短乳杆菌CCTCCM208054生物转化制备γ-氨基丁酸及其GAD系统关键基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸是一种非蛋白质组成的天然氨基酸,广泛存在于自然界。γ-氨基丁酸是哺乳动物中枢神经系统的一种主要抑制性递质,具有多种生理功能,可作为生物活性因子应用于食品、医药和饲料工业。我国己批准γ-氨基丁酸作为新资源食品用于食品生产加工。本论文就高产γ-氨基丁酸乳酸菌的分离鉴定,Y-氨基丁酸的检测方法,发酵工艺的建立优化,产物的分离纯化,以及关键基因分析进行了较深入的研究,主要结果如下。
     1.建立了预染纸色谱方法用于氨基酸的高通量定性分析,预染纸色谱-分光光度法用于γ-氨基丁酸的高通量定量。预染纸色谱的操作方法为:滤纸在含茚三酮的展开剂(正丁醇:冰乙酸:水=5:3:2,v/v/v)中展开后,直接加热显色。预染纸色谱能将谷氨酸和γ-氨基丁酸完全分开,氨基酸斑点致密,避免了传统纸色谱的拖尾和重叠现象。优化了影响γ-氨基丁酸与茚三酮显色的重要因素如茚三酮浓度、显色温度、显色时间和Cu2+浓度等,使显色反应完全、生色基团稳定。优化上述因素后,将预染纸色谱偶联分光光度法用于γ-氨基丁酸的定量,实验条件为:准确吸取2μL样品点样,色谱纸在含1.2%茚三酮的展开剂中展开后,70℃显色80min,将γ-氨基丁酸-茚三酮斑点从色谱纸上剪下,置于5mL洗脱液(75%乙醇:0.6%CuS04·5H20=38:2,v/v)中,40℃50rpm震荡洗脱60min,测定洗脱液在512nm处的光吸收值。结果表明,方法在0.50~20.00g/L的浓度范围内线性关系良好(R2=0.998),相对标准偏差RSD<2.64%,回收率102.7~103.9%。利用预染纸色谱-分光光度法和HPLC同时测定样品的GABA浓度,两种方法的测定结果无显著性差异,表明所建立的方法可用于Y-氨基丁酸的定量。
     2.从泡菜中分离到高产γ-氨基丁酸的短乳杆菌NCL912。利用纸色谱初筛、HPLC复筛,从1000余株分离自泡菜样品的乳酸菌中筛选到23株产γ-氨基丁酸的疑是细菌,其中菌株NCL912的产量最高(15.37g/L)。经LC-MS测定,NCL912转化产物的分子量与γ-氨基丁酸标准品完全一致。上述结果表明,NCL912确实能转化谷氨酸,且转化产物为Y-氨基丁酸。根据表型特征、生理生化特性和16SrDNA全序列比对,鉴定NCL912为短乳杆菌(Lactobacillus brevis)。该菌现保藏于中国典型培养物保藏中心,保藏编号为CCTCCM208054(=NCL912)。
     3.设计并优化了Lactobacillus brevis CCTCCM208054产Y-氨基丁酸的发酵培养基。用单次单因子方法筛选到影响γ-氨基丁酸合成的四个重要因子为葡萄糖、大豆蛋白胨、Tween-80和MnSO4·4H2O,并确定了各重要因子的合适浓度范围。然后利用响应面方法对重要因子进行分析,确定了四个因子的最佳水平,分别为55.25g/L、30.25g/L、1.38mL/L和0.0061g/L。在各因子的最佳水平条件下,模型预测γ-氨基丁酸产量为36.06g/L,验证实验中实测值为35.66g/L,二者基本一致。优化发酵培养基后,CCTCCM208054的γ-氨基丁酸产量比优化前提高了130%。
     4.考察了5’-磷酸吡哆醛、温度、pH和初始谷氨酸钠浓度对CCTCCM208054生长和合成γ-氨基丁酸的影响。5’-磷酸吡哆醛对细胞生长和γ-氨基丁酸合成没有影响;温度、pH和初始谷氨酸钠浓度则有重要影响,最佳水平分别为30~35℃、5.0和0.25~0.50M。在此基础上,建立了CCTCCM208054合成γ-氨基丁酸的补料分批发酵工艺如下。种子培养基(g/L):葡萄糖50,大豆蛋白胨25,MnSO4·4H2O0.01,Tween-802mL/L,MSG0.5M,pH5.0;发酵培养基除葡萄糖为35g/L、MSG为0.4M外,其余成分与种子培养基相同;CCTCCM208054在种子培养基中32℃培养约10h(A600=4.0~6.0)作为种子液;补料分批发酵的具体参数为:发酵培养基3L,接种量10%(v/v),培养温度32℃,搅拌速度100rpm,发酵周期48h,12h和24h时分别补入280g和112gMSG,整个过程用5M H28O4控制pH5.0。发酵48h时,发酵液中γ-氨基丁酸浓度达到102.78±5.30g/L,无谷氨酸钠和葡萄糖残留。
     5.通过离心、活性炭脱色、70%乙醇脱盐、离子交换色谱精制和乙醇结晶的方法,从发酵液中分离纯化γ-氨基丁酸。产品回收率约为50%;产品纯度达98.66±2.36%。
     6.克隆到了CCTCCM208054的gadA及其侧翼序列,从上游至下游依次为:乙酰转移酶基因(act)、PgadR、gadR、Pgad、gadC、gadA和谷氨酰-tRNA合成酶基因(gts),与Lactobacillus brevis ATCC367中相应的基因结构类似,但ATCC367的PgadR上游为NADPH-醌还原酶相关的锌依赖氧化还原酶基因。CCTCCM208054的gadR、gadC、gadA与ATCC367的同源性分别为66%、79%、79%,编码蛋白的同源性分别为66%、91%、91%;CCTCCM208054的act与gadR的间隔区、gadR与gadC的间隔区、gadC与gadA的间隔区长度分别为278、210、59bp,而ATCC367相应的间隔区长度分别为270、193、55bp;两株菌的上述间隔区的同源性分别为43%、58%、62%。CCTCCM208054的gadA和gadC的间隔区或其附近序列中不存在任何转录信号,表明gadCA可能形成操纵子结构。不能直接扩增到CCTCCM208054的gadB,但扩增到了其醛酮还原酶基因(akr)(ATCC367的akr距gadB仅1003bp),往CCTCCM208054的akr下游步移了3027bp也未发现gadB,提示CCTCCM208054中可能没有gadB。
     7.利用实时荧光定量PCR研究了添加与不添加MSG的条件下,CCTCCM208054的gadA、gadC和gadR在不同培养时期的转录情况。MSG可以诱导三个基因表达;gadC和gadA的转录量一致;与Lc. Lactis的gadR为组成型表达不同,CCTCCM208054的gadR和gadCA同步转录,且转录量大幅高于gadA和gadC,因时期不同为后者的14~156倍。上述结果表明,CCTCCM208054可能通过以下三个方面实现了高产GABA:(1)可能通过优化GAD系统的功能基因和调控序列,提高了gadCA的转录量以及GadA和GadC的活性;(2)可能通过gadCA组成操纵子结构实现了gadC和gadA同步表达,使脱羧反应和氨基酸运送相协调;(3)可能通过gadR的高表达保障了gadCA正常转录。
Gamma-aminobutyric acid (GABA) is a naturally non-protein acid that is widely distributed in nature. GABA acts in animals as a major inhibitory neurotransmitter, and has several important physiological functions and the potential as a bioactive component in foods, pharmaceuticals and feeds. GABA has beeen approved as a new resource food for food processing in China. This dissertation was focused on the bioconversion of GABA with lactic acid bacteria (LAB), including the isolation and identification of a high-yielding GABA producer; the methods for the analysis of GABA; the establishment and optimization of fermentation process for GABA production; the isolation and purification of GABA; and the analysis of GAD system key genes in CCTCCM208054. The main results are as follows.
