刺糖菌素产生菌的菌种选育及发酵条件优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色广谱生物杀虫剂刺糖菌素是由Saccharopolyspora spinosa经有氧发酵后的次级代谢产物,具有杀虫谱广,易降解,低残留,无抗药性,对人畜无害,环境污染少等特点。刺糖菌素在农牧业上有着广阔的应用前景,有望成为我国生物农药产业一个新的经济增长点,该产品的开发具有很好的经济效益和社会效益。本文进行了刺糖菌素产生菌Saccharopolyspora spinosa的菌种选育以及发酵工艺条件的优化,最后进行了10L罐小试。
     根据刺糖菌素的生物合成途径和代谢调控原理,运用紫外线、γ射线,硫酸二乙酯、氯化锂和微波等多种诱变因子进行菌种诱变,并结合耐前体突变株、耐自身自身终产物结构类似物突变株等理性化筛选,使Saccharopolyspora spinosa产刺糖菌素的能力不断提高,最后选育出了一株刺糖菌素优良菌株NS-1。菌株NS-1的发酵单位为97.83μg/ml,比出发菌株的发酵单位提高了254.71%。同时,本文还对菌株NS-1进行了遗传稳定性试验,结果表明该菌株遗传性能比较稳定。
     本文对发酵培养基以及培养条件进行了优化。考察了碳源、氮源,前体物质、微量元素等,最后对以上单因素进行了正交试验优化。培养条件主要进行了接种量、装量、pH、温度的优化。优化后的发酵工艺条件如下:发酵培养基为葡萄糖6.0%、麦芽糖3.0%、棉籽粉3.0%、鱼粉0.5%、玉米浆1.5%、NH_4Cl 0.1%、CoCl_20.003%、油酸甲酯1.0%、CaCO_3 0.5%,pH为7.0。接种量为10%、250mL三角瓶装量为30ml、30℃发酵72h后补加0.3%正丙醇,96h后温度变为28℃发酵。采用以上优化后的工艺条件进行了摇瓶间歇发酵,最终的发酵单位达到128.21μg/mL,较原始发酵工艺条件的发酵单位提高了31.05%。
     最后,本文采用选育出的刺糖菌素优良菌株NS-1和优化后的发酵条件进行了10L罐小试,得到发酵过程中菌体干重、还原糖、pH及spionsad等参数的变化曲线。在10L罐刺糖菌素的发酵单位达到66.21μg/mL,比培养的发酵单位低62μg/mL。
Spinosad, which was a novel microbial broad-spectrum insecticide, was secondary metabolites from the aerobic fermentation of a naturally occurring actinomycetes bacterium, Saccharopolyspora spinosad. Spinosad, which was composed of a mixture of two most active naturally occurring metabolites (spinosyns A and D), was effective on a wide variety of crops. Attributes of spinosad included: unique chemistry and mode of action, high levels of activity against economically important pests, a short half-life, degradation to natural building blocks, and large margins of safety for mammals, birds, fish and even most beneficial insects. In this dissertation, strain improvement, optimization of spinosad fermentation process and scale-up of fermentation processes in 10 L fermentor. were studied.
    According to the biosynthesis pathway and the metabolic regulation of spinosad, stram improvement was performed by mutation and rational screening to improve the productivity. Through treament by rational sceening and mutagens such as UV, DES, LiCl, r -ray and microwave etc, spinosad over-producing strain NS-1 was obtained. Productivity of strain NS-1 reached 97.83ug/mL, which was 254.71% higher than that of the original strain CT-20-I. Subculture test indicated that the hereditary character of strain NS-1 was stable.
    In this dissertation, the medium composition and the fermentation conditions for spinosad production were investigated. The optimal medium composition, which was obtained through single factor experiments and orthogonal design experiments, was as
    fbllows(g/L): glucose 0.6g, maltose 0.3g, cottonseed flour 0.3g, fish meal 0.05g, corn steep liquor 0.15g, NH4Cl 0.0lg, CoCl20.0003g, methyl oleate 0.1g, calcium carbonate 0.5g, precursor 0.3g (added at 72h for batch fermentation). The optimal fermentation conditions were as follows: initial pH valuer,of medium 7.0, the inoculum amount 10%, loading amount 30ml in 250ml shaking flask, culture temperature 30@ and after 96h at 28@. The productivity of the optimal fermentation
    
    
    condition reached 128.21ug/mL, which was increased by 31.05% compare to that of the original fermentation condition.
