饲喂不同日粮奶牛瘤胃发酵和VFA吸收特性及其相关基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次试验结合我国奶牛实际养殖现状,比较研究我国规模化奶牛场和散养户两种典型日粮组成对奶牛瘤胃发酵和VFA吸收影响的差异,以及从组织形态学和分子生物学角度探讨两种类型日粮对奶牛瘤胃壁VFA吸收的影响机理。共分为四个试验。
     试验一:旨在研究饲喂不同日粮对泌乳奶牛瘤胃发酵参数的影响。选用10头体重(BW)为542±22kg,泌乳日龄(DIM)为127±13d的头胎、健康且装有永久性瘤胃瘘管的荷斯坦奶牛,采用完全随机设计,按照体重、泌乳日龄和产奶量随机分为两组,每组5头瘘管牛,分别饲喂以玉米秸秆为唯一粗饲料来源的日粮(CS)和以苜蓿、羊草和玉米青贮为混合粗饲料来源的日粮(MF)。试验共进行9w,其中预饲期2w,正饲期7w。试验第37d开始,每隔6h通过瘤胃瘘管采集瘤胃液,共采集3d。测定各采样时间点的瘤胃液pH、氨态氮和VFA的浓度。试验结果表明,瘤胃液pH与总VFA含量在处理间差异不显著(P>0.05)。MF组奶牛瘤胃液乙酸摩尔比和乙酸/丙酸均极显著高于CS组(P<0.01),氨态氮浓度、丁酸、异丁酸、戊酸和异戊酸摩尔比均极显著低于CS组(P<0.01),丙酸浓度显著低于CS组(P<0.05)。CS组奶牛瘤胃夜氨态氮浓度极显著高于MF组,说明CS日粮组存在氮源的浪费,相比之下MF日粮组能有效的利用氮源。
     试验二:旨在研究饲喂不同日粮对奶牛瘤胃壁VFA吸收速率的影响。选用10头带有永久瘤胃瘘管的泌乳后期(DIM=262±13d)荷斯坦奶牛,按体重、泌乳天数和平均日产奶量随机分成两组,每组5头瘘管奶牛,分别饲喂CS和MF日粮,日粮的设计及配制同试验一。整个试验维持30d,预试期14d。试验第28d将戊酸-CoEDTA指示剂溶液与瘤胃食糜充分混匀,分别采集混匀后0、0.5、1、2、3、6、12、18和24h的瘤胃液,测定各采样时间点的瘤胃pH、VFA浓度、渗透压和Co含量,根据戊酸和Co-EDTA随时间的指数衰减率来估测瘤胃VFA的吸收速率和流通速率。试验结果表明,总VFA的吸收速率和流通速率在处理间均差异不显著(P>0.05),但MF组显著提高了乙酸清除率(mol/h,P=0.05)和VFA流通速率(mol/h,P=0.045)的估测值。
     试验三:旨在研究饲喂不同日粮对奶牛瘤胃壁乳头组织形态学的影响。试验动物、试验设计、饲养管理及试验日粮同试验一。试验结束经瘤胃瘘管活体采集瘤胃乳头,制备切片,应用光学显微镜和透射电镜对瘤胃乳头的组织结构及超微结构进行观察。结果表明:MF日粮组极显著降低了瘤胃乳头的宽度(P<0.01);MF组奶牛的瘤胃乳头表面上皮的颗粒层厚度有高于CS组的趋势(P=0.17),而角质层厚度有低于CS组的趋势(P=0.18),棘层和基底层的厚度在组间差异均不显著(P>0.05)。透射电镜结果表明,CS日粮组奶牛瘤胃乳头颗粒层的细胞连接退化,细胞之间存在较大的空隙;角质层有少量的蜕皮现象,角质层下的细胞层细胞呈现加速的迁移状态。由此可见,给泌乳奶牛饲喂CS日粮,影响了瘤胃乳头的形态学结构。
     试验四:旨在研究饲喂不同日粮对奶牛瘤胃乳头中18个与VFA转运和代谢相关基因表达的影响。试验动物、试验设计、饲养管理及试验日粮同试验一。试验结束经瘤胃瘘管活体采集瘤胃乳头,PBS冲洗后液氮冷冻保存。提取瘤胃乳头的总RNA,利用GeneBank数据库中牛的mRNA序列设计出目的基因的引物序列,通过荧光定量PCR方法检测瘤胃乳头中18个与细胞生长、VFA转运和代谢相关基因的表达。试验结果表明,CS组显著上调了NHE-1、NHE-3、NHE-4和GPR-43基因的表达(P<0.10);MCT-1和IGFBP-5基因的表达在MF组显著上调(P<0.10);除ASCC-1被MF组显著下调外,日粮处理对VFA代谢相关基因的表达没有显著影响(P>0.10)。
This study was carried out to investage the effect of two different types of dietson rumen fermentation, fractional absorption rate of volatile fatty acids, ruminalpapillae morphology and expression of genes involved in VFA transporters, cellulargrowth, and VFA metabolism in ruminal papillae of dairy cows.