     1. Pre-staining paper chromatography was developed for qualitative analysis of amino acids. Pre-staining paper chromatography-vis-spectrophotometry was developed for quantitative analysis of GABA. Operating conditions for pre-staining paper chromatography were as follows:the chromatography paper was developed in a developing solvent (n-butanol:acetic acid:water=5:3:2, v/v/v) containing ninhydrin, then the paper was directly dried for color yield. Glutamate and GABA were completely separated with condense spots in the pre-staining paper chromatography while the spots in classical method were partially overlapped and with long tails. The effects of ninhydrin concentration, color temperature and time on the color yield in the ninhydrin reaction, and the effect of Cu2+concentration on the stability of GABA-ninhydrin compound were optimized. The optimized pre-staining paper chromatography coupled with vis-spectrophotometry could be applied to gamma-aminobutyric acid quantification as follows. Appropriate2μL of samples were spotted onto the chromatography paper. The paper was developed at30℃with n-butanol-acetic acid-water (5:3:2) containing1.2%of ninhydrin. After development, the paper was directly heated for color yield at70℃for80min. Then the GABA-ninhydrin spots were cut out from the paper and were extracted with5.0mL eluent (75%ethanol:0.6%CuSO4·5H2O=38:2,v/v) at40℃50rpm for60min. The absorptions were read in a UV-vis spectrophotometer at512nm. The results indicated that the linear range of the developed method was from0.5to20.0mg/mL. Furthermore, an excellent correlation coefficient was observed with an R2=0.998. The method is accurate (RSD<2.64%), and has good recoveries (102.7-103.9%). The concentrations of GABA determined by the current method and HPLC were quite close.
     2. A high GABA-producing strain, Lactobacillus brevis NCL912was isolated from Chinese traditional paocai. More than1000strains of lactic acid bacteria from paocai samples were screened by the ability in production of GABA, analysed with paper chromatography and HPLC, and23suspicious bacteria were obtained. Among them, strain NCL912exhibited the highest conversion ability (15.37g/L). The molecular weight of the suspicious product was almost the same to that of GABA standard determined by LC-MS. It showed that strain NCL912could indeed convert glutamate to GABA. Strain NCL912was identified as Lactobacillus brevis according to its phenotye, physiological and biochemical characteristics and full16S rNDA sequence alignment. This strain has been deposited in China Center for Type Culture Collection with the accession number CCTCCM208054(=NCL912).
     3. Fermentation medium for the production of GABA by CCTCCM208054was optimized. Single-dimensional search method was first adopted to select the key factors that impact the GABA production to preliminarily determine the suitable concentration ranges of the key factors. Then response surface methodology was applied to analyze the optimal contents of the key factors glucose, soya peptone, Tween-80and MnSO4·4H2O, and their optimal levels were55.25g/L,30.25g/L,1.38mL/L and0.0061g/L, respectively. The production of GABA was predicted as36.06g/L under the optimized conditions with this model. While the measured GABA content was35.66g/L in the verification test, which was basically identical with the predicted value. GABA production of CCTCCM208054in optimized medium was130%higher than that in the initial medium.
     4. The impacts of pyridoxal-5'-phosphate, pH, temperature and initial glutamate concentration on the GABA production and cell growth of CCTCCM208054were investigated. Pyridoxal-5'-phosphate did not affect the cell growth and GABA production of CCTCCM208054. Temperature, pH and initial glutamate concentration had significant effects on the cell growth and GABA production of CCTCCM208054. The optimal temperature, pH and initial glutamate concentration were30~35℃,5.0and0.25~0.50M. According to the data obtained in the above, a fed-batch fermentation process was developed to produce GABA as follows.The seed medium was composed of (g/L):glucose,50; soya peptone,25; MnSO4·4H2O,0.01; L-glutamate,0.15M; and Tween80,2mL/L; pH5.0. The fermentation medium was the same to the seed medium except for glucose50g/L and glutamate0.4M. CCTCCM208054was cultured in the seed medium at32℃for about10h till A600between4.0and6.0and then used for seed culture inoculation. The specific fed-batch fermentation parameters were:fermentation medium3L, seed culture300mL, temperature32℃, stirring speed100rpm, fermentation period48h,280g and112g glutamate were supplemented into the bioreactor at12h and24h, respectively. pH value of the fermentation broth was controlled at5.0with5M H2SO4during the whole process. The GABA concentration reached102.78±5.30g/L while no glutamate and glucose remained at48h.
     5. Centrifugation, activated carbon decoloration,70%ethanol desalination, refining by ion exchange chromatography and crystallization from ethanol were successively conducted for the purification GABA from the fermented broth. The recovery rate for the whole purification process was about50%. The purified product displayed a single spot in TLC chromatogram. Its purity reached98.66±2.36%through HPLC determination.
     6. gadA and its flanking region in CCTCCM208054was cloned. Gene order of the cloned region is (from upstream to downstream):acetyltransferase gene(act), PgadR, gadR, Pgad, gadC, gadA and glutamyl-tRNA synthetase gene (gts). This is almost the same to that in Lactobacillus brevis ATCC367. However, NADPH:quinone reductase related Zn-dependent oxidoreductase gene is located immediately upstream of PgadR in ATCC367. The homologous coefficients of gadR, gadC and gadA in CCTCCM208054with those in ATCC367are66%,79%and79%, respectively; and those of the encoded proteins are66%,91%and91%, respectively. Intergenic regions of between act and gadR, gadR and gadC, and gadC and gadA are278,210and59bp, respectively in CCTCCM208054, while they are270,193, and55bp, respectively in ATCC367. In the two microbes, the homologous coefficients of the above intergenic regions are43%,58%and62%, respectively. No possible transcription signals could be identified in or near the59bp intergenic region between gadA and gadC. We could not clone gadB by using primer pairs for direct amplification it. We amplified aldo-keto reductase gene (akr) and walked into downstream of akr for3027bp but did not find gadB although it locates downstream only1003bp of akr in ATCC367. This suggests that CCTCCM208054maybe contain no gadB.
     7. Real-time fluorescence quantitative PCR was applied to analyze the transcriptional levels of gadA, gadC and gadR in CCTCCM208054during the fermentation process in the fermentation media supplemented with or without glutamate. The results showed that glutamate induced their expression. The transcriptional level of gadC is identical to that of gadA. Different from constitutive transcription of gadR in Lactococcus lactis, transcription of gadR in CCTCCM208054is synchronous with gadCA, and its transcriptional level is14-156times of that of gadCA. Sequence analysis and quantitative PCR results suggested that gadCA maybe form an operon structure. The high GABA-producing ability of CCTCCM208054maybe derived from three reasons:first, transcriptional level of gadCA and activity of the enzymes maybe enhanced via optimizing functional gene and regulatory sequences of GAD system; second, the synchronous expression of gadC and gadA via forming an operon is conducive to coordinating the decarboxylation and antiport; third, high expression of gadR guarantees normal transcription of gadCA.
