利用活性污泥混合菌群合成聚羟基烷酸脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基烷酸脂(PHA)是一类可由微生物在不均衡的营养条件下合成的脂类物质,在微生物代谢中起到积累碳源、平衡细胞内外离子的作用。PHA的物理特性类似于聚丙烯等化学塑料,无毒无害,在自然界可完全降解,是可望替代化学塑料、彻底解决白色污染的良好材料,但是较高的成本阻碍了PHA的大规模应用,使用混合菌种如活性污泥代替纯菌,使用含小分子脂肪酸的废水代替葡萄糖、果糖等底物,可以在降低PHA的生产成本的同时,达到污泥减量、废水资源化等目的。PHA的合成菌种类很多,利用活性污泥作为混合菌来源合成PHA受到了广泛关注,然而目前利用活性污泥合成PHA的工艺方式还比较复杂,往往将富集和驯化污泥合成PHA分成两个阶段或者分别在两个反应器内进行,总工艺时间较长,PHA合成效率还不能令人满意。本课题的研究目的是通过驯化污水厂剩余污泥以小分子脂肪酸为底物合成PHA,寻找简易可行的污泥驯化和PHA的合成工艺,简化操作程序,探索驯化活性污泥合成PHA的影响因素,通过简单的工艺和简单的驯化方式,序批式驯化污泥合成PHA,实现废水和剩余污泥的资源化回收利用和PHA合成的多重目的。
     试验以乙酸钠代替乙酸为唯一碳源,接种污水处理厂的剩余污泥,使用序批式反应器合成PHA。通过不同的启动和驯化方式影响PHA合成,研究发现,通过厌氧-好氧运行7-15天恢复污泥的活性,在均衡比例COD:N或COD:P的基础上,以一定的梯度(10%~20%)减少N或P的浓度形成不均衡的营养条件,经过10-15天的驯化,可使活性污泥在厌氧条件下合成PHA;当通过好氧运行7-10天恢复污泥活性,然后在厌氧-好氧交替运行条件下以一定梯度(10%~20%)减少N或P浓度的方式驯化7-10天,可以使活性污泥在好氧条件下合成PHA。通过不同的启动方式实现了对两种不同的PHA优势合成菌的控制和筛选。
     试验研究了营养比例(COD:N,COD:P)对PHA合成的影响。研究结果显示, PHA的最大合成量随着碳氮比或碳磷比的提高而提高,营养比例既是刺激微生物合成积累PHA的条件,也影响着细胞内最大PHA产量;厌氧条件下合成PHA时,在COD:N=125:1和COD:P=250:1时最大PHA积累量分别达到细胞干重的57%和26%;好氧条件下合成PHA时,在COD:N=200:1和COD:P=500:1时最大PHA合成量分别达到细胞干重的61%和33%,限制氮源比限制磷源获得的PHA含量更高。同时发现,厌氧条件下合成的PHA由PHB和PHV构成,好氧条件下合成的PHA几乎完全由PHB构成。合成PHA反应器经过约35天持续运行,无论是限制氮源还是限制磷源,均会导致污泥膨胀,其中磷源匮乏的反应器发生了非丝状菌的粘性膨胀,氮源匮乏的反应器发生了丝状菌膨胀,同时PHA合成能力丧失。
     试验考察了温度和pH对PHA合成的影响,研究发现在限磷条件下,19℃时PHA合成能力最强;在限氮条件下,16℃时PHA合成能力最强。无论限氮或限磷,结果都显示较低的温度适宜PHA的合成。在不控制pH时(pH介于8~9),PHA的合成情况较好,当pH降低时到7.0时底物利用能力和PHA合成能力下降,pH降至5.0时PHA的合成能力大幅度降低。中性偏碱性的环境有利于PHA的合成。
     将含红糖的废水水解酸化以后作为碳源进水合成PHA。研究发现,调整pH后进水,不仅可以使PHA的总量提高,同时也令PHA的单体构成发生变化,PHV的比例获得较大幅度的提高;若含酸废水不经pH调整直接进水,将会对PHA的合成产生冲击,单位基质的PHA的产率和最大PHA积累量分别下降46%和58%,其中PHB受到的影响更大。当调整含酸废水的营养比例使碳源相对过剩时,基质利用效率和PHA的积累量又会提升。
     课题对活性污泥中PHA的提取进行了初步研究,使用5%的NaClO对2800mg/L的湿污泥可达到较好的破碎效果。试验设计了一套包括吹扫蒸发、溶剂吸收、尾气过滤三个部分的简易PHA提取装置,使用氯仿溶解萃取PHA,使用NMP吸收氯仿,在一套装置内同时实现了PHA的析出和氯仿溶剂的回收;提取后的PHA粗产品呈白色片状或粉末状,对于PHA含量20%左右的污泥经过提取,获得的PHA纯度可达60-70%以上,同时对材料的表面特性、热稳定性进行分析,并提出了利用剩余污泥驯化、合成、提取PHA的技术策略。
     从驯化后的合成PHA的污泥中筛得一株具有较高PHA合成能力的菌,命名为S1,对其进行发酵试验研究表明,该菌在较高的碳磷比下可以大量积累PHA,碳磷比是影响PHA产量的最主要因素;分批发酵实验显示,在COD:P=400时,细胞干重达到了4.78g/L同时PHA的积累量也达到了51.2%。细胞的增长和PHA的积累是同时进行的。16s rDNA测序鉴定表明,S1菌属于β-变形菌纲红环菌目红环菌科陶厄氏菌属。试验同时建立了S1发酵产PHA的动力学模型方程,理论模型与实际试验结果符合较好。
Polyhydroxyalkanoates (PHA) are a class of polymer which can be synthesized by many species of microorganisms under imbalanced nutrient conditions, PHA accumulated in the microbial metabolism plays a carbon source, energy, adjust intracellular ion balance. PHA's physical characteristics are similar to chemical plastics such as polypropylene, and no harm to environment, PHA can be completely degraded in the natural condition, it is expected to replace chemical plastic, and gives good potential alternatives to completely solve the white pollution further. Currently, there are many companies using pure bacteria and pure culture fermentation to produce commercial PHA, but the high cost prevented the large-scale application of PHA.To reduce PHA production costs, a approach is use of mixed bacteria, such as activated sludge instead of pure bacteria, using organic waste, food waste instead of glucose, fructose, etc. as the substrate, can greatly reduce the cost of PHA production, but research shows that, PHA could synthesized by too many microorganisms, not all strains are suitable for mixed culture product PHA , some PHA synthesis process is relatively complicated, not easy to operate and control the conditions, the domestication time and efficiency was not satisfactory. The purpose of this research topic is to acclimate excess sludge synthesize PHA by low molecular fatty acid, find a simple and feasible for PHA synthesis methods, simplify procedures and steps, while maximizing the yield of PHA.
