果胶酶固定化载体的制备及固定化工艺、酶学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果胶酶是由黑曲霉经发酵精制而得的用于催化植物细胞间质(即果胶质)水解成半乳糖醛酸和果胶酸的一类酶,主要应用于果蔬汁饮料及果酒的榨汁和澄清,对分解果胶物质具有良好的作用。在我国的果汁果酒制造行业,果胶酶的加入可以提高水果蔬菜汁的出汁率及其稳定性,并防止果蔬汁后混浊的发生。但在实际的工业应用中,使用游离酶存在着酶用量大、生产成本高、精制困难等缺点,而固定化酶则可避免这些缺点,扩大应用范围,降低企业的生产成本。
     目前,各个研究机构及有关企业对于果胶酶固定化的研究已有较多的报道,但以磁性微球为载体固定果胶酶的还研究比较少。本论文以自制的壳聚糖磁性微球为载体,首先探讨制备载体的工艺参数;在成功获得载体的基础上,将果胶酶固定化,研究最适的固定化工艺条件,并研究固定化果胶酶的酶学特性。主要试验结果如下:
     1、本试验采用改良化学共沉淀法通过正交试验设计优化合成磁性Fe304纳米粒子的最佳条件,并将自制的纳米Fe304作为磁核用乳化交联法通过单因素及正交试验制备载体—磁性壳聚糖微球。自制磁核的最佳条件为:Fe2+与Fe3+之比为1:1.7(n/n)、pH值9-10、晶化时间0.5h、晶化温度80℃;自制磁性壳聚糖微球的最佳工艺参数为:壳聚糖浓度1.5%、油水相比例为4:1(mL/mL)、乳化剂用量2 mL、交联剂用量1.0 mL、反应温度50℃-70℃。
     2、利用扫描电子显微镜、透射电子显微镜、X-射线衍射仪、傅立叶变换红外光谱仪、激光粒度仪、紫外分光光度计、振动样品磁强计等分别对自制的磁核及微球的外貌形态、颗粒直径及粒度分布、内部结构和磁学特性等进行了表征。试验结果显示,自制的磁核—纳米级Fe304其粒度分布较窄,分散性也较好,实际测得的平均粒径为14.1nm,且具有良好的超顺磁性和晶体结构。自制的果胶酶固定化载体—磁性壳聚糖微球尺寸均匀、成球性较好,实测平均粒径在30μm左右,虽然自制微球具有凹凸面,但微球的骨架结构仍比较完整,也没有团聚现象;自制微球红外光谱特征官能团结构测定结果表明,Fe304粒子成功被壳聚糖材料包覆,且包埋前后的纳米Fe304粒子其晶体结构未改变;试验采用的分光光度法磁性测定结果显示,自制磁性微球磁响应性很强,是酶固定化的优良载体材料。
     3、以磁性壳聚糖微球为载体采用单因素试验确定了果胶酶固定化的最佳工艺参数:固定化时间6h、pH值4.0、加酶量1.25 mL、反应温度40℃,在此条件下固定化果胶酶的酶活回收率比较高为83%。
     4、对自制固定化果胶酶和游离果胶酶的酶学性质进行了比较,试验结果显示:固定化果胶酶最佳催化温度为60℃,比游离酶(其最佳温度为50℃)高10℃,温度耐受性提高,最佳pH值为4.0,比游离酶的范围稍宽(游离酶最佳pH值为3.5),且固定化酶重复使用六次仍能保持较高活性。
     5、以自制固定化果胶酶对苹果汁进行了初步应用研究,试验结果表明:固定化果胶酶用量58mg/L、酶解pH14.0、酶解温度60℃、酶解时间60min的条件下,固定化果胶酶对苹果汁澄清处理的效果较好,透光率可达88.7%以上,且果胶试验呈阴性。
Pectinase is one of enzymes to which degrade pectin into galacturonicacid, it was come from the fermentation of Aspergillus Niger. Pectinolytic enzyme was applicated for juice squeeze and clarification in industry of vegetable, fruit juice, wines and liqueurs to improve the yield and steadiness of juice mainly. Pectinase also be used to avoid the phenomenon of "after haze" in vegetable and fruit juice. But in the industry using of pectinase, dissociated enzymes have so many shortcomings, such as large enzyme's amount, high product cost, difficult refined. Those defects affect pectinase's application in food industry greatly. And then immobilized enzyme may avoid the above weakness in some degree. At the same time, immobilized enzyme can decrease product cost and enlarge the enzyme's utilization.