引文
1. Erlander MG, Tobin AJ. The Structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochemical Research 1991,16(3):215-226.
    2. Defelipe J. Neocortical neuronal diversity:chemical heterogeneity rvealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cerebral Cortex 1993,3(4):273-289.
    3. Horie H, Rechnitz GA. Enzymatic flow-injection determination of gamma-aminobutyric acid. Analytical Letters 1995,28(2):259-266.
    4. Defeudis F. Gamma-aminobutyric acid and cardiovascular function. Experientia 1983,39(8): 845-849.
    5. Sved J, Sved A. Cardiovascular responses elicited by gamma-aminobutyric acid in the nucleus tractus solitarius:evidence for action at the GABAB receptor. Neuropharmacology 1989,28(5): 515-520.
    6. Garza RD, Zorick T, Heinzerling K, Nusinowitz S, London E, Shoptaw S, Moody D, Newton T. The cardiovascular and subjective effects of methamphetamine combined with y-vinyl-y-aminobutyric acid (GVG) in non-treatment seeking methamphetamine-dependent volunteers. Pharmacology Biochemistry and Behavior 2009,94(1):186-193.
    7. Minuk G. Gamma-aminobutyric acid and the liver. Digestive Diseases 1993,11(1):45-54.
    8. Ozkan Y, Yilmaz O, Tuzcu M, Murat G, Guvenc M, Ozturk A, Sahin K. Effects of dietary taurine and gamma-aminobutyric acid on the steroil CoA desaturase and delta 6,5 desaturase enzyme activities in liver tissues of rats. Journal of Animal and Veterinary Advances 2008,7(11): 1450-1457.
    9. Lewis R, Mabry J, Polisar J, Eagen K, Ganem B, Hess G. Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 2010,49(23):4841-4851.
    10. Ben-Ari Y, Holmes G. The multiple facets of gamma-aminobutyric acid dysfunction in epilepsy. Current Opinion in Neurology 2005,18(2):141-145.
    11. Lu W, Inman M. Gamma-aminobutyric acid nurtures allergic asthma. Clinical and Experimental Allergy 2009,39(7):956-961.
    12. Gao S, Bao A. Corticotropin-releasing hormone, glutamate, and gamma-aminobutyric acid in depression. Neuroscientist 2011,17(1):124-144.
    13. End K, Gamel-Didelon K, Jung H, Tolnay M, Ludecke D, Gratzl M, Mayerhofer A. Receptors and sites of synthesis and storage of gamma-aminobutyric acid in human pituitary glands and in growth hormone adenomas. American Journal of Clinical Pathology 2005,124(4):550-558.
    14. Shi Q, Yuan Y, Roldan E. Gamma-aminobutyric acid (GABA) induces the acrosome reaction in human spermatozoa. Molecular Human Reproduction 1997,3(8):677-683.
    15. Murashima Y, Kato T. Distribution of gamma-aminobutyric acid and glutamate-decarboxylase in the layers of rat oviduct. Journal ofNeurochemistry 1986,46(1):166-172.
    16. Roldan E, Murase T, Shi Q. Exocytosis in spermatozoa in response to progesterone and zona-pellucida. Science 1994,266(5190):1578-1581.
    17. Knapp D, Overstreet D, Breese G. Modulation of ethanol withdrawal-induced anxiety-like behavior during later withdrawals by treatment of early withdrawals with benzodiazepine/gamma-aminobutyric acid ligands. Alcoholism:Clinical and Experimental Research 2005,29(4):553-563.
    18. Sajdyk T, Shekhar A. Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acid, receptor blockade in the basolateral amygdala of rats. Journal of Pharmacology and Experimental Therapeutics 1997,283(2):969-977.
    19. Al-Wadei HAN, Plummer HK, Ullah MF, Unger B, Brody JR, Schuller HM. Social stress promotes and gamma-aminobutyric acid inhibits tumor growth in mouse models of non-small cell lung cancer. Cancer Prevention Research 2012,5(2):189-196
    20. Wong CG, Bottiglieri T, Snead OC,3rd. GABA, gamma-hydroxybutyric acid, and neurological disease. Annals of Neurology 2003,54(S6):3-12.
    21. Adeghate E, Ponery AS. GABA in the endocrine pancreas:localization and function in normal and diabetic rats. Tissue Cell 2002,34(1):1-6.
    22. Hagiwara H, Seki T, Ariga T. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Bioscience Biotechnology and Biochemistyr 2004,68(2):444-447.
    23. Tujioka K, Ohsumi M, Horie K, Kim M, Hayase K, Yokogoshi H. Dietary gamma-aminobutyric acid affects the brain protein synthesis rate in ovariectomized female rats. Journal of Nutritional Science and Vitaminology 2009,55(1):75-80.
    24. Schuller HM, Al-Wadei HAN, Majidi M. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis 2008,29(10):1979-1985.
    25. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. British Journal of Nutrition 2004,92(3): 411-417.
    26. Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011,60(5):799-808.
    27. Chuang CY, Shi YC, You HP, Lo YH, Pan TM. Antidepressant eeffect of GABA-rich Monascus-fermented product on forced swimming rat model. Journal of Agricultural and Food Chemistry 2011,59(7):3027-3034.
    28. Nasreen Z, Jameel T, Hasan A, Parveen N, Sadasivudu B. Glutamate decarboxylase and GABA aminotransferase levels in different regions of rat brain on the onset of leptazol induced convulsions. Neurochemical Research 2012,37(1):202-204.
    29. Seidl R, Cairns N, Singewald N, Kaehler ST, Lubec G. Differences between GABA levels in Alzheimer's disease and Down syndrome with Alzheimer-like neuropathology. Naunyn-Schmiedebergs Archives of Pharmacology 2001,363(2):139-145.
    30.胡家澄,邹晓庭,赵文静,曹德瑞,董金格.γ-氨基丁酸对生长肥育猪生长性能、血清生化指标及HPA、HPT轴激素分泌的影响.动物营养学报2009,21(2):226~231.
    31. Zhang M, Zou X, Li H, Dong X, Zhao W. Effect of dietary gamma-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens Animal Science Journal 2012,83(2):141-147.
    32.魏智清,杨涓,邱小琮,马强,贾志丽GABA、牛磺酸及枸杞子水浸液对青锵抗缺氧能力的影响.水利渔业2006,26(2):1-3.
    33. Rizzello CG, Cassone A, Di Cagno R, Gobbetti M. Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. Journal of Agricultural and Food Chemistry 2008,56(16):6936-6943.
    34. Anand R, Geffen Y, Vasile D, Dan I. An open-label tolerability study of BL-1020 antipsychotic:a novel gamma-aminobutyric acid ester of perphenazine. Clinical Neuropharmacology 2010,33(6): 297-302.
    35. Amato RJ, Lewis PB, He HB, Winsauer PJ. Effects of positive and negative modulators of the gamma-aminobutyric acid A receptor complex on responding under a differential-reinforcement-of-low-rate schedule of reinforcement in rats. Behavioural Pharmacology 2010,21(8):727-735.