     Experiment1: An experiment was conducted to investigate responses in rumenfermentation of dairy cows receiving a corn straw or mixed forage diet. Tenprimiparous and rumen-cannulated Holstein dairy cows averaging127±13d in milk(mean±SD) were randomly assigned to CS (37.1%corn straw as sole forage) or MFdiet (3.7%Chinese wildrye+28.4%alfalfa hay+26.5%corn silage as mixed forage).The trial lasted for63d. Samples of rumen fluid were collected via cannula every6hover a72-h duration starting on day37to analyze pH, ammonia-N and VFAconcentrations. Results showed that cows fed MF diet had higher (P<0.01) ruminalacetate concentrate and ratio of acetate to propionate, and lower concentrations ofammonia-N (P<0.01), propionate (P<0.05), butyrate (P<0.01), isobutyrate (P<0.01),valerate (P<0.01) and isovalerate (P<0.01) than cows fed CS diet. Collectively, theseresults found that CS group had higher rumen ammonia nitrogen concentration whichmay suggest that CS group can not efficiently make use of nitrogen sources from diet.
     Experiment2: Objective of this experiment was to investigate effects of two types offorage diets on fractional absorption rate of volatile fatty acids (VFA) through therumen wall. Ten primiparous, rumen-cannulated Holstein dairy cows in late-lactationwere randomly assigned to CS (37.1%corn straw as sole roughage) or MF diet (3.7%Chinese wildrye+28.4%alfalfa hay+26.5%corn silage as mixed forage). Cowswere fed their respective diet for28d, following which n-valeric acid and Co-EDTAwere used as markers for measuring ruminal VFA absorption and passage rates.Rumen fluid was collected from ventral sac of the rumen. Results showed thatfractional rates of total VFA absorption and passage from the rumen were not affectedby dietary treatments, averaging14.78and13.64%/h, respectively. However, cows fed MF diet had higher (P<0.05) estimated clearance rate of acetate, as well as totalVFA passage rate (mol/h).
     Experiment3: The objective of this study was to determine the effect of differenttypes of diets on ruminal papillae morphology in dairy cows. Ten primiparous andrumen-cannulated Holstein dairy cows averaging127±13d in milk (mean±SD)were randomly assigned to CS (37.1%corn straw as sole forage and62.9%concentrate) or MF (3.7%Chinese wildrye+28.4%alfalfa hay+26.5%corn silageas mixed forage and41.4%concentrate) diet. The experiment lasted for63days. Atthe end of experiment, rumen papillae were biopsied from the ventral sac andobserved using light and transmission electron microscope. Microscopic examinationrevealed a reduction in the width of papillae (P<0.01) and the thickness of stratumcorneum (P=0.18), and an increase in the thickness of stratum granulosum (P=0.17)when cows fed MF diet. No significant differences (P>0.05) were found for thethickness of stratum spinosum and stratum basale between dietary treatments.Biopsied papillae exhibited a decline in cellular junctions and large spaces betweencells of stratum granulosum, moderate sloughing of the stratum corneum, and anaccelerated migratory state in all strata below the stratum corneum in cows fed CSdiet. These results suggest that it affects ruminal papillae morphological structurewhen cows were fed CS diet.