     There are some studying reports of pectinase immobilization at present in some enterprises and academic institution. But the study for magnetic chitosan microspheres support immobilized pectinase is few. In this paper, the magnetic chitosan microspheres support was prepared, and the conditions of preparation were discussed. On the basis of first studying, the pectinase was immobilized on the magnetic chitosan microspheres support. The optimal conditions of immobilization, characteristics of immobilized enzyme were mainly investigated. The experimental results were as follows:
     1、With better coprecipitation method, magnetic nanometer Fe3O4 particle was composed, and then using suspension cross-linking technique, the support (magnetic chitosan microspheres) were prepared. The optimal preparation conditions of nanometer Fe3O4 particle were as follow:Fe3+:Fe2+ is 1.7:1, pH 9-10, the temperature of crystallization 80℃, the crystallization time 0.5 h. The optimal preparation conditions of magnetic chitosan microspheres support through orthogonal experiment were as follow:chitosan concentration 1.5%, oil-water ratio 4:1, the amount of emulsifier 4 mL, the amount of crosslinker 1.0 mL, reaction temperature from 50℃to 70℃.
     2、The support and magnetic core appearance, diameter and size distribution, scrystal strueture and magnetie response properties were characterized by means of Scanning Electron Microscopy,Transmission Electron Microscopy, X-Ray Diffractometer, FT-IR Spectrometers, Ultraviolet Spectrophotometer, Laser Particle Sizer, Vibrating Sample Magnetometer. The results indicate that the magnetic Fe3O4 nanopartieles have narrow size-distribution and fine dispersion stability. Fe3O4 nanopartieles also have fine scrystal strueture and superparamagnetic, their average sizes achieve 14.1nm. The supports (magnetic chitosan microspheres) have fine dispersion and narrow size distribution, average size is about 30μm. Although the surface of magnetic chitosan microspheres presents concavo-convex and the hollows, the support has intact skeleton construeture and has no agglomeration. The FT-IR results of support indicate that the Fe3O4 particle was covered by the chitosan utterly and there is no change in Fe3O4 particle structure. The spectrophotometry results show that magnetic chitosan microspheres have fine magnetic response properties. It is a kind of good carrier of pectinolytic enzyme.immobilization.
     3、The optimal conditions of pectinase immobilization were investigated through single factor experiment using magnetic chitosan microspheres as supports. The optimum immobilizd conditions were:time 6 h, pH 4.0,40℃,1.25 mL pectniase. Using those optimal conditions, the immobilized pectinase was prepared and its activity recovery will get to the highest.
     4、The properties of immobilized pectinase and free pectinase were compared. The test results show that immobilized pectinase optimum reacting temperature was 60℃(the free enzyme's 50℃), the immobilization enzyme's thermal stability has increased. The optimum reacting pH of immobilized pectinase was 4.0(the free enzyme's pH 3.5). It indicated that immobilized pectinolytic enzyme had better pH tolerance, its reused times was six and its function is better than free pectinase.
     5、Self-made immobilized pectinase was applied in apple juice for clarity. The test results show that immobilized pectinase 58mg/L, enzymatic pH4.0, hydrolysis temperature 60℃, time 60min. Under those conditions, the light transmission rate of apple juice get up to 88.7%, and the pectin test was negative.
引文
[1]林新榜.多糖体的应用——果胶[J].食品工业月刊,1995,11:46-55.
    [2]王金应,马中国,宗灿华.果胶提取与应用[J].中国林副特产,2000,5(2):17-18.
    [3]Duan J Y.Carbohydrate Research[J].2003,338(12):1291-1297.
    [4]Duan J Y.Phytochemistry[J].2004,65:609-615.
    [5]田三德,任红涛.果胶生产技术工艺现状及发展前景[J].食品添加剂,2003,1:52-54.
    [6]刘邻渭.食品化学[M].北京:中国农业出版社,2000.
    [7]Ridley B L.Phytochemistry[J].2001,57(6):929-967.
    [8]Molecular Biology of The cell. http://www.enzymes.co.uk/answer24_pectinase.htm, Page created March 31,2001.
    [9]Open universiteit and Thames Polytemchnic. Biotechnological innovstions in Food Processing [M]. London:Butterworth-He inernan Ltd,1993.
    [10]吴卫华.加工[M].北京:中国轻工业出版社,2001.
    [11]曾祥奎,黄斌,于娟.浓缩苹果汁主要技术指标控制的研究[J].饮料工业,2002,5(1):19-30.
    [12]李选怀.澄清果蔬汁后混浊产生的原因及解决方法[J].饮料工业,1999,2(3):16-19.
    [13]许毅,周岩民,王恬等.果胶酶在饲料中的应用[J].中国饲料,2004(1):12-14.