    36. Tassone D, Boyce E, Guyer J, Pregabalin ND. A novel gamma-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clinical Therapeutics 2007,29(1):26-48.
    37.蒋振晖,顾振新.高等植物体内Y-氨基丁酸合成、代谢及其生理作用.植物生理学通讯2003,39((3):249~254.
    38. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular Catalysis B-Enzymatic 2000,10(1-3):67-79.
    39. Huang J, Mei L, Xia J. Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA. Biotechnology and Bioengineering 2007,96(5):924-931.
    40. Abe Y, Umemura S, Sugimoto K, Hirawa N, Kato Y, Yokoyama N, Yokoyama T, Iwai J, Ishii M. Effect of green tea rich in gamma-aminobutyric acid on blood pressure of Dahl salt-sensitive rats. American Journal of Hypertension 1995,8(1):74-79.
    41. Lee M, Peng J. Effects of fermentation time and seasons on the gamma-aminobutyric acid and glutamic acid contents of TTES-12 GABA tea producing. New Biotechnology 2009,25(S1): 231-231.
    42. Zhang H, Yao HY, Chen F. Accumulation of gamma-aminobutyric acid in rice germ using protease. Bioscience Biotechnology and Biochemistry 2006,70(5):1160-1165.
    43. Ohtsubo K, Suzuki K, Yasui Y, Kasumi T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis 2005,18(4):303-316.
    44.中迎宾,范子剑,麻浩.响应面法优化发芽豇豆积累Y-氨基丁酸工艺条件的研究.食品科学2010,31(2):10~16.
    45. Coda R, Rizzello CG, Gobbetti M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA). International Journal of Food Microbiology 2010,137(2-3):236-245.
    46. Stromeck A, Hu Y, Chen LY, Ganzle MG. Proteolysis and bioconversion of cereal proteins to glutamate and.gamma-aminobutyrate (GABA) in rye malt sourdoughs. Journal of Agricultural and Food Chemistry 2011,59(4):1392-1399.
    47. Park KB, Oh SH. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technology 2007,98(8):1675-1679.
    48. Park KB, Oh SH. Production and characterization of GABA rice yogurt. Food Science and Biotechnology 2005,14(4):518-522.
    49. Lee BJ, Kim JS, Kang YM, Lim JH, Kim YM, Lee MS, Jeong MH, Ahn CB, Je JY. Antioxidant activity and gamma-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry 2010,122(1):271-276.
    50. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA 100. International Journal of Food Microbiology 2009,130(1):12-16.
    51.蒋立文,周传云,菠夏,李宗军.儿种发酵豆制品中Y-氨基丁酸含量的初步测定.中国酿造2007(4):62~64.
    52.谢广发,戴军,赵光鳌,帅桂兰,李莉.黄酒中的γ-氨基丁酸及其功能.中国酿造2005(3):49-50.
    53. Di Cagno R, Mazzacane F, Rizzello CG, De Angelis M, Giuliani G, Meloni M, De Servi B, Gobbetti M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied Microbiology and Biotechnology 2010,86(2):731-741.
    54. Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH. Production and characterization of kimchi with enhanced levels of gamma-aminobutyric acid. Food Science and Biotechnology 2008,17(5): 940-946.
    55. Aoki H, Furuya Y, Endo Y, Fujimoto K. Effect of gamma-aminobutyric acid-enriched tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Bioscience Biotechnology and Biochemistry 2003,67(8):1806-1808.
    56. Huang J, Le-He M, Wu H, Lin DQ. Biosynthesis of gamma-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal of Microbiology and Biotechnology 2007,23(6):865-871.
    57. Bai Q, Chai M, Gu Z, Cao X, Li Y, Liu K. Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet(Setaria italica L.) during germination. Food Chemistry 2009,116(1):152-157.
    58.夏玉玲,徐立,杨翠凤.桑叶中γ-氨基丁酸含量的测定.中国农学通报2009,25(20):209~212.
    59. Jow F, Chiu D, Lim H, Novak T, Lin S. Production of GABA by cultured hippocampal gial cells. Neurochemistry International 2004 45(2-3):273-283.
    60. Wang Q, Xin Y, Zhang F, Feng Z, Fu J, Luo L, Yin Z. Enhanced gamma-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World Journal of Microbiology and Biotechnology 2011,27(3):693-700.
    61. Plokhov AY, Gusyatiner MM, Yampolskaya TA, Kaluzhsky VE, Sukhareva BS, Schulga AA. Preparation of gamma-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied Biochemistry and Biotechnology 2000,88(1-3):257-265.
    62. Kono I, Himeno K. Changes in gamma-aminobutyric acid content during beni-koji making. Bioscience Biotechnology and Biochemistry 2000,64(3):617-619.
    63. Su YC, Wang JJ, Lin TT, Pan TM. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. Journal of Industrial Microbiology and Biotechnology 2003, 30(1):41-46.
    64. Masuda K, Guo XF, Uryu N, Hagiwara T, Watabe S. Isolation of marine yeasts collected from the Pacific Ocean showing a high production of gamma-aminobutyric acid. Bioscience Biotechnology and Biochemistry 2008,72(12):3265-3272.
    65. Lu XX, Chen ZG, Gu ZX, Han YB. Isolation of gamma-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochemical Engineering Journal 2008,41(1):48-52.
    66.田灵芝,徐美娟,饶志明.一株重组大肠杆菌/pET-28a-lpgad的构建及其高效生产γ-氨基丁酸转化条件的优化.生物工程学报2012,28(1):65~75.
    67. Jiang DH, Ji H, Ye Y, Hou JH. Studies on screening of higher gamma-aminobutyric acid-producing Monascus and optimization of fermentative parameters. European Food Research and Technology 2011,232(3):541-547.
    68.蒋冬花,李杰,后家衡,徐晓波.水果表面高产γ-氨基丁酸酵母菌菌株的筛选、鉴定和发酵条件优化.浙江农业学报2008,20(6):396~401.
    69. Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998,6(6):214-216.
    70. Heller KJ. Probiotic bacteria in fermented foods:product characteristics and starter organisms. American Journal of Clinical Nutrition 2001,73(S2):374-379.
    71. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 2004,15(2):67-78.
    72. Karahan AG, Kilic GB, Kart A, Aloglu HS, Oner Z, Aydemir S, Erkus O, Harsa S. Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture. Journal of Dairy Science 2010,93(1):1-11.
    73. Bermudez-Humaran LG, Kharrat P, Chatel JM, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microbial Cell Factories 2011,10(S1): 4.
    74. Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Journal of Bacteriology 1997,179(10):3362-3364.
    75. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Molecular Microbiology 1998,27(2): 299-310.
    76. Abdullah-Al-Mahin, Sugimoto S, Higashi C, Matsumoto S, Sonomoto K. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Applied and Environmental Microbiology 2010,76(13):4277-4285.
    77. Badel S, Bernardi T, Michaud P. New perspectives for lactobacilli exopolysaccharides. Biotechnology Advances 2011,29(1):54-66.
    78. Hwanhlem N, Watthanasakphuban N, Riebroy S, Benjakul S, H-Kittikun A, Maneerat S. Probiotic lactic acid bacteria from Kung-Som:isolation, screening, inhibition of pathogenic bacteria. International Journal of Food Science and Technology 2010,45(3):594-601.