     With acetate as sole carbon source, sludge or excess sludge from urban sewage treatment plants secondary settling tank is inoculated to reactor, study the way of different start and acclimated sludge to synthesize PHA. The results found that, running first by anaerobic - aerobic for 7-15 days, the activity of the sludge was restored, then the ratio of COD: N or COD: P, was gradually increased, N or P element concentration reduced on a certain gradient (10% -20%), after 10-15 days of acclimation, PAOs or GAOs which Synthesize PHA under anaerobic conditions were gained. when the first starting phase changed to complete aerobic condition for 7-10 days,and then anaerobic anoxic condition for acclimation, the concentration of N or P was reduced meantime, after 7-10 days, PHA synthesized under aerobic conditions in activated sludge was gained. In terms of a single carbon source, through a different start, domestication of control was achieved; PHA synthesis of two different strains could be control and selection.
     In the basis of domestication, using acetate as sole carbon source, the ratio of nutrients (COD:N, COD:P) on PHA synthesis were adjusted, the results show that with carbon-nitrogen or carbon-phosphorus ratios increased, PHA yield increased, too. The proportion of both nutrients stimulate microbial synthesis of PHA, and also affects the maximum PHA yield of cells; for the synthesis of PHA under anaerobic conditions in the sludge,of the COD:N=125:1 and COD:P=250:1, the maximum PHA accumulations in cell dry weight were 57% and 26% respectively; PHA synthesized under aerobic conditions, the maximum amount of PHA synthesis of cell dry weight in COD:N=200:1 and COD:P=500 were 61% and 33% respectively. Limiting nitrogen source was batter to the PHA yield than limiting the phosphorus content. The experiment also found that under anaerobic conditions the constituted of the PHA are PHB and PHV, PHV PHA proportion accounted for 10% to 20%; PHA synthesized under aerobic conditions is almost PHB. Both PHA production reactors appears sludge bulking after about 35 days of operation, when phosphorus is restricted, non-filamentous sludge bulking was founded, when nitrogen source is restricted, filamentous sludge bulking occurred, then the PHA synthesis capacity lost.
     Experiment with different temperatures and different pH conditions was studied, the synthesis of PHA under the conditions of phosphorus limited shows a maximum yield in 19℃; while in N-limited conditions, the PHA yielded max at 16℃. No matter what nutrients are limited, it indicated that a lower temperature is suitable for PHA synthesis. In pH affect study, without control of pH conditions, pH ranged of 8 ~ 9, PHA synthesis is better, when pH is lowered to 7.0 substrate utilization capacity and PHA synthesis decreased, when pH is lowered to 5.0, the synthesis of PHA capacity significantly reduced. Neutral and alkaline environment is conducive to PHA synthesis.
     In order to simulate the real wastewater contained molecule organic acid, use brown sugar acidification wastewater as a carbon source to synthesize PHA, adjust the pH of fatty acid wastewater and then import to reactor, the experiment showed that not only can the rich carbon source to increase the total amount of PHA, but also makes the PHA monomer composition changes, PHV ratio was dramatically increased; if the water without pH adjustment import into the PHA synthesis reactor directly, it will have some impact on the synthesis of Panther substrate utilization rate and the maximum PHA production rate decreased by 46% and 58%, respectively; analysis from the PHA monomer product, PHB yield is affected greater, the efficiency in the use of substrate is decreased, either. When adjusting the proportion of nutrient ratio of fatty acid wastewater to make a condition that carbon is excess to nitrogen or phosphorus, PHA accumulation will get a promotion, the proportion of substrate for PHA synthesis increased by more than 100%. An unbalanced diet is to stimulate PHA accumulation ratio is still the best external factors, partially offset by the adverse effects of lower pH.