     Experiment4: This study was conducted to determine the effect of different types ofdiets on expression of18genes involved in VFA transporters, cellular growth, andVFA metabolism in ruminal papillae of dairy cows. Ten primiparous andrumen-cannulated Holstein dairy cows averaging127±13d in milk (mean±SD)were randomly assigned to CS (37.1%corn straw as sole forage and62.9%concentrate) or MF (3.7%Chinese wildrye+28.4%alfalfa hay+26.5%corn silageas mixed forage and41.4%concentrate) diet. The experiment lasted for63days. Atthe end of experiment, rumen papillae were biopsied from the ventral sac, and genesexpression was evaluated using quantitative real-time PCR. Compared with CS group, the mRNA expression of NHE-1、NHE-3、NHE-4、GPR-43and ASCC-1in ruminalpapillae was decreased in MF group (P<0.10), and the mRNA expression of MCT-1and IGFBP-5was increased in MF group (P<0.10).
引文
[1]中国奶业统计摘要2010[M].中国奶业协会,2011.
    [2]郭永宁,王加启,王林枫,等.我国奶牛主产区农户饲养现状及对策与建议[J].黑龙江畜牧兽医.2006,5:1-4.
    [3] Hall M B. Rumen acidosis: Carbohydrate feeding considerations[C]. Proceedingsof the2002Pennsylvania State Dairy Cattle Nutrition Workshop.2002:1-9.
    [4]于震. CNCPS在奶牛日粮评价和生产预测上的应用[D].东北农业大学.2007.
    [5] Bergman E N. Energy contributions of volatile fatty acids fromthe gastrointestinaltract in various species[J]. Physiological Reviews,1990,70:567-590.
    [6] Martin V H. Challenging the retinal for altering VFA ratios in growingruminates[J]. Feed Mix,1996,4:66-68.
    [7] Reynolds C K. Splanchnic metabolism of dairy cows during the transition fromlate gestation through early lactation[J]. Journal of Dairy Science,2003,86:1201-1217.
    [8] Waldo D R. Effect of forage quality on intake and forage-concentrate interactions[J]. Journal of Dairy Science,1986,69:617-631.
    [9] Baile C A, Forbes J M. Control of feed intake and regulation of energy balance inruminants[J]. Physiological Reviews,1974,54:160-214.
    [10] Balch C C, Campling R C. Regulation of voluntary food intake in ruminants[J].Nutrition Abstracts and Reviews,1962,32:669-686.
    [11] Baile C A, Mayer J. Depression of feed intake of goats by metabolites injectedduring meals[J]. American Journal of Physiology,1969,217:1830-1836.
    [12] Anil M H, Forbes J M. Feeding in sheep during intraportal infusions ofshort-chain fatty acids and the effect of liver denervation[J]. Journal of Physiology,1980,298:407-414.
    [13] Gengler W R, Martz F A, Johnson H D, et al. Effect of temperature on food andwater intake and rumen fermentation[J]. Journal of Dairy Science,1970,53:434-437.
    [14] Elliot J M, Symonds H W, Pike B.Effect on feed intake of infusing sodiumpropionate or sodium acetate into a mesenteric vein of cattle[J]. Journal of DairyScience,1985,68:1165-1170.
    [15] Baile C A. Metabolites as feedbacks for control of feed intake and receptor sitesin goats and sheep[J]. Physiology&Behavior,1971,7:819-826.
    [16] Bhattacharya A N, Alulu M. Appetite and insulin-metabolite harmony in portalblood of sheep fed high or low roughage diets with or without intraruminal infusion ofVFA[J]. Journal of Animal Science,1975,41:225-233.
    [17] Sutton J D, Broster W H, Schuller E, et al. Influence of plane of nutrition anddiet composition on rumen fermentation and energy utilization by dairy cows[J].Journal of Agricultural Science,1988,110:261-270.
    [18] MacRae J C, Smith J S, Dewey P J S, et al. The efficiency of utilization ofmetabolizable energy and apparent absorption of amino acids in sheep given spring-and autumn-harvested dried grass[J]. British Journal of Nutrition,1985,54:197-209.
    [19] Oldham J D, Emmans G C. Predictionof responses to protein and energyyielding nutrients[A]. In Nutrition and Lactation in the Dairy Cow, ed. PCGarnsworthy, London: Butterworths[C],1988, pp.76–96.
    [20] Beauchemin K, Penner G. New developments in understanding ruminal acidosisin dairy cows[A]. Tri-State Dairy Nutrition Conference[C],21-22April2009. pp.1-12.
    [21] Russell J B, Wilson D B. Why are ruminal cellulolytic bacteria unable to digestcellulose at low pH?[J]. Journal of Dairy Science,1996,79:1503-1509.