    [14]王璋.食品酶学[M].北京:中国轻工业出版社,2001:168-169.
    [15]陈珊珊.以非磁化及磁化离子交换树脂为载体的果胶酶固定化研究[D].陕西:陕西师范大学,2006.
    [16]周晓云.酶技术[M].北京:石油工业出版社,1995:230-232.
    [17]Yamasaki,M. Pectic enzymes in the clarification of apple juice. Part 1:Study on the clarification reaction in a simplified model[J]. Agric.Biol.Chem,1964,28:779-787.
    [18]Endo, A. Studies on the enzymic clarification of apple juice [J]. Agric. Biol. Chem,1965,29: 129-136.
    [19]陈立阁,王陆玲.果胶酶和壳聚糖对菠萝汁澄清作用的比较研究[J].广州食品工业科技,2004,20(1):48-50.
    [20]杨军,赵学慧.果胶酶在胡萝卜汁加工中的应用[J].中国酿造,1996,6:24-27.
    [21]罗贵民.酶工程[M].北京:化学工业出版社,2002.
    [22]熊振平.酶工程[M].北京:化学工业出版社,1989.
    [23]郭杰炎.微生物酶[M].北京:科学出版社,1986.
    [24]张树政主编.酶制剂工业[M].北京:科学出版社,1998.
    [25]朱祥瑞,林蓉.家蚕丝素固定化果胶酶的研究[J].浙江农业大学学报,1998,24(1):74-78.
    [26]刘新民,林耀辉,陈移亮等.果胶酶固定化方法的研究[J].亚热带植物通讯,1995,24(2):10-15.
    [27]郭勇.酶的生产与应用[M].北京:化学工业出版社,2003.
    [28]张立武,徐嘻.固定化酶技术进展[J].成都科技大学学报,1989,47:109-126.
    [29]李树本.生物催化剂的固定化[J].分子催化,1987,1(2):120-130.
    [30]卓仁禧,罗毅,陶国良.固定化酶技术及其进展[J].离子交换与吸附,1994,5:447-452.
    [31]Woodward J.Immobilized Cells and Enzymes[M].Oxford:IRL Press,1985.
    [32]朱宝成.果胶酶生产菌原生质体再生及诱变育种[J].微生物学通报,1994,21(1):15-18.
    [33]刘海森.产果胶酶的菌种选育及发酵条件[J].微生物学报,1993,33(3):199-263.
    [34]靳晓红,王芳.离子交换树脂固定化果胶酶的实验研究[J].食品科学,1998,19(12):29-30.
    [35]王宏,仇农学.果胶酶的固定化[J].食品与发酵工业,2005,31(2):70-72.
    [36]张应玖,金成日,王红梅,等.果胶酶的固定化研究[J].生物技术,1996,6(2):26-29.
    [37]张来群,高天慧.尼龙网固定化果胶酶的制备及其性质研究[J].生物化学杂质,1992,8(4):462-466.
    [38]Dsouza S F, Godbole S S. Immobilization of invertase on rice husk using polyethylenimine [J].Journal of Biochemical Biophysical Methods,2002,52:59-62.
    [39]YoshimotoT.,Biophy.Res.Comm[J],1987,145(2):908.
    [40]Arica M Yakup, Handan Yavuz, et al.[J].Journal of Molecular Catalysis B:Enzymat-ic,2000,11:127-138.
    [41]安小宁,苏致兴等.高磁性壳聚糖微粒的制备与应用[J].兰州大学学报,2007,37(2):100-104.
    [42]陈捷,薛博等.新型磁性亲和载体的制备及其对溶菌酶的吸附[J].天津大学学报,2001,34(1):103-106.
    [43]曾力希.新型磁性高分子多孔复合微球的制备及在固定化酶上的应用研究[D].湖南:湖南师范大学,2006.
    [44]周记宁,江体乾.甲壳素/壳聚糖及其衍生物在固定化酶中的应用[J].化工新型材料,1998,5:19-22.
    [45]蒋挺大.甲壳素[M].北京:化学工业出版社,2003.
    [46]陈峰,谭炯,杨学军.壳聚糖及其衍生物的恶应用[J].西南民族学院学报,2002:28 (1)40-44.
    [47]黄雅钦,黄明智.壳聚糖及其衍生物作为固定化蛋白酶的载体[J].现代化工,2001,21(2):20-23.
    [48]杜予民.甲壳素研究进展与应用田.精细与专用化学品,2000,(14):3-6.
    [49]黎群,徐新颜等.丝素作为固相酶载体的研究[J].安徽农业大学学报,1996,23(1):47-49.