     Base on the PHA synthesis study, using 5% NaClO on 2800mg/L of sludge can be broken to achieve better results. Designed a set including the purge evaporation, solvent absorption, emission security under laboratory conditions bottle PHA extraction apparatus, using chloroform dissolved PHA, using NMP absorbed chloroform, synchronization of the PHA precipitation and chloroform solvent recovery; The PHA extraction was white flakes or powder, the impurities was residual fragments of the activated sludge, for about 20% dry cell weight of the PHA in activated sludge, after extraction, the product obtained over 60-70% in purity.
     After the pilot production of domesticated PHA, screening a strain with a high PHA synthesis, named as S1, its fermentation experiments showed that the strain could accumulated PHA at a higher ratio of carbon to phosphorus, carbon-phosphorus ratio is the main factors affecting the PHA yield, which is consistent with reactor acclimation results; batch fermentation experiments showed that, in the COD:P=400, the cell dry weight reached 4.78g/L at the same time the accumulation of PHA also reached to 51.2%. Cell growth and PHA accumulation was simultaneous. 16s rDNA sequencing showed that, S1 bacteria was closely related to Thauera sp.
引文
1谢汝文,林越展,薛可平.“白色污染”的综合治理[J].塑料科技, 2001(3):38-40
    2金辉.浅谈“白色污染”防治对策[J].现代农业, 2010(05):163
    3刘军军,何春霞.淀粉类可降解塑料的研究进展[J].工程塑料应用, 2010(03):79-81
    4 Simon Bengtsson, Alan Werkera, Magnus Christensson, et al. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater [J]. Bioresource Technology. 2008, 99(3):509-516
    5 Tajalli Keshavarz, Ipsita Roy. Polyhydroxyalkanoates: bioplastics with a green agenda [J]. Current Opinion in Microbiology, 2010, 13(3):321-326.
    6 Simon Bengtsson, Ana R. Pisco, Peter Johansson, et al. Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures [J]. Journal of Biotechnology. 2010, 147(3-4):172-179
    7 GQ Chen. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry [J]. Chemical Society Reviews. 2009(38):2434-2446
    8 Catherine A Woolnough, Lachlan H Yee, Tim Charlton, et al. Environmental degradation and biofouling of‘green’plastics including short and medium chain length polyhydroxyalkanoates [J]. Polymer International. 2009, 59(5):658-667
    9 Everest Akaraonye, Tajalli Keshavarz, Ipsita Roy. Production of poly hydroxyalkanoates: the future green materials of choice [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(6):732-743
    10 R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams, et al. Bacterial synthesis of biodegradable polyhydroxyalkanoates [J]. Journal of Applied Microbiology, 2007, 102(6):1437-1449
    11杨丹,刘宏超,黄慧珍.生物合成聚羟基烷基酸酯的研究与开发进展[J].高分子通报, 2009(05):42-47
    12 Suchada Chanprateep. Production and Characterization of Biodegradable Terpolymer Poly (3-Hydroxybutyrate -co-3- Hydroxyvalerate- co-4- Hydroxybutyrate ) by Alcaligenes [J]. Journal of bioscience and bioengineering.2006, 101(1):51-56
    13 K. D.Wend landt, W. Geyer. Possibilities for controlling a PHB accumulation process using various analytical methods [J]. Journal of Biotechnology .2005,117(1):119-129
    14 Biomer?, biodegradable polymers. Remarks on biodegradation [EB/OL], [2009-12-1]. http://www.biomer.de/BioabbauE.html.
    15田频源,米钰,尚龙安,等.聚羟基烷酸酯的研究进展[J].化工进展. 2009. 28(3): 468-476
    16许开天,赵树杰. PHB在生物医学中的应用研究进展[J].应用与环境生物学报.1995, 1(1):85-91
    17蒋凌飞,胡平.生物可降解塑料PHB的压电性能及在骨移植中的应用[J].功能材料. 2000, 31(1):33-35
    18 Y.G Chen, Q.Xu, H.Z Yang, et al. Effect of cell fermentation time and biomass drying strategies on recovery of PHA from Alcaligenes eutrophus using a surfactant- chelate aqueous system[J]. Process Biochemistry, 2001, 36(8):773-779
    19 Lavallee B, Lessard P, Vanrolleghem P A. Review of procaryote metabolism in view of modeling microbial adaptation from fast growth to starvation conditions [J]. Journal of Environmental Engineering, 2005, 4(6):517-532
    20 Yinguang Chen, Andrew A R, Terrence M. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratio of acetic to propionic acid [J]. Water Research, 2004, 38(1):27-36
    21 Jendrossek D, Handrick R. Microbial degradation of polyhydroxyalkanoates [J]. Annual Review of Microbiology. 2002(56):403-432.