    Based on the above experimental data, tests in 10L fermentor were also carried out. The fermentation kinetics of spinosad over-producing strain NS-1 was studied in this dissertation. Compared with shake-flask fermentation in 10L fermentor, a mase of foam were produced, which were controlled by adding an antifoam agent. Finally, the scale-up of spinosad fermentation from shaking flask to 10L fermentor was realized successfully, and productivity of spinosad high-producing strain NS-1 in 10L fermentor reached 66.21 ug/mL which was decreased by 62ug/mL compare to that of the original fermentation condition .
引文
[1] 陆自强,汪世新,黄奔立.杀虫抗生素的发展概况与展望.现代农药,2002,1:28~32.
    [2] Egerton J R, Ostlind D A, Blair L S, Avermectins, new family of potent anthe-Imintic agents: efficacy of the Bla component, Antimicrob, Agents Chemother, 1981,15(3): 372.
    [3] 操继跃.埃维菌素类抗寄生虫药物药理学研究进展.中国兽药杂志,2000,34(3):47.
    [4] 吴国荃,孙诗敏,王金台等.生物农药阿维菌素.精细与专用化学品,2003,14:8~10.
    [5] Turner J R, Huber Mary L B, Broughton M C, et al. US Patent, 5,591,606(1997).
    [6] 吴霞.多杀菌素——以天然产物开发新农药的范例.世界农药,2001,23(1):24~28.
    [7] Thompson G, Hutchins S. Spinosa——a new class of fermentation derived insect agents. Pestic Outlook, 1999,10(1): 78~82.
    [8] 张随榜,张兴.生物农药的研究与应用.西北农业学报,2003,12(2):75~79.
    [9] 史卫国,徐之明.植物源农药的进展.农药科学与管理,1997,3:33~35.
    [10] Boeck L Dwaine, Chio H, Eaton TE, et al. Eur Pat Appl. EP 375 316, 1990.
    [11] Thompson G, Michel K. The discovery of Saccharopolyspors spinosa and a new class of insect products. Down to Earth, 1997,52(1):1~5.
    [12] Mynderse J R, Baker P J, Mabe J A, et al. PCT Int Appl. WO Patent, 9,420,518(1994).
    [13] Kirst H, Michel K. Discovery, esolation and structure elucidation of a family of structurally unique fermentation derived tetracyclic macrolides. Baker D,Fenyes J.Synthesis and Chem is try of Agrochemicals Ⅲ[M]. Washington, DC: American Chemical Society, 1992, 504:214~225.
    [14] Anon. Spinosad Technical Guide[M]. Dow Elaco,1996,25.
    [15] Kirst HA, Michel KH, Martin J, et al. A83543A-D, unique fermentation-derived tetraeyclic macrolides. Tetrahedron Letters, 1991, 32(37): 4839~4842.
    [16] Thomas C S, Gary D, Thompson H A, et al. Biological activity of the spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) Larvae, Entonmoiogieal Society of America, 1998(91): 1276~1679.
    [17] Gary D, Crouse T C, Sparks C V, et al. Chemistry and insecticide activity of the spinosyns. The Food-environment Change, 1998, 56: 158~160.
    [18] 陈小龙,郑裕国,沈寅初.农用抗生素刺糖菌素的研究进展.农药,2002,41(1):4~7.
    [19] 伍一军,冷欣夫.杀虫药剂的神经毒理学研究进展.昆虫学报,2003,46(3):382~389
    [20] Katsuya Kanesh. Development of Microbe Derived insecticide spinosad. 植物防疫(日文),2000, 54(9): 25~27.
    [21] Sparks T C, et al. Biological activity of the spinosyns, fermentation derived insect control agents on tabacco budworm (Lepidoptera: noctuidae) larvae. Journal of Econornic Entomology, 1985, 91:1227~1283.
    [22] Salgado V L. Studies on the Mode of Action of Spinosad: Insect Symptoms and Physiological Correlates. Pesticide Biochemistry and Physiology, 1998, 60 (2): 91~102.
    [23] Salgado V L, Sheers J J, Watson G B, et al. Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence on neural excitation. Pesticide Biochemistry and Physiology, 1998,60(2): 103~110
    
    
    [24] Narahashi T. Nerve membrane ion channels as the target site of insec-ticides. Min. Rev. Med. Chem., 2002,2(4): 419~432.