    [22] Bannink A, France J, Lopez S, et al. Modelling the implications of feedingstrategy on rumen fermentation and functioning of the rumen wall[J]. Animal FeedScience and Technology,2008,143:3-26.
    [23]赵广永,冯仰廉.绵羊瘤胃渗透压与挥发性脂肪酸、氨态氮或pH值的相关研究[A].中国畜牧兽医学会动物营养学分会第六届全国会员代表大会暨第八届学术研讨会论文集(下)[C].2000年. pp:555-559.
    [24] Sakata T, Tamate H. Rumen epithelial cell proliferation accelerated by rapidincrease in intraruminal butyrate[J]. Journal of Dairy Science,1978,61:1109-1113.
    [25] Shen Z M, Kuhla D S, Zitnan R, et al. Intraruminal infusion of n-butyric acidinduces an increase of ruminal papillae size independent of IGF-1system in castratedbulls[J]. Archives of Animal Nutrition,2005,59:213-225.
    [26] Neogrady S, Galfi P, Kutas F. Effects of butyrate and insulin and their interactionon the DNA synthesis of rumen epithelial cells in culture[J]. Cellular and MolecularLife Sciences,1989,45:94-96.
    [27] Baldwin R L. The proliferative actions of insulin, insulin-like growth factor-I,epidermal growth factor, butyrate and propionate on ruminal epithelial cells in vitro[J].Small Ruminant Research,1999,32:261-268.
    [28] Sakata T, Hikosaka K, Shiomura Y, et al. Stimulatory effect of insulin onruminal epithelium cell mitosis in adult sheep[J]. British Journal of Nutrition,1980,44:325-331.
    [29]韩继福,冯仰廉,张晓明,等.阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响[J].中国兽医学报,1997,17:278-280.
    [30]汪水平,王文娟,王加启,等.日粮精粗比对奶牛瘤胃发酵及泌乳性能的影响[J].西北农林科技大学学报,2007,35:44-50.
    [31]刘大程,卢德勋,侯先志,等.不同品质粗饲料日粮对瘤胃发酵及主要纤维分解菌的影响[J].中国农业科学,2008,41:1199-1206.
    [32]王洪荣,张洁.不同碳水化合物结构日粮对山羊瘤胃发酵和微生物氨基酸组成的影响[J].中国农业科学,2011,44:1071-1076.
    [33]冉林武,沈向真,涂杰,等.丙酮酸钙对山羊瘤胃挥发性脂肪酸浓度动态变化的影响[J].家畜生态学报,2008,29:41-44.
    [34]王聪,黄应祥,刘强,等.硫酸铜对西门塔尔牛瘤胃发酵及尿嘌呤衍生物的影响[J].草业学报,2008,17:80-84.
    [35]瞿明仁,凌宝明,卢德勋,等.灌注果聚糖对生长绵羊瘤胃发酵功能的影响[J].畜牧兽医学报,2006,37:779-784.
    [36]嘎尔迪,齐智利,张润厚,等.玉米的不同加工处理对绵羊瘤胃内pH值、NH3-N和VFA浓度的影响[J].黑龙江畜牧兽医,2002,(9):18-20.
    [37]郑琛,郝正里,李发弟,等.不同加工处理日粮对绵羊瘤胃挥发性脂肪酸的影响[J].中国畜牧兽医,2012,39:102-105.
    [38] ShriverB J, Hoover W H, Sargent J P, et al. Fermentation of a high concentratediet as affected by ruminal pH and digesta flow [J]. Journal of Dairy Science,1986,69:413-419.
    [39] Mould F L, rskov E R. Manipulation of rumen fluid pH and its influence oncellulolysis in sacco, dry matter degradation, and rumen microflora of sheep offeredeither hay or concentrate [J]. Animal Feed Science and Technology,1983,10:1-14.
    [40] HooverW H. Chemical factors involved in ruminal fiber digestion [J]. Journal ofDairy Science,1986,69:2755-2766.
    [41] Strobel H J, Russell J B. Effect of pH and energy spilling on bacterial proteinsynthesis by carbohydrate-limited cultures of mixed rumen bacteria [J]. Journal ofDairy Science,1986,69:2941-2947.
    [42]毛胜勇,王全军,姚文,等.去除瘤胃厌氧真菌对山羊瘤胃消化代谢的影响[J].南京农业大学学报,2002,25:61-64.