    22 Kim DY, Rhee YH. Biodegradation of microbial and synthetic polyesters by fungi [J]. Applied Microbiology and Biotechnology. 2003, 61(4):300-308
    23张自杰,张忠祥,龙腾锐,等.废水处理理论与设计[M].北京:中国建筑工业出版社.2003
    24任南琪,宫曼丽,邢德峰.连续流生物制氢反应器乙醇型发酵的运行特性[J].环境科学. 2004,25(6):113-116
    25 Stapp C.Uèber die reserveinhaltstoffe und den schleim von Azotobacter chroococcum. Zentbl Bakteriol II 1924(61):276-292
    26 Der-Shyan Sheua, Yung-Wei Laia, Rey-Chang Chang, et al. Detection of polyhydroxyalkanoate synthase activity on a polyacrylamide gel[J]. Analytical Biochemistry, 2009, 393(1):62-66
    27 Lemoigne M. Produit de de?shydratation et de polyme?risation de l'acide b-oxybutyrique [J].Bull SocChimBiol 1926(8):770-782
    28 Lemoigne M. Etudes sur l'autolyse microbieánne origine de l'acide b-oxybutyriqueforme? par autolyse [J]. Archives from Institut Pasteur. 1927(41):148-165
    29 Wallen LL, Rohwedder WK. Poly-b-hydroxyalkanoate from activated sludge [J]. Environmental Science and Technology 1974(8):576-579
    30 Findlay RH, White DC. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. [J] Applied and Environmental Microbiology. 1983, 45(1):71-78
    31 Rehm B H A, Steinbuchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis [J]. International Journal of Biological Macromolecules, 1999, 25(1-3):3-19
    32 GQ Chen, Q Wu, K Zhao, et al. Functional polyhydroxyalkanoates synthesized by microorganisms [J]. Journal of Polymer Science, 2000, (18):389
    33 GQ Chen, Q Wu, J Xi, et al. Microbial production of biopolyesters polyhydroxyalkanoates [J]. Progress in Natural Science, 2000, (10):843-850
    34 SY Lee. Bacterial polyhydroxyalkanoates [J]. Biotechnology and Bioengineering, 1996, 49(1):1-14
    35 Steinbuchel A, val entin HE. Diversity of bacterial polyhydroxyalkanoic acids [J] . FEMS Microbiology Letters, 1995, 128(3): 219-228
    36 CR Hankermeyer, RS Tjeerdema. Polyhydroxybutyrate: plastic made and degraded by microorganisms [J]. Reviews of Environmental Contamination & Toxicology. 1999(159):1-24
    37 YB Kim, RW Lenz. Polyesters from microorganisms [J]. Advances in Biochemical Engineering/Biotechnology 2001(71):51-79
    38 EA Dowes, PJ Senior. The role and regulation of energy reserve polymers in microorganisms [J]. Advances in Microbial Physiology.1973, (10): 135-266
    39 Q Wu, SQ Sun, PHF Yu, et al. Environmental dependence of microbial synthesis of polyhydroxyalkanoates [J]. Acta Polymerica Sinica, 2000(6):751
    40 K Sudesh, H Abe, Y Doi. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters [J]. Progress in Polymer Science, 2000, 25(10):1503-1555
    41 A Ruizj, L Pezni, RO Fern`ndez, et al. Polyhydroxyalkanoate degradation is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms [J]. Applied and Environmental Microbiology, 2001, 67(1): 225-230
    42 T R Mcdermott, S M Griffith, C P Vance, et al. Carbon metabolism in Bradyrhizobium japonicum bacteroids [J]. FEMS Microbiology Letters, 1989, 63(4): 327-340
    43 P J Senior, E A Dawes. The regulation of poly2β2hydroxybutyrate metabolism in A zotobacter beijerinckii [J]. Biochemical Journal, 1973, (134): 225
    44 W D Luzier. Materials derived from biomass/biodegradable materials[J]. Proceedings of the National Academy of Sciences of the United States of America. 1992,89(3):839-842
    45 Aamer Ali Shah, Fariha Hasan, Abdul Hameed, et al. Biological degradation of plastics: A comprehensive review [J]. Biotechnology Advances. 2008, 26(3):246-265
    46 Helmut Brandl, Petra Piichner. Biodegradation of plastic bottles made from 'Biopor in an aquatic ecosystem under in situ conditions [J]. Biodegradation. 1991,2(4):237-243
    47 N.S. Lau, J.Y. Chee, T. Tsuge, et al. Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM(JCM15050) [J]. Bioresource Technology. 2010,101(20):7916-7923
    48 Graham Swift. Opportunities for environmentally degradable polymers [J]. Journal of Macromolecular Science, Part A,1995,32(4): 641-651
    49 Laral Madison, W.Gjalt. Huisman. Metabolie engineering of poly- (3-hydroxyalkanoates): from DNA to platie [J]. Microbiology and Molecular Biology Reviews. 1999, 63(1):21-53
    50 Ilona Gasser, Henry Müller, Gabriele Berg. Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants [J]. FEMS Microbiology Ecology, 2009, 70(1):142-150
    51黄媛媛.活性污泥合成聚羟基脂肪酸脂的研究进展[J].生物技术通报. 2009,(6):59-61
    52 GQ Chen, WD Tian, et al. Isolation of microorganisms capable of synthesizing novel biopolymers from oil contaminated soil and water [J]. Tsinghua Science & Technology, 1998, (3):1063-1067.