    [25] Crouse G D, Sparks T C, Schoonover J, et al. Recent advances in the chemistry of spinosyns. Pest Manag.Sci., 2001,57 (2): 177~185
    [26] Sparks T C,Crouse G D, Durst G. Natural products as insecticides:the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag. Sci., 2001,57(10): 896~905.
    [27] Liu N, Yue X. Insecticide resistance and cross-resistance in the housefly (Diptera: Muscidae). J. Econ. Entonrol., 2000,93 (4): 1269~1275
    [28] Kerns D. Control of lepidopterous larvae and leafminers in lettuce,1995.Arthrop Management Tests, 1996, 21(2): 117~118.
    [29] McLeod P. Evaluation of insecticides for control of corn earworm on snap bean, 1997. Arthrop Manag Tests, 1998, 23: 74~75
    [30] Stansly P A and Connor J M. Impact of insecticides alone and in rotation on tomato pinworm, leafminer and beneficial arthropods in staked tomato, 1997. Arthrop Manag Tests, 1998,23: 162~165.
    [31] Crouse G D, Sparks T C, Deamicis C V, et al. In: Brooks GT ed. Pesticide Chemistry and Bioscience: The Food-Environment Challenge, Cambridge: The Royal Society of Chemistry, 1999.155~166.
    [32] Thomas C, Anzeveno P B, Jacek C. The application of artificial neural network tò the identification of new spinosoids with improved biological activity toward larvae of heliothis virescens. Pecticide Biochemistry and Physiology, 2000, 67(3): 187~197.
    [33] 李姮,汪清民,黄润秋.多杀菌素的研究进展.农药学学报,2003,5(2):1~12
    [34] Peterson R. Photolytic degradation of formulated avermection: effect of pam inobenzoic acid (PABA) [M]. STP: ASTM Spec Tech Publ, 1996. 88~96.
    [35] Kirst H A. Pur Appl Chem, 1998, 70 (2): 335~338.
    [36] Waldron C, Madduri K, Crawford K. A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie Van Leeuwenhoek, 2000,78(3~4): 385~390
    [37] Waldron C, Xiatsushima P, Rosteck P R Jr, et al. Cloning and analysis of the spinosad biothetic gene cluster of Saccharopolyspora spinosa. Chemistry&Bioiogy, 2001, 8(5): 487~499
    [38] 苏建亚,沈晋良.多杀菌素的生物合成.中国生物工程杂志,2003,23(5):55~60.
    [39] 张部昌,赵志虎,马清钧.红霉素生物合成的分子生物学.生物技术通讯,2001,12(2):151~160
    [40] Cropp A, Chen S, Liu H, et al. Genetic approaches for controlling ratios of related polyketide products in fermentation processes .J Ind Mcrobiol Biotechnol,2001,27(6): 368~377
    [41] Ikeda H, Nonomiya T, Usami M, et al. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avernitils. Proc Natl Acad Sci, 1999,96:9509~9514
    [42] Schwecke T, Aparicio J F, Molnbr I,et al. The biosynthetic gene cluster for the polyketide
    
    immunosuppressant rapamycin. Proc Natl Acad Sci, 1995,92:7839~7843
    [43] Baltz R H, Crawford K P, Broughton MC, et al. Biosynthetic genes for spinosyn insecticide production. US Patent 6,274,350(2001).
    [44] Madduri K, Waldron C, Merlo D J, et al. Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in S. spinosa. J Bacter, 2001,183(19): 5632~5638
    [45] Madduri K, Waldron C, MAtsushima P, et al. Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa. J Ind Microbiol Biotechnol, 2001,27(6) :399~402
    [46] Marsden A F, Wilkinson B, Cortes J, et al. Engineering broader specificity into an antibiotic-producing polyketide synthase. Science, 1998,279:199~202.
    [47] Stassi D L, Kakavas S J, Reynolds K A, et al. Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci, 1998,95:7305~7309
    [48] Creemer L C, Kirst H A, Paschal J W. Conversion of spinosyn A and spinosyn D to their respective 9-and 17-pseudoaglycones and their aglycones. J Antibiot, 1998,51 (8): 795~800
    [49] Ruan X, Pereda A, Stassi D L, et al. Acyltransferase domain substitutions in erythromycin polyketide synthase yield novel erythromycin derivatives. J.Bacter, 1997,179:6416~6425.