    79. Tannock GW. A special fondness for lactobacilli. Applied and Environmental Microbiology 2004, 70(6):3189-3194.
    80. Tuohy KM, Probert HM, Smejkal CW, Gibson GR. Using probiotics and prebiotics to improve gut health. Drug Discovery Today 2003,8(15):692-700.
    81. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 2005,22(6):497-504.
    82. Park KB, Oh SH. Isolation and characterization of Lactobacillus buchneri strains with high gamma-aminobutyric acid producing capacity from naturally aged cheese. Food Science and Biotechnology 2006,15(1):86-90.
    83.管立军,李艳芳,程永强,鲁战会,李里特.产γ-氨基丁酸乳酸菌的筛选及分离鉴定.食品科技2009,34(1):2-5,9.
    84. Sun TS, Zhao SP, Wang HK, Cai CK, Chen YF, Zhang HP. ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. European Food Research and Technology 2009,228(4):607-612.
    85. Lim SD, Kim KS, Do JR. Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Korean Journal for Food Science of Animal Resources 2009,29(1):15-23.
    86.冀林立,方芳,魏小雁,张彦斌,孟和毕力格.传统乳制品中产γ-氨基丁酸乳酸菌的筛选.中国乳品工业2008,36(5):4-7,15.
    87. Kook MC, Seo MJ, Cheigh CI, Pyun YR, Cho SC, Park H. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. Journal of Microbiology and Biotechnology 2010,20(4):763-766.
    88. Thwe SM, Kobayashi T, Luan T, Shirai T, Onodera M, Hamada-Sato N, Imada C. Isolation, characterization, and utilization of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science 2011,77(2): 279-288.
    89. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology 2007,73(22):7283-7290.
    90.李云,杨胜远,陈郁娜,刘祥流,麦真真,陈燕.产谷氨酸脱羧酶片球菌的鉴定及其酶学性质.食品科学2010,31(9):187~191.
    91. Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp thermophilus Y2 under submerged fermentation. Amino Acids 2008,34(3):473-478.
    92.卢彦梅,张伟国.γ-氨基丁酸产生菌的选育及发酵条件优化.食品与机械2008,24(1):36~40.
    93.李云,杨胜远,杨韵晴,黄荣城,陈郁娜,刘祥流.产γ-氨基丁酸屎肠球菌的鉴定及其谷氨酸脱羧酶酶学性质.生物技术2010,20(1):27~30.
    94. Mazzoli R, Pessione E, Dufour M, Laroute V, Giuffrida MG, Giunta C, Cocaign-Bousquet M, Loubiere P. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production:combined transcriptomic and proteomic analysis. Amino Acids 2010,39(3):727-737.
    95. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biological and Pharmaceutical Bulletin 2010,33(10):1673-1679.
    96.夏江,梅乐和,黄俊,盛清,许静,吴晖.产γ-氨基丁酸的乳酸菌株筛选及诱变.核农学报2006,20(5):379~382.
    97.李远宏,吕凤霞,邹晓葵,李颖,陆兆新.鲜奶中产γ-氨基丁酸乳酸菌株的筛选与鉴定.食品科学2010,31(15):198~202.
    98. Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR. Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. Journal of Microbiology and Biotechnology 2006,16(4):562-568.
    99. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I. Production of gamma-aminobutyric acid by cheese starters during cheese ripening. Journal of Dairy Science 1998,81(6):1486-1491.
    100.黄俊,梅乐和,盛清,许静,吴晖.γ-氨基丁酸液体发酵过程的条件优化及补料研究 高校化学工程学报2008,22(4):618~623.
    101.缪存影,蒋冬花,徐晓波,叶砚,王长春.酸菜中高产γ-氨基丁酸乳酸菌的筛选和鉴定.微生物学杂志2010,30(2):28~32.
    102.王超凯,刘绪,张磊,刘念,彭奎,潘建军,黎贤书.产γ-氨基丁酸乳酸菌的筛选及发酵条件初步优化.食品与发酵科技2012,48(1):36~39.
    103.孟和毕力格,冀林立,罗斌,张彦斌,李莉,宿淑辉,王婧.传统乳制品中产γ-氨基丁酸乳酸菌的培养基优化.食品工业科技2009(7):124-127.
    104.范杰,孙君社,张晓杰,张秀清,胡锦蓉,张京声.高产γ-氨基丁酸乳酸菌的筛选及鉴定.中国酿造2011(4):39~41.
    105. Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology and Biotechnology 2007,17(1):104-109.
    106. Cho SY, Park MJ, Kim KM, Ryu J-H, Park HJ. Production of high y-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from Mukeunjee kimchi. Food Science and Biotechnology 2011,20(2):403-408
    107.冯宇,张颖,潘超强,任雪,赵文怡,高年发.产γ-氨基丁酸菌株的分离和选育.食品与发酵工业2009,35(11):56~59.
    108. Yokoyama S, Hiramatsu J, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering 2002, 93(1):95-97.
    109. Wei J, Wu J. Structural and functional analysis of cysteine residues in human glutamate decarboxylase 65 (GAD65) and GAD67. Journal of Neurochemistry 2005,93(3):624-633
    110. Buss K, Drewke C, Lohmann S, Piwonska A, Leistner E. Properties and interaction of heterologously expressed glutamate decarboxylase isoenzymes GAD65kDa and GAD67kDa from human brain with ginkgotoxin and its 5'-phosphate Journal of Medicinal Chemistry 2001,44(19): 3166-3174
    11. Blindermann JM, Maitre M, Ossola L, Mandel P. Purification and some properties of L-glutamate decarboxylase from human brain. European journal of biochemistry 1978,86(1):143-152.
    112. Sparkes RS, Kaufman DL, Heinzmann C, Tobin AJ, Mohandas T. Brain glutamate-decarboxylase (GAD) gene assigned to human chromosome-2 by somatic-cell hybrid analysis. Cytogenetics and Cell Genetics 1987,46(1-4):696-696.
    113. Zhang H, Yao H, Chen F, Wang X. Purification and characterization of glutamate decarboxylase from rice germ. Food Chemistry 2007,101 (4):1670-1676.
    114. Gut H, Dominici P, Pilati S, Astegno A, Petoukhov MV, Svergun DI, Grutter MG, Capitani G. A common structural basis for pH-and calmodulin-mediated regulation in plant glutamate decarboxylase. Journal of Molecular Biology 2009,392(2):334-351.
    115.夏庆平,高洪波,李敬蕊.γ-氨基J‘酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响.应用生态学报2011,22(4):999~1006.
    116.罗黄颖,高洪波,夏庆平,宫彬彬,吴晓蕾.γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响.中国农业科学2011,44(4):753~761.
    117. Bouche N, Fromm H. GABA in plants:just a metabolite? Trends in Plant Science 2004,9(3): 110-115.
    118. Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry 2001,276(1):244-250.
    119.胡超,左斌,谢达平.酵母产γ-氨基丁酸发酵条件的研究.现代生物医学进展2011,11(5):861-863.
    120. Kim HW, Kashima Y, Ishikawa K, Yamano N. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Bioscience Biotechnology and Biochemistry 2009,73(1):224-227
    121. Shi F, Li Y. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnology Letters 2011, 33(12):2469-2474.
    122. Renye JA, Somkuti GA. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in Streptococcus thermophilus. Biotechnology Letters 2012,34(3):549-555.