    53李云蓓.基于产酸废液的PHA合成菌的筛选及发酵条件研究[D].哈尔滨:哈尔滨工业大学. 2009
    54 Ken’ichiro Matsumoto, Kazuma Takase, Yoko Yamamoto, et al, Chimeric Enzyme Composed of Polyhydroxyalkanoate (PHA) Synthases from Ralstonia eutropha andAeromonas caviae Enhances Production of PHAs in Recombinant Escherichia coli [J]. Biomacromolecules, 2009, 10(4):682-685
    55 J. Anderson, EdwinA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates [J]. Microbiological Reviews. 2004, 54(4):450-472
    56 Steinbüchel A. Polyhydroxyalkanoaic acids. In: Byrom D, editor.Biomaterials: novel materials from biological sources [M]. New York: Stockton Press; 1991. 123-213
    57 MCM Van Loosdrecht, MA Pot, JJ Heijnen. Importance of bacterial storage polymers in bioprocess [J]. Water Science and Technology.1997 (35):41-47
    58 L.S.Serafilm, M. A .M.Reis, P. C.Lemos, et al. Production of poly hydroxyl- alkanoates by mixed microbial cultures [J]. Bioprocess Biosystem Engineering, 2003, 25(6):377-385
    59 OP Peoples, AJ Sinskey. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC) [J]. The Journal of Biological Chemistry. 1989(264):15298-15303
    60 D Rohini. Desetty, S Vineet. Mahajan, B. M. Khan, et al. Isolation and heterologous expression of PHA synthesising genes from Bacillus thuringiensis R1 [J]. World Journal of Microbiology and Biotechnology. 2008, 24(9):1769-1774
    61 A Steinbüchel, S Hein. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms [J]. Advances in Biochemical Engineering/Biotechnology. 2001(71):81-123
    62 Pornpa Suriyamongkol, Randall Weselake, Suresh Narine,et al. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review[J]. Biotechnology Advances. 2007,25(2):148-175
    63 Lageveen RG, Huisman GW, Preusting H, et al. Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly(R)-3-hydroxyalkanoates and poly(R)-3-hydroxyalkanoates [J]. Applied and Environmental Microbiology. 1988, 54(12):2924-2932.
    64 Jian Yu, Yingtao Si. Metabolic Carbon Fluxes and Biosynthesis of Polyhydroxyalkanoates in Ralstonia eutropha on Short Chain Fatty Acids [J]. Biotechnology Progress. 2004, 20(4):1015-1024
    65 P.C.Lemos, L.S.Serafim, M.M Santos, et al. Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: C-13labeling and in vivo nuclear magnetic resonance. Applied and Environmental Microbiology, 2003, 69(1):241-251
    66魏书斋,孙静,刘丽丽.活性污泥积累PHA的研究进展[J].水利科技. 2007, (8):29-32
    67 Michael Rodgers, Guangxue Wu. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal [J]. Bioresource Technology, 2010, 101(3):1049-1053
    68田婷.混合菌群合成聚羟基烷酸最佳工艺条件研究[D].哈尔滨:哈尔滨工业大学. 2009
    69 Luisa S. Serafim, Paulo C. Lemos, Maria G. E. Albuquerque, et al. Strategies for PHA production by mixed cultures and renewable waste materials [J]. Applied Microbiology and Biotechnology. 2008.81(4):615-628
    70 M Beccari, M Majone, P Massanisso, et al. A bulking sludge with high storage response selected under intermittent feeding [J]. Water Research.1998, 32(11):3403-3413
    71 JJ Beun, K Dirks, MCM Van Loosdrecht, et al.Poly-(hydroxybutyrate) metabolism in dynamically fed mixed microbial cultures [J]. Water Research, 2002, 36(5):1167-1180
    72 M.G.E. Albuquerque, S. Concas, S. Bengtsson, et al. Mixed culture polyhydroxyalkanoates production from sugar molasses: The use of a 2-stage CSTR system for culture selection [J]. Bioresource Technology. 2010, 101(18):7112-7122
    73 Lemos PC, Serafim LS, Reis MAM. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding [J]. Journal of Biotechnology. 2006, 122(2):226-238
    74 D.H. Rhu, W.H. Lee, J.Y. Kim, Polyhydroxyalkanoate (PHA) production from waste [J]. Water Science and Technology. 2003, 48(8):221-228
    75 Mamoru Oshiki, You Yang, Motoharu Onuki, et al. Occurrence of Polyhydroxyalkanoate as Temporal Carbon Storage Material in Activated Sludge during The Removal of Organic Pollutants [J]. Journal of Water and Environment Technology. 2008, 6(2): 77-83
