 Mukesh J.; Neera B.S.; Jain M. et.al Glyphosate-induced increase in glutathione S-transferase activity and glutathione content in groundnut (Arachis hypogaea L.). Pesticide- Biochemistry- and -Physiology.2001,69: 3, 143-152.
    110 Murray B.G.; Friesen L.F.; Beaulieu K.J. A seed bioassay to identify acetyl-CoA carboxylase Inhibitor Resistant Wild Oat (Avenafatua) Pupulations. Weed Technology. 1996, (10):85-89
    111 Niinomi Lipid peroxidation by the (peroxidase/H_2O_2/phenolic) system Plant cell physiology, 1987,28:731-734
    112 Nikolskaya, T., Zagnitko, O., Tevzadze, G., Haselkom, R Herbicide sensitivity determinant of wheat plastid acetyl-CoA carboxylase is located in a 400-amino acid fragment of the carboxyltransferase domain. Abstr. Proc. Natl. Acad. Sci. 1999,96:14 647
    113 Pompella A, Maellaro E, Casini AF, Comporti M Histochemical detection of lipid peroxidation in the liver ofbromobenzene-poisoned mice. Am J Pathol 1987, 129:295-301
    114 Prado-R-de; Gonzalez-Gutierrez-J; Menendez-J Resistance to acetyl CoA carboxylase-inhibiting herbicides in Lolium multiflorum. Weed-Science. 2000, 48(3): 311-318
    115 Reverdatto S.; Beilinson V.; Nielsen N.C. A multisubunit acetyl coenzyme A carboxylase from soybean. Plant-physiol. 1999, 119 (3) 961-978.
    116 Richter J. Powles S.B Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum). Plant-physiology. 1993 102(3) 1037-1041.
    117 Sasaki Y, Konishi T, Nagano Y The compartimentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 1995, 108:445-449
    118 Shimabukuro R.H.; Hoffer B.L. Effects on transmembrane proton gradient and lipid biosynthesis in the mode of action of diclofop-methyl. Pestic-biochem-physiol. 1994,48 (2): 85-97..
    119 Shimabukuro, RH; Hoffer, BL Induction of ethylene as an indicator of senescence in the mode of action of diclofop-methyl. Pesticide biochemistry and physiology 1996,54 (2) 146-158
    120 Shukla A.; Leach G. E; Devine M. D. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setaria viridis. Plant Physiology & Biochemistry 1997a, 35(10): 803-807.
    121 Shukla, A; Dupont, S; Devine, MD Resistance to ACCase inhibitor herbicides in wild oat: evidence for target site based resistance in two biotypes from Canada. Pesticide biochemistry and physiology 1997b, 57 (2) 147-155
    
    
    122 Stephen M.I.C. Glutathione Transferases in Herbicide-Resistant and Herbicide-Susceptible Black-grass (Alopecurus myosuroides). Pest Science 1997, (51):244-250.
    123 Tal A; Kotoula S.E.; Rubin B. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protection 2000, 19 (7): 467-472
    124 Volenberg D; Stoltenberg D. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. Weed Research. 2002.42(5). 342-350.
    125 Wyse.D. L. Future impact of crops with modified herbicide resistance. Weed Technology 1992, (6) :665-668
    126 Zagnitko, O; Jelenska, J; Tevzadze, G. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors Abstr. Proc. Natl. Acad. Sci. 2001,98 (12): 6617
    127 Zhang, X.Q.; Devine, M.D. A possible point mutation of plastidic ACCase gene conferring resistance to sethoxydim in green foxtail (Setaria viridis). Weed Sci. 2000,40:33-39
    128 Christophe D; Straub-C; Matejicek-A Multiple origins for black-grass (Alopecurus myosuroides Huds) target-site-based resistance to herbicides inhibiting acetyl-CoA carboxylase. Pest-Management-Science.2004, 60: 1, 35-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700