    [43]杨亮宇,刘勇,李清,等.添加真菌培养物对人工瘤胃pH和挥发性脂肪酸产量及比例的影响[J].黑龙江畜牧兽医,2002,(7):12-13.
    [44]李德允. TMR饲料对牛育成期瘤胃发酵特性及微生物生态的影响[J].中国畜牧兽医,2005,32:18-21.
    [45]钱文熙,崔慰贤.瘤胃发酵过程及其调控[J].宁夏农学院学报,2004,(1):62-63.
    [46] Castro T, Manso T, Mantecón A R, et al. Effect of either once or twice dailyconcentrate supplementation of wheat strawon voluntary intake and digestion insheep[J]. Small Ruminant Research,2002,46:43-50.
    [47] Allen M S. Relationship between fermentation acid production in the rumen andthe requirement for physically effective fiber[J]. Journal of Dairy Science,1997,80:1447-1462.
    [48] G bel G, Aschenbach J R, Müller F. Transfer of energy substrates across theruminal epithelium: implications and limitations[J]. Animal Health Research Reviews,2002,3:15-30.
    [49] Leonhard-Marek S, Stumpff F, Martens H. Transport of cations and anionsacross forestomach epithelia: conclusions from in vitro studies[J]. Animal,2010,4:1037-1056.
    [50] Rechkemmer G, G bel G, Diern s L, et al. Transport of short chain fatty acids inthe forestomach and hindgut[A]. In Ruminant physiology: digestion, metabolism,growth and reproduction. Proceedings8thInternational Symposium on RuminantPhysiology[C],1995, pp.95-116.
    [51] G bel G, Müller F, Pfannkuche H, et al.2001. Influence of isoform and DNP onbutyrate transport across the sheep ruminal epithelium[J]. Journal of ComparativePhysiology,2001,171:215-221.
    [52] Sehested J, Diernaes L, Moller P D, et al. Transport of butyrate across theisolated bovine rumen epithelium: Interaction with sodium, chloride andbicarbonate[J]. Comparative Biochemistry and Physiology,1999,123:399-408.
    [53] Aschenbach J R, Bilk S, Tadesse G, et al. Bicarbonatedependent andbicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate inthe ruminal epithelium of sheep[J]. American Journal of Physiology Gastrointestinaland Liver Physiology,2009,296:1098-1107.
    [54] Kramer T, Michelberger T, Gürtler H, et al. Absorption of shortchain fatty acidsacross ruminal epithelium of sheep[J]. Journal of Comparative Physiology,1996,166:262-269.
    [55] Wümli R, Wolffram S, Scharrer E.1987. Inhibition of chloride absorption fromthe sheep rumen by nitrate[J]. Journal of Veterinary Medicine Series A,1987,34:476-479.
    [56] Kirat D, Matsuda Y, Yamashiki N, et al. Expression, cellular localization, andfunctional role of monocarboxylate transporter4(MCT4) in the gastrointestinal tractof ruminants[J]. Gene,2007,391:140-149.
    [57] Stumpff F, Martens H, Bilk S, et al. Cultured ruminal epithelial cells express alarge-conductance channel permeable to chloride, bicarbonate, and acetate[J].Pflügers Archiv-European Journal of Physiology,2009,457:1003-1022.
    [58] Müller F, Huber K, Pfannkuche H, et al. Transport of ketone bodies andlactatein the sheep ruminal epithelium by monocarboxylate transporter1[J]. AmericanJournal of Physiology Gastrointestinal andLiver Physiology,2002,283:G1139-G1146.
    [59] Kirat D, Masuoka J, Hayashi H, et al. Monocarboxylate transporter1(MCT1)plays a direct role in shortchain fatty acids absorption in caprine rumen[J]. Journal ofPhysiology,2006,576:635-647.
    [60] Graham C, Gatherar I, Haslam I, et al. Expression and localization ofmonocarboxylate transporters and sodium/proton exchangers in bovine rumenepithelium[J]. American Journal of Physiology Regulatory, Integrative andComparative Physiology,2007,292: R997-R1007.
    [61] G bel G, Vogler S, Martens H. Short-chain fatty acids and CO2as regulators ofNa+and Cl-absorption in isolated sheep rumen mucosa[J]. Journal of ComparativePhysiology B,1991,161:419-426.