    76 Simon Bengtsson. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates [J]. Biotechnology and Bioengineering. 2009,104(4):698-708
    77 Y Saito, T Soejima, T Tomozawa, et al. Production of biodegradable plastics from volatile acids using activated sludge [J]. Environmental. Systems Engineering., 1995, (52):145-154
    78 H Takabatake, H Satoh, T Mino. PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater. [J] Water Science and Technology, 2002, 45(12):119-126
    79 Maite Pijuan, Carles Casas, Juan Antonio Baeza. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities [J]. Process Biochemistry. 2009,44(1):97-105
    80 D.Dionisi, M.Majone, V.Papa,et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding[J]. Biotechnol Bioeng., 2004, 85(6):569-579
    81郑裕东,钟青华,马文石,等.厌氧-好氧驯化活性污泥生物合成PHA的研究[J].环境科学研究. 2001,14(2):41-44
    82 H.Satoh, T.Ueno, T.Mino, et al. Production of biodegradable plastics [J]. Polym Preprint., 1993, (42):981-986
    83 Jian Yu. Production of PHA from starchy wastewater via organic acids [J]. Journal of Biotechnology. 2001,86(2):105-112
    84曲波,刘俊新.溶解氧对活性污泥合成可生物降解塑料-PHB的影响[J].环境工程学报.2008,2(12):1585-1588
    85 Partha Chakravarty, Vasant Mhaisalkar, Tapan Chakrabarti. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system [J]. Bioresource Technology. 2010, 101(8):2896-2899
    86羊依金,李志章,张雪乔.微生物降解塑料的研究进展[J].化学研究与应用, 2006, 18(9):1015-1021
    87 M Majone, P Masanisso, A Carucci,et al.Influence of storage on kinetic selection to control aerobic filamentous bulking[J]. Water Science and Technology, 1996, 34(5-6):223-232
    88 L.S.Serafim, P.C Lemos, R Oliveira, et al. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions [J]. Biotechnology and Bioengineering. 2004, 87(2), 145-160
    89 Cai Mengmeng, Chua Hong, Zhao Qingliang,et al. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation[J]. Bioresource Technology.2009, 100(3):1399-1405
    90 D.Dionisi, M.Beccari, S.Gregorio, et al. Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate [J]. Journal of Chemical Technology and Biotechnology, 2005, 80(11):1306-1318
    91 Lin Dong-en, Zhang Yi-wei, Sun Dong-cheng,et al. Polyhydroxyalkanoates of Different StructureSynthesized by Activated Sludge with Acetateand Propionate as Sole Carbon Source [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni. 2003, (42):108-112
    92刘燕,行智强,陈银广等.聚烃基烷酸转化对强化生物除磷影响研究[J].环境科学. 2006, 27(6):1103-1106
    93蔡萌萌,蔡宏,单羿,等.活性污泥合成聚羟基烷酸酯代谢机制研究进展[J].环境污染与防治. 2008, 30(6):78-82
    94蔡萌萌,蔡宏,单羿,等.活性污泥合成聚羟基烷酸酯中单体组分的调控[J].化工学报. 2007, 58(10):2427-2431
    95 Songsri Kulpreecha, Atipol Boonruangthavorn, Boonyarit Meksiriporn, et al. Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium [J]. Journal of Bioscience and Bioengineering. 2009, 107(3):240-245
    96 H. Chua, P. H. F. Yu, L. Y. Ho. Coupling of waste water treatment with storage polymer production [J]. Applied Biochemistry and Biotechnology. 1997, 63-65(1): 627-635
    97 S. Chinwetkitvanich, C.W. Randall, T. Panswad. Effects of phosphorus limitation and temperature on PHA production in activated sludge [J]. Water Science and Technology 2004, 50(8):135-143
    98 M. Suresh Kumar, S.N. Mudliar, K.M.K. Reddy, et al. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant[J]. Bioresource Technology.2004, 95(3):327-330
    99 Yu Jian, Si.Yingtao. A dynamic study and modeling of the formation of polyhydroxyalkanoates combined with treatment of high strength wastewater [J]. Environment Science and Technology. 2001, 35(17):3584-3588
    100 ASM Chua, H Takabatake, H Satoh, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent [J]. Water Research.2003, 37(15):3602-3611
    101 Suzuki T, Tsygankov AA, Miyake J, et al. Accumulation of poly(3-hydroxybutyrate) by a non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides RV at different pH [J]. Biotenchnology Letters. 1995, 17(4):395-400
    102 Takabatake H, Department of Civil Engineering[J], Faculty of Engineering, Tohoku University, Sendai, Japan, 2000