    [50] Mertz E, Yao R. S. spinosad sp nov isolated form soil collected in a Sugar rum still. Int Sust Bacterial, 1990,40(1): 34~39.
    [51] West S D and Turner L G. Determination of spinosad and its metabolites in citrus crops and orange processed commodities by HPLC with UV detection. J. Agric.-Food Chem., 2000, 48: 366~372.
    [52] West S D and Turner L G. Determination of spinosad and its metabolites in meat, milk cream, and eggs by HPLC with UV detection. J. Agric. Food Chem., 1998, 46: 4620~4627.
    [53] West S D. Determination of the naturally derived insect control agent spinosad in cottonseed and processed commodities by highperformance liquid chromatography with ultraviolet detection. J. Agric. Food Chem., 1996, 44:3170~3177.
    [54] West S D. Determination of the naturally derived insect control agent spinosad and its metabolites in soil, sediment, and water by HPLC with UV detection. J. Agric. Food Chem., 1997, 45:3107~3113
    [55] Yeh L T, Schwedler, D A, Schelle GB, et al. Application of empore disk extraction for trace analysis of spinosad and metabolites in leafy vegetables, peppers, and tomatoes by HPLC with UV detection. J. Agric. Food Chem.,1997, 45: 1746~1751.
    [56] Lee M, Walt D R, Nugent P J. Agric Food Chem, 1999, 47: 2766~2770.
    [57] Carson W G and Trumhle J T. Effect of insecticides on celervinsects, 1995. Arthrop Manag Tests, 1997, 22:117
    [58] Palumbo J C. Evaluation of selective insecticides for control of lepidopterous larvae in lettuce. Arthrop Manag Test, 1997, 22:136
    [59] Riley D G. Evaluation of insecticide treatments on cabbage. Arthrop Manag Tests, 1998, 23:82.
    [60] Schuster D J. Management of insects on fresh market tomatoes, spring, 1996. Arthrop Manag
    
    Tests, 1997, 22:182
    [61] Walgenhach J F and Palmer C R. Control of lepidopterous insects on cabbage, 1996. Arthrop Manag Tests, 1997, 22:113
    [62] Webb S E. Control of pickleworm on squash with selective insecticides, 1997. Arthrop Manag Tests, 1998, 23:142~143
    [63] 潘登明,马艳,贾海庆.48%Spinosad浓溶剂防治棉铃虫试验研究.中国棉花,2001,28(1):15~16.
    [64] 林文彩,郭世俭,章金明,黄贵坤.菜喜和集琦虫螨克对小菜蛾生长发育、存活和生殖的影响.浙江农业学报,2001,13(3):152~156.
    [65] 张友军,王光锋,吴青君等.多杀菌素对不同发育阶段甜菜夜蛾的毒力及其体内超氧化物歧化酶、过氧化氢酶和过氧化物酶的影响.农药学学报,2003,5(3):31~38.
    [66] 王光峰,张友军,柏连阳等.多杀菌素对甜菜夜蛾多酚氧化酶和羧酸酯酶的影响.农药学学报,2003,5(2):40~46.
    [67] Thompson G D, Dutton R and Sparks T C. Spinosad a case study: an example from a natural products discovery programme. Pest Manag. Sci., 2000,56(g): 696~702.
    [68] Carson W, Trumble J. Effect of insecticides for control of leafminers on lima beans, 1997. Arthrop Management Tests, 1998, 23(1):74~75.
    [69] Linducka J, Ross M, Baumann D, et al. Foliar sprays to control ear-invading insects on sweet corn, 1997. Arthrop Manag Tests, 1998,23(1): 95~96
    [70] Saunders D. Fate of spinosad in the enviroment. Down to Earth, 1996, 52(1): 21~28.
    [71] Cleveland C B, Mayes M A, Cryer S A, 2002. An ecological risk assessment for spinosad use on cotton. Pest Manag. Sci., 58 (1): 70~84,
    [72] 李荣贵,王普,梅建凤,沈寅初.新型生物杀虫剂——刺糖菌素.微生物学通报,2003,30(1):77~81.