    [62] Storeheier P V, Sehested J, Diernaes L, et al. Effects of seasonal changes in foodquality and food intake on the transport of sodium and butyrate across ruminalepithelium of reindeer[J]. Journal of Comparative Physiology B,2003,173:391-399.
    [63] Leonhard-Marek S, Martens H. Effects of potassium on magnesium transportacross rumen epithelium[J]. American Journal of Physiology Gastrointestinal andLiver Physiology,1996,271: G1034-G1038.
    [64] Bugaut M. Occurrence, absorption and metabolismof short chain fatty acids inthe digestive tract of mammals[J]. Comparative Biochemistry and Physiology B,1987,86:439-472.
    [65] MacLeod NA, rskov E R. Absorption and utilization of volatile fatty acids inruminants[J]. Canadian Journal of Animal Science,1985,64(Suppl.):354-355
    [66] Dijkstra J. Production and absorption of volatile fatty acids in the rumen[J].Livestock Production Science,1994,39:61-69.
    [67] Lopez S, Hovell F D De B, Dijkstra J, et al. Effects of volatile fatty acids supplyon their absorption and on water kinetics in the rumen of sheep sustained by gastricinflusions[J]. Journal of Animal Science,2003,81:2609-2616.
    [68] Dijkstra B J, Boer H, Bruchem J V, et al. Absorption of volatile fatty acids fromthe rumen of lactating dairy cows as influenced by volatile fatty acid concentration,pH and rumen liquid volume[J]. British Journal of Nutrition,1993,69:385-396.
    [69]熊本海,卢德勋,高俊.绵羊瘤胃VFA吸收速率及模型参数的研究[J].动物营养学报,1999,11(Suppl.):248-255.
    [70] Oshio S, Tahata I. Absorption of dissociated volatile fatty acids through therumen wall of sheep[J]. Canadian Journal of Animal Science,1984,64(Suppl.):167-168.
    [71] Lopez S, Hovell F D B, Macleod N A. Osmotic pressure, water kinetics andvolatile fatty acid absorption in the rumen of sheep sustained by intragastricinfusions[J]. British Journal of Nutrition,1994,71:153-168.
    [72] Tabaru H, Ikeda K, Kadota E, et al. Effects of osmolality on water, electrolytesand volatile fatty acids absorption from the isolated ruminoreticulum in the cow[J].Japanese Journal of Veterinary Science,1990,52:91-96.
    [73] Huntington G B. Energy metabolism in the digestive tract and live of cattle:Influence of physiological state and nutrition[J]. Reproduction Nutrition Development,1990,30:35-47.
    [74] Storm A C, Hanigan M D, Kristensen N B. Effects of ruminal ammonia andbutyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acidabsorption kinetics under washed reticulorumen conditions in lactating dairy cows[J].Journalof Dairy Science,2011,94:3980-3994.
    [75] Huntington G B, Reynolds P J. Net volatile fatty acid absorption in nonlactatingHolstein cows[J]. Journal of Dairy Science,1983,66:86-92.
    [76] Kristensen N B.Rumen microbial sequestration of [2-(13)C]acetate in cattle[J].Journal of Animal Science,2001,79:2491-2498.
    [77] Peters J P, Shen R Y W, Chester S T. Propionic acid disappearance from theforegut and small intestine of the beef steer[J]. Journal of Animal Science,1990,68:3905-3913.
    [78]熊本海,张子仪,卢德勋.间接法评定绵羊瘤胃丙酸产生、吸收和流通规律研究[J].畜牧兽医学报,2002,33:6-13.
    [79] Resende Júnior J C, Pereira M N, B er H, et al. Comparison of techniques todetermine the clearance of ruminal volatile fatty acids[J]. Journal of Dairy Science,2006,89:3096-3106.
    [80] Allen M S, Armentano L E, Pereira M N, et al. Method to measure fractional rateof volatile fatty acid absorption from the rumen.2000, Page26in Proc.25th Conf.Rumen Function, Chicago, IL.
    [81] Gross K L, Harmon D L, Avery T B. Portal-drained visceral fluxof nutrients inlambs fed alfalfa or maintained by total intragastric infusion[J]. Journal of AnimalScience,1990,68:214-221.