    103 Marianna Villano, Mario Beccari, Davide Dionisi, et al. Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding[J]. Process Biochemistry. 2010,45(5):714-723
    104 Chundakkadu Krishna, Mark C. M. Van Loosdrecht. Effect of temperature on storage polymers and settleability of activated sludge [J]. Water Research. 1999, 33(10):2374-2382
    105杨青,贺青.聚羟基烷酸(PHA)的回收方法[J].工业微生物. 1999, 29(2):43-47
    106刘哲君,赵敏,潘俊波,等.从活性污泥中提取聚-β-羟基丁酸酯的方法和条件的研究[J].现代化工. 2009, 29(S2):214-217
    107 J. A. Ramsay, E. Berger, R. Voyer, et al. Extraction of poly-3-hydroxybutyrate using chlorinated solvents [J]. Biotechnology Techniques.1994,8(8):589-594
    108 P Furrer, S Panke, M Zinn. Efficient recovery of low endotoxin medium-chain-length poly ([R]-3-hydroxyalkanoate) from bacterial biomass [J]. Journal of Microbiological Methods. 2007, 69(1):206-213
    109 E Berger, BA Ramsay, JA Ramsay, et al. PHB recovery by hypochlorite digestion of non-PHB biomass [J], Biotechnology.Techniques, 1989, 3(4):227-232
    110 M.S. Divyashree, T.R. Shamala, N.K. Rastogi. Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate [J], Biotechnology and Bioprocess Engineering, 2009,14(4):482-489
    111 F M Kapritchkoff, A P Viotti, R C P Alli, et al. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha[J]. Journal of Biotechnology, 2006, 122(4):453-462
    112 Van Hee P, Elumbaring A C M R, Vander Lans R G J M,et al.Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation[J]. Journal of Colloid and Interface Science. 2006, 297(2):595-606
    113王琴,陈银广.活性污泥合成聚羟基烷酸(PHAs)的研究进展[J].环境科学与技术, 2007, 30(5):111-114
    114 L Shang, M Jiang, Zh Yun,et al. Mass production of mediumchain-length poly(3-hydroxyalkanoates) from hydrolyzed corn oil by fed-batch culture of Pseudomonas putida [J]. World Journal of Microbiology and Biotechnology, 2008, 24(12):2783-2787
    115 CSK Reddy, R Ghai, RVC Kalia. Polyhydroxyalkanoates: an overview [J]. Biore source Technology, 2003, 87(2): 137-146
    116 J.Choi, S. Lee. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation [J]. Applied.Microbiology.Biotechnology.1999, 51(1):13-21.
    117苑宏英,陈银广,周琪.污泥生物转化为VFAs及用于生物除磷的研究进展[J].工业水处理, 2006, 26(2):14-17
    118 Mohd Rafein Zakaria, Suraini Abd-Aziz,et al. Comamonas sp. EB172 isolated from digester treating palm oil mill effluent as potential polyhydroxyalkanoate (PHA) producer[J]. African Journal of Biotechnology 2008, 7(22):4118-4121
    119 J. Suave, E. C. Dall'Agnol, A. P. T. Pezzin, et al. Biodegradable microspheres of poly (3-hydroxybutyrate)/ poly(ε-caprolactone) loaded with malathion pesticide: Preparation, characterization, and in vitro controlled release testing[J]. Journal of Applied Polymer Science. 2010,117(6):3419-3427
    120 SQ Sun, Q Zhou, WJ Hou, et a1. Study onmechanism ofdifferent PHAs during heating by FrlR [J].Spectroscopy and Spectral Analysis, 2000,20(5):677-678
    121 G Tian, Q Wu, SQ Sun, et a1, Study of Thermal Melting Behavior of Microbial Polyhydroxyalkanontes Using Two-Dimensioual Fourier Transform Infrared FT-1R Correlation Spectroscopy[J]. Applied Spectroscopy, 2001,55(7):888-894
    122 Yu Daia, Lynette Lambertb, Zhiguo Yuan, et al., Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source [J]. Process Biochemistry, 2008,43(9):968-977
    123魏大巧,陈国强.聚羟基脂肪酸酯的鉴定及检测方法研究进展[J].云南化工,2007,34(4):83-86
    124 Yves Comeau, K.J.Hall, W.K.Oldham.Determination of Poly-?-Hydroxybutyrate and Poly-?-Hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography [J].Appl Environ Microbiol. 1988, 54(9): 2325-2327
    125薛华,李隆弟,郁鉴源,等.分析化学[M].北京:清华大学出版社.第二版.2001
    126聂剑初,吴国利,张翼伸,等.生物化学简明教程[M].北京:高等教育出版社.第三版.2003
    127张万明,王志明,陈开陆,等.蒽酮比色法测定马铃薯淀粉深加工工艺废液总糖含量的研究[J].光谱实验室, 2010(02):435-440
    128国家环保总局.水和废水监测分析方法[M].第四版(增补版).北京:中国环境科学出版社, 2006
    129王兰.环境微生物学实验方法与技术[M].北京:化学工业出版社, 2009.
    130马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002.