    [50]黄晨,徐新颜等.丝素膜作为固定化酶载体的研究—丝素膜固定化青霉素酰化酶性质的研究[J].丝绸,1996,8:13-15.
    [51]纪平雄,侯瑶等.丝素-壳聚糖合金膜固定化超氧化物歧化酶的研究[J].华南农业大学学报,2003,24(2):51-53.
    [52]龚彦铭,曾睿等.海藻酸钙负载胰酶微球的研究[J].中国皮革,2009,38(15):16-19.
    [53]肖海军,贺筱蓉.固定化酶及其应用研究进展[J].生物学通报,2001,36(7):9-10.
    [54]曲红波,丛威等.多孔醋酸纤维素球形载体固定化糖化酶的研究[J].1998,25(2):155-158.
    [55]钱军民,张兴等.酶固定化载体材料研究新进展[J].化工新型材料,2002,30(10):20-24.
    [56]黄家贤,霍岩丽等.含环碳酸酯基固定化酶载体的合成及其性能研究[J].中国生物化学与分子生物学报,2001,17(3):376-380.
    [57]李娜.基于嵌段共聚物的银纳米复合材料及果胶酶固定化研究[D].陕西:陕西师范大学,2009.
    [58]刘敬肖,曾淼等. SiO2气凝胶/壳聚糖复合药物载体材料的制备和表征[J].功能材料,2007,38(9):1527-1530.
    [59]王慧丽,王化军等.磁铁矿树脂复合材料作为流化床载体的应用[J].矿产综合利用,2006,3:25-26.
    [60]张延武,范宏等.复合载体法制备聚丙烯-蒙脱土复合材料[J].高校化学工程学报,2005,19(1):124-128.
    [61]李艳丽.磁性高分子微球的制备、表征及其用于固定化酶的性能研究[D].陕西:陕西师范大学,2008.
    [62]程艳玲,马榴强,李若慧.聚苯乙烯-丙烯酸磁性高分子微球的制备[J].北京联合大学学报,2007,21(4):82-84.
    [63]赵吉丽,尹荣.Fe3O4/聚苯乙烯磁性复合微球的制备与应用前景[J].高分子材料科学与工程,2009,25(10):109-112.
    [64]李鸿玉,厉重先等.磁性壳聚糖微球固定化果胶酶的研究[J].食品科学,2008,28(9):399-403.
    [65]高道江,王建华.Fe304超微磁性的制备[J].四川师范大学学报(自然科学版),1997, 20(6):94-97.
    [66]黄可龙,陈洁等.磁性Fe304壳聚糖的化学修饰及包覆机理研究[J].无机化学学报,2007(23):1491-1495.
    [67]赵原壁.靶向药物载体-壳聚糖磁性微球的制备和性能研究[D].江西:南昌大学,2007.
    [68]高振红.磁性壳聚糖复合微球固定化果胶酶及反应动力学研究[D].陕西:西北农林科技大学,2007.
    [69]宁青菊,谈国强,史永胜.无机材料物理性能[M].北京:化学工业出版社,2006.232-242.
    [70]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988.434-43.
    [71]ComellMR, Schwertmann U. The Iron Oxides[M].New York:Cambridge Press,1996.127-135.
    [72]李和平,阮建明等.磁性壳聚糖纳米粒子的制备及表征[J].中南大学学报(自然科学版),2004,35(2):175-179.
    [73]Cupta K C, Ravi Kumar M N V. Drug release behavior of beads and microgranules of chitosan[J].Biomaterials,2000,21 (11):1115-1119.
    [74]李和平,阮建明等.磁性壳聚糖纳米粒子的制备及表征[J].中南大学学报(自然科学版),2004,35(2):175-179.
    [75]王燕,张凤宝等.大孔阴离子树脂DEAE-EH/固定化氨基酰化酶的研究[J].离子交换与吸附,2005,21(3):245-254
    [76]张艳,江波,陈超.离子交换树脂固定果糖转移酶[J].无锡轻工大学学报,200,423(4):60-64.
    [77]郭勇,酶工程(第二版)[M],北京:科学出版社,2004:22.
    [78]陈盛,黄智跃,刘艳如.壳聚糖固定化纤维素酶的研究[J].生物化学与生物物理进展,1996,23(3):250-254.
    [79]陈辉,张剑波等.壳聚糖固定化云芝漆酶的制备及特性[J].北京大学学报(自).2006,42(2):254-255.
    [80]邱广亮,李咏兰.磁性琼脂糖复合微球固定化纤维素酶的研究[J].精细化工,2000,17(2):115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700