    123. Castanie-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C. Acid stress response in Escherichia coli:mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Research 2010,38(11):3546-3554.
    124. Somkuti GA, Jr JAR, Steinberg DH. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110. Journal of Industrial Microbiology and Biotechnology 2012, DOI 10.1007/s 10295-012-1114-0.
    125. Strausbauch PH, H.Fischer E. Chemical and physical properties of Escherichia coli glutamate decarboxylase. Biochemistry 1970,9 (2):226-233.
    126. Komatsuzaki N, Nakamura T, Kimura T, Shima J. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Bioscience Biotechnology and Biochemistry 2008,72(2):278-285.
    127. Park KB, Oh SH. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology 2007,98(2):312-319.
    128. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 1999,145 (6):1375-1380.
    129. Huang J, Mei LH, Sheng Q, Yao SJ, Lin DQ. Purification and characterization of glutamate decarboxylase of Lactobacillus brevis CGMCC 1306 isolated from fresh milk. Chinese Journal of Chemical Engineering 2007,15(2):157-161.
    130. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience Biotechnology and Biochemistry 1997,61(7):1168-1171.
    131.许建军,江波,许时婴Lactococcus lactis谷氮酸脱羧酶的分离纯化及部分酶学性质.无锡轻工大学学报2004,23(3):79~84.
    132.刘清,姚惠源,张晖.乳酸菌谷氨酸脱羧酶的酶学性质研究.食品科学2005,26(4):100-104.
    133. Hiraga K, Ueno Y, Oda K. Glutamate decarboxylase from Lactobacillus brevis:activation by ammonium sulfate. Bioscience Biotechnology and Biochemistry 2008,72(5):1299-1306.
    134. Kawalleck P, Keller H, Hahlbrock K, Scheel D, Somssich IE. A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. Journal of Biological Chemistry 1993,268(3):2189-2194.
    135. Lin Q, Yang S, Lu F, Lu Z, Bie X, Jiao Y, Zou X. Cloning and expression of glutamate decarboxylase gene from Streptococcus thermophilus Y2. Journal of General and Applied Microbiology 2009,55(4):305-310.
    136. Park KB, Oh SH. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus plantarum. Journal of Food Science and Nutrition 2004,9(4):324-329.
    137. Park KB, Oh SH. Enhancement of gamma-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis. Biotechnology Letters 2006,28(18):1459-1463.
    138. Kim SH, Shin BH, Kim YH, Nam SW, Jeon SJ. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnology and Bioprocess Engineering 2007,12(6):707-712.
    139. Fan E, Huang J, Hu S, Mei L, Yu K. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Annals of microbiology 2012,62(2):689-698.
    140. Zhang Y, Gao N, Feng Y, Song L, Gao Q. Biotransformation of sodium L-glutamate to y-aminobutyric acid by L. brevis TCCC13007 with two glutamate decarboxylase genes.4th International Conference on Bioinformatics and Biomedical Engineering 2010, DOI: 10.1109/ICBBE.2010.5518023.
    141. Nomura M, Kobayashi M, Ohmomo S, Okamoto T. Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 2000,66(5): 2235-2237.
    1. Horie H, Rechnitz GA. Enzymatic flow-injection determination of gamma-aminobutyric-acid. Analytical Letters 1995,28(2):259-266.
    2. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. International Journal of Food Microbiology 2009,130(1):12-16.
    3. Kono I, Himeno K. Changes in gamma-aminobutyric acid content during beni-koji making. Bioscience Biotechnology and Biochemistry 2000,64(3):617-619.
    4. Kagan IA, Coe BL, Smith LL, Huo CJ, Dougherty CT, Strickland JR. A validated method for gas chromatographic analysis of gamma-aminobutyric acid in tall fescue herbage. Journal of Agricultural and Food Chemistry 2008,56(14):5538-5543.
    5. Syal P, Sahoo M, Raut RP, Hable A A, Battewar AS, Choudhari VP, Kuchekar BS. Development and validation of an HPTLC method for simultaneous estimation of thiocolchicoside and aceclofenac in combined dosage form. Journal of Planar Chromatography 2012,25(2):133-137.
    6. Wang W, Wu WY, Wang W, Zhu JJ. Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. Journal of Chromatography A 2010,1217(24):3896-3899.
    7. Gaspar A, Bacsi I. Forced flow paper chromatography:a simple tool for separations in short time. Microchemical Journal 2009,92(1):83-86.
    8. Kale D, Kakde R. Simultaneous determination of pioglitazone, metformin, and glimepiride in pharmaceutical preparations using HPTLC method. Journal of Planar Chromatography 2011,24 (4):331-336.
    9. Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH. Production and characterization of kimchi with enhanced levels of gamma-aminobutyric acid. Food Science and Biotechnology 2008,17(5): 940-946.
    10. Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology and Biotechnology 2007,17(1):104-109.
    11. Park KB, Oh SH. Production and characterization of GABA rice yogurt. Food Science and Biotechnology 2005,14(4):518-522.
    12. Sethi ML. Enzyme inhibition XI:glutamate decarboxylase activity relationship with the reaction products as determined by the colorimetric and radioisotopic methods. Journal of Pharmaceutical and Biomedical Analysis 1999,19(6):847-854.
    13.北京大学生物系生物化学教研室编.生物化学实验指导.北京:高等教育出版社1991年第一版.
    14. Khawas S, Panja D, Laskar S. A new reagent for identification of amino acids on thin-layer chromatography plates. Journal of Planar Chromatography 2004,17(4):314-315.
    15.张晖,徐永,姚惠源.纸层析法定量测定米胚芽中的γ-氨基丁酸.无锡轻工大学学报2004,23(2):101~103.
    16. Qiu T, Li HX, Cao YS. Pre-staining thin layer chromatography method for amino acid detection. African Journal of Biotechnology 2010,9(50):8679-8681.
    17.陈海军,林亲录,王婧,李丽辉.γ-氨基丁酸测定方法的研究.食品工业科技2007,28(5):235~237.247.
    18. Li H, Cao Y, Gao D, Xu H. A high y-aminobutyric acid-producing ability Lactobacillus brevis isolated from Chinese traditional paocai. Annals of Microbiology 2008,58(4):649-653.
    19. Morlock GE, Schwack W. The contribution of planar chromatography to food analysis. Journal of Planar Chromatography 2007,20(6):399-406.
    20. Shin YS. A quantitative approach to amino acid paper chromatography. Journal of Chromatography 1967,30(2):634-636.
    1. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular Catalysis B-Enzymatic 2000,10(1-3):67-79.
    2. Li HX, Cao YS. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010,39(5):1107-1116.
    3. Capozzi V, Russo P, Fragasso M, Vita PD, Fiocco D, Spano G. Biotechnology and pasta-making: lactic acid bacteria as a new driver of innovation. Frontiers in Microbiology 2012,3:94.
    4. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 2004,15(2):67-78.
    5.梁金钟,田宇,王风青.从酸菜液中筛选产γ-氨基丁酸的菌株.食品科学2011,32(23):244-249.
    6. Cho SY, Park MJ, Kim KM, Ryu JH, Park HJ. Production of high y-Aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from mukeunjee kimchi. Food Science and Biotechnology 2011,20(2):403-408
    7.周青,魏春,应向贤,章银军,汪钊.产γ-氨基丁酸乳酸菌的筛选及发酵过程研究.食品与发酵工业2011,37(5):26~31.