    [82] Ash R, Baird G D. Activation of volatile fatty acids in bovine liver and rumenepithelium[J]. Biochemal Journal,1973,16:311-319.
    [83] Leng R A, West C E. Contribution of acetate, butyrate, palmitate, stearate andoleate to ketone body synthesis in sheep[J].Research in Veterinary Science,1969,10:57-63.
    [84] Kristensen N B, Harmon D L. Splanchnic metabolism of volatile fatty acidsabsorbed from the washed reticulorumen of steers[J]. Journal of Animal Science,2004,82:2033-2042.
    [85] Weigand E, Young J W, McGILLIARD A D. Extent of propionate metabolismduring absorption from the bovine ruminoreticulum[J]. Biochemical Journal,1972,126:201-209.
    [86] Weekes T E C, Webster A J F. Metabolism of propionate in the tissues of thesheep gut[J]. British Journal of Nutrition,1975,33:425-438.
    [87] Weigand E, Young J W, McGILLIARD A D. Extent of butyrate metabolism bybovine ruminoreticulum epithelium and the relationship to absorption rate[J]. Journalof Dairy Science,1972,55:589-597.
    [88] Hird F J R, Symons R H.1961. The mode of formation of ketone bodies frombutyrate by tissue from the rumen and omasum of sheep[J]. Biochimica et BiophysicaActa,1961,46:457-467.
    [89] Leighton B, Nicholas A R, Pogson C I. The pathway of ketogenesis in rumenepithelium of the sheep[J]. Biochemical Journal,1983,216:769-772.
    [90] Baldwin V I R L. Use of isolated ruminal epithelial cells in the study of rumenmetabolism[J]. The Journal of Nutrition,1998,128:293S-296S.
    [91] Graham C, Simmons N L. Functional organization of the bovine rumenepithelium[J]. American Journal of Physiology-Regulatory, Integrative andComparative Physiology,2005,288: R173-R181.
    [92] Green K J, Simpson C L. Desmosomes: new perspectives on a classic[J]. Journalof Investigative Dermatology,2007,127:2499-2515.
    [93] Lavker R M, Matoltsy A G. Formation of horny cells: The fate of cell organellesand differentiation products in ruminal epithelium[J]. The Journal of Cell Biology,1970,44:501-512
    [94] Goodlad R A. Some effects of diet on the mitotic index and the cell cycle of theruminal epithelium of sheep[J]. Experimental Physiology,1981,66:487-499.
    [95] Odongo N E, AlZahal O, Lindinger M I, et al. Effects of mild heat stress andgrain challenge on acid-base balance and rumen tissue histology in lambs[J]. Journalof Animal Science,2006,84:447-455.
    [96] Shen Z, Seyfert H M, Lohrke B, et al. An energy-rich diet causes rumen papillaeproliferation associated with more IGF type1receptors and increased plasma IGF-1concentrations in young goats[J]. The Journal of Nutrition,2004,134:11-17.
    [97] Steele M A, AlZahal O, Hook S E, et al. Ruminal acidosis and the rapid onset ofruminal parakeratosis in a mature dairy cow: a case report[J]. Acta VeterinariaScandinavica,2009,51:39-44.
    [98] Tamate H, Kikuchi T. Electronmicroscopic study on parakeratotic rumenepithelium in beef cattle[J]. Japanese Journal of Veterinary Science,1978,40:21-30.
    [99] Hinders R G, Owen F G. Relation of ruminalparakeratosis development tovolatile fatty acid absorption[J]. Journal of Dairy Science,1965,48:1069-1073.
    [100] Nagaraja T G, Titgemeyer EC. Ruminal acidosis in beef cattle: The currentmicrobiological and nutritional outlook[J]. Journal of Dairy Science,2007,90:17-38.
    [101] Gozho GN, Plaizier J C, Krause D O, et al. Subacute ruminal acidosis inducesruminal lipopolysaccharide endotoxin release and triggers an inflammatoryresponse[J]. Journal of Dairy Science,2005,88:1399-1403.
    [102] Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosischallenge causes translocation of lipopolysaccharide and triggers inflammation[J].Journal of Dairy Science,2009,92:1060-1070.
    [103] Khafipour E, Krause D O, Plaizier J C. Alfalfa pellet-induced subacute ruminalacidosis in dairy cows increases bacterial endotoxin in the rumen without causinginflammation[J]. Journal of Dairy Science,2009,92:1712-1724.