    [73] Schoonover J, Larson L. Laboratory activity of spinosad on nontarget beneficial arthropods. Arthrop Manag Tests, 1995, 20(5): 357.
    [74] Yano B L, Bond D M, Novilla M N, et al. Spinosad insecticide: subchronic and chronic toxicity and lack of carci-nogenicity in Fischer 344 rats. Toxicol. Sci., 2002,65(2): 288~298
    [75] Hantey T R Jr, Breslin W J, Quast J, et al. Evaluation of spinosad in a two-generation dietary reproduction study using Sprague-Dawley rats. Toxicol. Sci., 2002,67(1): 144~152.
    [76] Breslin W J, Marry M S, Vedula U V, et al. Developmental toxicity of Spinosad administered by gavage to C D rats and New Zealand white rabbits. Food. Chem. Toxicol., 2000,38(12): 1103~1112.
    [77] Stebbins K E, Bond D M, Novilla M N, Reasor M J. Spinosad insecticide: subchronic and chronic toxicity and lack of carcinogenicity in CD-1 mice. Toxicol. Sci., 2002,65 (2): 276~287
    [78] McLeod P, Diaz F J, Johnson D T. Toxicity, persistence, and efficacy of spinosad, chlorfenapyr, and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae). J. Econ. Entonrol., 2002,95 (2): 331~335
    [79] Peck S L, McQuate G T. Field tests of environmentally friendly malathion replacements to suppress wild Mediterranean fruit fly (Diptera: Tephritidae) populations. J. Econ.Entonrol.,
    
    2000,93(2):280~289.
    [80] 贾椒颍、穆国平等.果蔬中还原糖、蔗糖和淀粉的快速测定——3,5-二硝基水杨酸分光光度法.食品与发酵工业,1983,9(2):30~34.
    [81] 金志华,岑沛霖.替考拉宁产生菌TA_(2-2)组分高含量菌种的推理选育.中国抗生素杂志.2000,25(2):94~96.
    [82] 宋友礼.抗生素产生菌选育,见:王岳等主编.抗生素.北京:科学出版社,1988,177~224.社,1995,176~178
    [83] 施巧琴,吴松刚.工业微生物育种学.福建科学技术出版社,1991,44~49.
    [84] 刘颐屏.抗生素菌种选育的理论和技术.北京:中国医药科技出版社,1992.45
    [85] 沈阳药学院微生物教研室.微生物遗传与育种学.沈阳:沈阳药学院出版社,1992,291~299.
    [86] 张建勇,牛晋阳,陈贵斌等.新型抗生素AGPM产生菌藤黄灰链霉菌的诱变育种.微生物学通报,2003,30(2):2428.
    [87] 朱立元,刘瑞华.林可霉素高产菌种的选育.安徽医药.2001,5(2):89~90.
    [88] 齐秀兰,方常福,唐国新.妥布霉素产生菌诱变育种的研究.微生物学杂志,1995,15:9~13.
    [89] 金志华,张定丰,宋友礼等.螺旋霉素高产菌种的推理选育.中国抗生素杂志,1998,23(2),133~135.
    [90] 罗镜青.耐碳源分解代谢产物调节的螺旋霉素产生菌的理性化筛选.中国抗生素杂志,1989,14(4):243~246.
    [91] Fujisisawa etal. A family of r-determinants in Streptomyces spp. That specifies inducible resistance to macrolide, lieosamide and streptogramin type B antibiotics. J Bacteriol., 1981,146:621~623
    [92] Weisblum B etal., Trends in Antibiotics Research. Japan. Antibiotics Research Association. 1982, 73~78
    [93] Ochi K, Zhang D, Kawamoto S, et al. Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Mol. Gen. Genet., 1997,256:488~498.
    [94] 金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社,1999.
    [95] 李巧玲,李琳等.微波生物效应研究的现状及应用.生命科学.2001,13(3):126-128.
    [96] 梁明山,夏永,杨红.微波的生物效应——微波对小白鼠细胞核的影响.中国电子学会第四届全国微波应用学术会议论文集(上册).1989:146
    [97] 陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术.上海科学技术文献出版社,1995,244~249
    [98] 陶纯长.阿维菌素发酵工艺优化初步研究及其高产菌种定向选育[硕士学位论文]:上海.华东理工大学.2002
    [99] 熊忠贵.发酵工艺学原理.中国医药科技出版社.1995,104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700