    131 Ben Rebah, F., Tyagi, R. D., Filali-Meknassi, et al. Bacterial productions of bioplastics in advances in water and wastewater treatment. 2004. American Society of Civil Engineers (ASCE), 42-71
    132郦和生,张春元,张伟.生产聚羟基丁酸酯(PHB)的菌种选育及发酵条件[J].石化技术, 1997,4(4):212-215
    133 SY Lee. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria [J]. Trends of Biotechnology. 1996(14):431-438
    134 AM Saunders, A Oehmen, LL Blackall. et al. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants [J]. Water Science and Technology. 2003;47(11):37-43
    135 Wen-Tso Liu, Kazunori Nakamura, Tomonori Matsuo,et al. Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors-Effect of P/C feeding ratio[J]. Water Research.1997.31(6):1430-1438
    136 T. Minoa, M. C. M. van Loosdrechtb, J. J. Heijnen. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research.1998,32(11):3193-3207
    137 RobertJ Seviour, TakashiMino, MotoharuOnuk.i Themicrobiology biological phosphorus removal in activated sludge systems [J]. FEMS Microbiology Reviews, 2003, 27(1): 99-127
    138彭永臻,刘智波,TakashiMINO.污水强化生物除磷的生化模型研究进展[J].中国给水排水.2006.22(4):1-5
    139彭科峰,曹立群,吴韶平. DGGE和T-RFLP在堆肥微生物群落结构研究中的应用[J].生物信息学2005(1):31-33
    140 J. Tiedje, B. Asuming, K. Nüsslein, et al. Opening the black box of soil microbial diversity [J]. Applied Soil Ecology. 1999,13(1):109-112
    141 B. Maidak, J R Cole, T. Lilburn. The RDP-II (ribosomal database project)[J]. Nucleic Acids Research, 2000,29(1):173-174
    142 Hesselmann, R.P.X., von Rummell, R., Resnick, S.M.,et al. Anaerobic metabolism of bacteria performing enhanced biological phosphate removal[J]. Water Research 2000, 34(14):3487-3494
    143 M Pijuan, A Oehmen,J A Baeza, et al. Characterising the biochemical activity of full-scale enhanced biological phosphorus removal systems: a comparison with metabolic models [J]. Biotechnology and Bioengineering, 2008, 99(1):170-179
    144 N Yagci, N Artan, EU Cokgor, et al. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions [J]. Biotechnology and Bioengineering 2003, 84(3):359-373
    145 Yan Zhou, Maite Pijuan, Raymond J.et al. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) [J]. Water Reserch. 2009,43(5):1330-1340
    146 Katja Johnson, Yang Jiang, Robbert Kleerebezem, et al. Enrichment of a Mixed Bacterial Culture with a High Polyhydroxyalkanoate Storage Capacity[J]. Biomacromolecules, 2009, 10 (4):670-676
    147戚以政,汪叔雄.生物反应动力学与反应器[M].第三版.北京:化学工业出版社.2007
    148 S Chinwetkitvanich, CW Randall, T Panswad. Temperature effects on PHA production using activated sludge biomass with nitrogen limitation. IWA conference on Environmental Biotechnology: Advancement on Water and Wastewater Application in the Tropics, December 9-10, 2003, Kuala Lumpur, Malaysia.
    149王凯军.活性污泥膨胀的机理与控制[M].北京,中国环境科学出版社,1992.
    150 YZ Peng, CD Gao, SY Wang. Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment [J] . Water Science and Technology , 2003 ,47 (11): 289-295
    151高春娣,彭永臻,王淑莹,等.氮缺乏引起的非丝状菌活性污泥膨胀[J].环境科学, 2001 ,22(6) :61-65
    152 Sang Yup Lee, Young Lee, Fulai Wang. Chiral compounds from bacterial polyesters: Sugars to plastics to fine chemicals [J]. Biotechnology and Bioengineering, 2000, 65(3):363-368
    153 Qun Ren, Andreas Grubelnik, Mirjam Hoerler, et al. Bacterial Poly(hydroxyalkanoates) as a Source of Chiral Hydroxyalkanoic Acids [J]. Biomacromolecules, 2005, 6(4):2290-2298
    154张自杰.排水工程(下册)[M],第四版.北京:中国建筑工业出版社.2000
    155宫曼丽,任南琪,李永峰,等.生物制氢反应器不同发酵类型产氢能力的比较[J].哈尔滨工业大学学报.2006,38(11):1826-1830
    156冯新华,龙世刚,汪志全,等.4种废塑料的燃烧动力学研究[J].安徽工业大学学报.2005,22(3):218-221
    157刘飞,曾猛,刘娜,等.土著PHA合成菌回注法提高活性污泥积累聚羟基脂肪酸酯能力[J].环境科学研究.2008,21(4):14-18
    158李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社.2008.79-80
    159 WF Hu. Synthesis of polyhydroxyalkanoates (PHAs) from excess activated sludge [D]. Hong Kong : The HongKong Polytechnic University, 2004
    160 D. Dionisi, V. Renzi, M. Majone, et al. Storage of subst rate mixtures by activated sludges under dynamic conditions in anoxic or aerobic environments [J]. Water Research , 2004 ,38(8):2196-2206
    161 Kousaku Murata, Toyofumi Miya, Hiroshi Gushima, et al. Cloning and amplification of a gene for glutathione synthetase in Escherichia coli B[J]. Agricultural and Biological Chemistry. 1983,47(6):1381-1383
    162 S.Laxuman, M. Nirupama. Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light–dark cycles, N and P status and carbon sources. 2005, (96):1304-1310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700