    8.凌代文主编.乳酸细菌分类鉴定及实验方法.北京:中国轻工业出版社1999年第一版.
    9. Edwards CG, Collins MD, Lawson PA, Rodriguez AV. Lactobacillus nagelii sp nov., an organism isolated from a partially fermented wine. International Journal of Systematic and Evolutionary Microbiology 2000,50(2):699-702.
    10. Endo A, Okada S. Lactobacillus satsumensis sp nov., isolated from mashes of shochu, a traditional Japanese distilled spirit made from fermented rice and other starchy materials. International Journal of Systematic and Evolutionary Microbiology 2005,55(1):83-85.
    11. Vancanneyt M, Neysens P, De Wachter M, Engelbeen K, Snauwaert C, Cleenwerck I, Van der Meulen R, Hoste B, Tsakalidou E, De Vuyst L, Swings J. Lactobacillus acidifarinae sp nov and Lactobacillus zymae sp nov., from wheat sourdoughs. International Journal of Systematic and Evolutionary Microbiology 2005,55(2):615-620.
    12. Antunes A, Rainey FA, Nobre MF, Schumann P, Ferreira AM, Ramos A, Santos H, da Costa MS. Leuconostoc ficulneum sp nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. International Journal of Systematic and Evolutionary Microbiology 2002,52(2):647-655.
    13. Van der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P, De Vuyst L. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Applied and Environmental Microbiology 2007, 73(15):4741-4750.
    14. Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998,6(6):214-216.
    15. Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Journal of Bacteriology 1997,179(10):3362-3364.
    16. Lee SY, Park S, Oh TK, Yoon JH. Salinimicrobium gaetbulicola sp. nov., isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology 62(5):1027-1031.
    17. Kawasaki S, Kurosawa K, Miyazaki M, Sakamoto M, Ohkuma M, Niimura Y. Lactobacillus ozensis sp. nov., isolated from mountain flowers. International Journal of Systematic and Evoluttonary Microbiology 61(10):2435-2438.
    18. Bui TP, Kim YJ, In JG, Yang DC. Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. International Journal of Systematic and Evolutionary Microbiology 61(4): 772-776.
    1. Kosmider A, Bialas W, Kubiak P, Drozdzynska A, Czaczyk K. Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii sp. shermanii:optimization of medium composition through statistical experimental designs. Bioresource Technology 2012,105:128-133.
    2. Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology and Biotechnology 2007,17(1):104-109.
    3. Wang Y, Fang X, An F, Wang G, Zhang X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microbial Cell Factories 2011,10:98.
    4. Lu XX, Chen ZG, Gu ZX, Han YB. Isolation of gamma-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochemical Engineering Journal 2008,41(1):48-52.
    5.翟晓娜,张晓杰,殷丽君,胡锦蓉.利用响应面法优化γ-氨基丁酸液体发酵.中国酿造2011(12):43~47.
    6. Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G, Pandey A. Use of response surface methodology for optimizing process parameters for the production of alpha-amylase by Aspergillus oryzae. Biochemical Engineering Journal 2003,15(2):107-115.
    7. Khan MA, Hamid R, Ahmad M, Abdin MZ, Javed S. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. Journal of Microbiology and Biotechnology 2010,20(11):1597-1602.
    8. Wang JJ, Lee CL, Pan TM. Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. Journal of Industrial Microbiology and Biotechnology 2003,30(11):669-676.
    9. Lee SL, Chen WC. Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme and Microbial Technology 1997, 21(6):436-440.
    10. Pinho C, Melo A, Mansilha C, Ferreira IMPLVO. Optimization of conditions for anthocyanin hydrolysis from red wine using response surface methodology (RSM). Journal of Agricultural and Food Chemistry 2011,59(1):50-55.
    11. Li H, Cao Y, Gao D, Xu H. A high y-aminobutyric acid-producing ability Lactobacillus brevis isolated from Chinese traditional paocai. Annals of Microbiology 2008,58(4):649-653.
    12. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 2005,22(6):497-504.
    13. Tan W, Budinich M, Ward R, Broadbent J, Steele J. Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids. Journal of Dairy Science 2012,95(4):1680-1689
    14.凌代文主编.乳酸细菌分类鉴定及实验方法.北京:中国轻工业出版社1999年第一版.
    15. Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998,6(6):214-216.
    16. Higuchi T, Hayashi H, Abe K. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Journal of Bacteriology 1997,179(10):3362-3364.
    17. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience Biotechnology and Biochemistry 1997,61(7):1168-1171.
    18.刘清,姚惠源,张晖.乳酸菌谷氨酸脱羧酶的酶学性质研究.食品科学2005,26(4):100~104.
    19.李云,杨胜远,陈郁娜,刘祥流,麦真真,陈燕.产谷氨酸脱羧酶片球菌的鉴定及其酶学性质.食品科学2010,31(9):187~191.
    20.李云,杨胜远,杨韵晴,黄荣城,陈郁娜,刘祥流.产γ-氨基丁酸屎肠球菌的鉴定及其谷氨酸脱羧酶酶学性质.生物技术2010,20(1):27~30.
    1. Li H, Cao Y, Gao D, Xu H. A high y-aminobutyric acid-producing ability Lactobacillus brevis isolated from Chinese traditional paocai. Annals of Microbiology 2008,58(4):649-653.
    2. Li H, Qiu T, Gao D, Cao Y. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 Amino Acids 2010,38 (5):1439-1445.
    3. Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories 2010,9:11.
    4. Lima-Costa ME, Tavares C, Raposo S, Rodrigues B, Peinado JM. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. Journal of Industrial Microbiology and Biotechnology 2012,39(5):789-797.
    5. Ihssen J, Kowarik M, Dilettoso S, Tanner C, Wacker M, Thony-Meyer L. Production of glycoprotein vaccines in Escherichia coli. Microbial Cell Factories 2010,9:61.
    6. Hahn-Hagerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Gorgens J, van Zyl WH. Role of cultivation media in the development of yeast strains for large scale industrial use. Microbial Cell Factories 2005,4:31.
    7. Chen YH, Walker TH. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresource Technology 2012,114:512-517.
    8. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biological and Pharmaceutical Bulletin 2010,33(10):1673-1679.
    9.黄俊,梅乐和,盛清,许静,吴晖.γ-氨基丁酸液体发酵过程的条件优化及补料研究.高校化学工程学报2008,22(4):618~623.
    10. Li H, Qiu T, Cao Y, Yang J, Huang Z. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid. Journal of chromatography A 2009,1216(25):5057-5060.
    11.北京大学生物系生物化学教研室编.生物化学实验指导.北京:高等教育出版社1991年第一版.
    12. Ueno H. Enzymatic and structural aspects on glutamate decarboxylase. Journal of Molecular Catalysis B-Enzymatic 2000,10(1-3):67-79.
    13. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology 2005,22(6):497-504.
    14. Thwe SM, Kobayashi T, Luan T, Shirai T, Onodera M, Hamada-Sato N, Imada C. Isolation, characterization, and utilization of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science 2011,77(2): 279-288.
    15. Plokhov AY, Gusyatiner MM, Yampolskaya TA, Kaluzhsky VE, Sukhareva BS, Schulga AA. Preparation of gamma-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied Biochemistry and Biotechnology 2000,88(1-3):257-265.
    16. Li HX, Cao YS. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010,39(5):1107-1116.
    17.许建军,江波,许时婴Lactococcus lactis谷氨酸脱羧酶的分离纯化及部分酶学性质.无锡轻工大学学报2004,23(3):79~84.
    18. Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience Biotechnology and Biochemistry 1997,61(7):1168-1171.
    19. Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998,6(6):214-216.
    20. Huang G,Li C, Cao Y. Proteomic analysis of differentially expressed proteins in Lactobacillus brevis NCL912 under acid stress. FEMS Microbiology Letters 2011,318(2):177-182.
    21. Cindy B, Katie H, Theodore D. Bacterial preservation of pink salmon using potatoes as a carbohydrate source. Journal of Food Processing and Preservation 2011,35(6):822-831.
    22. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 2004,15(2):67-78.
    23. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G,Kok J. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Molecular Microbiology 1998,27(2): 299-310.
    24. Cotter PD, Gahan CG, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular Microbiology 2001,40(2):465-475.
    25. Cotter PD, Hill C. Surviving the acid test:responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 2003,67(3):429-453.
    26. Huang J, Mei L, Wu H, Lin DQ. Biosynthesis of gamma-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal of Microbiology and Biotechnology 2007,23(6):865-871.
    1. Bi PY, Dong HR, Yu HB, Chang L. A new technique for separation and purification of L-phenylalanine from fermentation liquid:flotation complexation extraction. Separation and Purification Technology 2008,63:487-491.
    2. Cascaval D, Oniscu C, Galaction A I. Selective separation of amino acids by reactive extraction. Biochemical Engineering Journal 2001,7(3):171-176.
    3. Juang RS, Wang YY. Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science 2002,207(2):241-252.
    4. Yokoyama S, Hiramatsu J, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering 2002, 93(1):95-97.
    5.嵇豪,蒋冬花,周琴,汪鹏荣,董夏梦,蔡琪敏.D001阳离子交换树脂分离红曲霉发酵液中γ-氨基丁酸的研究.中国粮油学报2011,26(8):95~99.
    6.黄俊,梅乐和,胡升,毛建卫,刘士旺,李向平,盛清,许静,吴晖.γ-氨基丁酸发酵液的絮凝和脱色工艺研究.食品工业科技2009,30(7):257~259,269.
    7.赵婧,冯骉.电渗析脱盐分离发酵液中氨基酸的研究.食品与发酵工业2006,32(9):32~36.
    8.卢卫国,孙立伟,王淑豪,刘萍,孙君社.离子交换法分离提取谷氨酸转化液中的γ-氨基丁酸精细化工2009,26(8):776~780.
    9.杨胜远,陆兆新,别小妹,吕凤霞.细胞转化液γ-氨基丁酸的精制.食品科学2011,32(2):244~247.
    10. Qiu T, Li HX, Cao YS. Pre-staining thin layer chromatography method for amino acid detection. African Journal of Biotechnology 2010,9(50):8679-8681.
    11. Sellergren B, Shea KJ. Chiral ion-exchange chromatography:correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. Journal of Chromatography A 1993,654(1):17-28.
    1. Small PL, Waterman SR. Acid stress, anaerobiosis and gadCB:lessons from Lactococcus lactis and Escherichia coli. Trends in Microbiology 1998,6(6):214-216.
    2. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Molecular Microbiology 1998,27(2): 299-310.
    3. Nomura M, Kobayashi M, Ohmomo S, Okamoto T. Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 2000,66(5): 2235-2237.
    4. Zhang Y, Gao N, Feng Y, Song L, Gao Q. Biotransformation of sodium L-glutamate to γ-aminobutyric acid by L. brevis TCCC13007 with two glutamate decarboxylase genes.4th International Conference on Bioinformatics and Biomedical Engineering 2010, DOI: 10.1109/ICBBE.2010.5518023.
    5. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 2006,103(42):15611-15616.
    6. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 1999,145(6):1375-1380.
    7. Renye JA, Somkuti GA. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in Streptococcus thermophilus. Biotechnology Letters 2012,34(3):549-555.
    8. Kim SH, Shin BH, Kim YH, Nam SW, Jeon SJ. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnology and Bioprocess Engineering 2007,12(6):707-712.
    9. Lin Q, Yang S, Lu F, Lu Z, Bie X, Jiao Y, Zou X. Cloning and expression of glutamate decarboxylase gene from Streptococcus thermophilus Y2. Journal of General and Applied Microbiology 2009,55(4):305-310.
    10. Fan E, Huang J, Hu S, Mei L, Yu K. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Annals of Microbiology 2012,62(2):689-698.
    11. Shi F, Li Y. Synthesis of y-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnology Letters 2011, 33(12):2469-2474.
    12. Park KB, Oh SH. Enhancement of gamma-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis. Biotechnology Letters 2006,28(18):1459-1463.
    13. Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39(5):1107-1116.
    14. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biological and Pharmaceutical Bulletin 2010,33(10):1673-1679.
    15. Liu YG, Whittier RF. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 1995,25(3):674-681.
    16.J.萨姆布鲁克,E.F.弗里奇,T.曼妮阿蒂斯著.金冬雁,黎孟枫等译.分子克隆实验指南.科学出版社1998年第二版.
    17. Barney M, Volgyi A, Navarro A, Ryder D. Riboprinting and 16 S rRNA gene sequencing for identification of brewery Pediococcus isolates. Applied and Environmental Microbiology 2001, 67(2):553-560.
    18. Kawalleck P, Keller H, Hahlbrock K, Scheel D, Somssich IE. A pathogen-responsive gene of parsley encodes tyrosine decarboxylase. Journal of Biological Chemistry 1993,268(3):2189-2194.
    19. Hiraga K, Ueno Y, Oda K. Glutamate decarboxylase from Lactobacillus brevis:activation by ammonium sulfate. Bioscience Biotechnology and Biochemistry 2008,72(5):1299-1306.
    20. Park KB, Oh SH. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology 2007,98(2):312-319.
    21. Lucas P, Lonvaud-Funel A. Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters 2002,211(1):85-89.
    22. Munoz-Atienza E, Landeta G, de las Rivas B, Gomez-Sala B, Munoz R, Hernandez PE, Cintas LM, Herranz C. Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. International Journal of Food Microbiology 2011,146(2): 212-216.
    23. Smith DK, Kassam T, Singh B, Elliott JF. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. Journal of Bacteriology 1992,174(18):5820-5826.
    24. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. A glutamate-dependent acid resistance gene in Escherichia coli. Journal of Bacteriology 1996,178(13):3978-3981.
    25. Parks CL, Chang LS, Shenk T. A polymerase chain reaction mediated by a single primer:cloning of genomic sequences adjacent to a serotonin receptor protein coding region. Nucleic Acids Research 1991,19(25):7155-7160.
    26. Hwang IT, Kim YJ, Kim SH, Kwak CI, Gu YY, Chun JY. Annealing control primer system for improving specificity of PCR amplification. Biotechniques 2003,35(6):1180-1184.
    27. Li HX, Qiu T, Huang GD, Cao YS. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microbial Cell Factories 2010,9:85.
    28. Huang G, Li C, Cao Y. Proteomic analysis of differentially expressed proteins in Lactobacillus brevis NCL912 under acid stress. FEMS Microbiology Letters 2011,318(2):177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700