    [104] Bobe G, Zimmerman S, Hammond E G, et al. Butter composition and texturefrom cows with different milk fatty acid compositions fed fish oil or roastedsoybean[J]. Journal of Dairy Science,2007,90:2596-2603.
    [105] Bu D P, Wang J Q, Dhiman T R, et al. Effectiveness of oils rich in linoleic andlinolenic acids to enhance conjugated linoleic acid in milk from dairy cows[J]. Journalof Dairy Science,2007,90:998-1007.
    [106] Liu S J, Wang J Q, Bu D P, et al. The effect of dietary vegetable oilseedssupplement on fatty acid profiles in milk fat from lactating dairy cows[J]. AgriculturalSciences in China,2007,6:1002-1008.
    [107]刘仕军,卜登攀,王加启,等.日粮添加LA和DHA对乳脂脂肪酸含量及比值的影响[J].动物营养学报,2008,20:515-521.
    [108]赵小伟.不同类型日粮对泌乳奶牛乳脂肪酸组成的影响[D].硕士学位论文.兰州:甘肃农业大学,2012.
    [109]中华人民共和国农业部. NY/T34-2004奶牛营养需要[S].北京:中国标准出版社,2004.
    [110] AOAC,2000. Official Method of Analysis of the Association of OfficialAnalytical Chemists.17th Edn., AOAC International, Gaithersburg, MD, USA.
    [111] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutraldetergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J].Journal of Dairy Science,1991,74:3583-3597.
    [112] Broderick G A, Kang J H. Automated simultaneous determination of ammoniaand total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science,1980,63:64-75.
    [113]王加启主编.2011.反刍动物营养学研究方法[M].现代教育出版社,北京.
    [114] McBurney M I, Van Soest P J, Chase L E. Cation exchange capacity andbuffering capacity of neutral detergent fibres[J]. Journal of the Science of Food andAgriculture,1983,34:910-916.
    [115] Haaland G L, Tyrrell H F, Moe P W, et al. Effect of crude protein level andlimestone buffer in diets fed at two levels of intake on rumen pH, ammonia-nitrogen,buffering capacity and volatile fatty acid concentration of cattle[J]. Journal of AnimalScience,1982,55:943-950.
    [116] Zebeli Q, Tafaj M, Weber I, et al. Effects of dietary forage particle size andconcentrate level on fermentation profile, in vitro degradation characteristics andconcentration of liquis-or solid-associated bacterial mass in the rumen of dairycows[J]. Animal Feed Science and Technology,2008,140:307-325.
    [117] Van Vuuren A M, Van der Koelen C J, Vroons-de Bruin J. Influence of level andcomposition of concentrate supplements on rumen fermentation patterns of grazingdairy cows[J]. Netherlands Journal of Agricultural Science,1986,34:457-467.
    [118]王吉峰,王加启,李树聪,等.不同日粮对奶牛瘤胃发酵模式及泌乳性能的影响[J].畜牧兽医学报,2005,36:569-573.
    [119] Brossard L,Martin C,Michalef-Doreau B. Ruminal fermentative parametersandblood acids-basic balance changs during the onset and recovery of induced latentacidosis in sheep[J]. Animal Research,2003,52:513-530.
    [120] Barker I K, Van Dreumel A A, Palmer, N. The alimentary system. Page1inPathology of domestic animals.4th.ed. Vol2.1995, K. V. F. Jubb, P. C. Kennedy, N.Palmer, ed. Academic Press, San Diego, CA.
    [121] Uppal S K, Wolf K, Khahra S S, et al. Modulation ofNa+transport acrossisolated rumen epithelium by short-chain fatty acids in hay-and concentrate-fedsheep[J]. Journal of Animal Physiology and Animal Nutrition,2003,87:380-388.
    [122] Udén P, Colucci P E, Van soest P J. Investigation of chromium, cerium andcobalt as markers in digesta. Rate of passage studies[J]. Journal of the Science ofFood and Agriculture,1980,31:625-632.
    [123] Garza F J D, Owens F N, Breazile J E. Effects of diet on ruminal liquid and onblood serum osmolality and hematocrit in feedlot heifers. MiscellaneousPublication-Agricultural Experiment Station, Oklahoma State University,1989,(127),68-76.
    [124] Christopherson R J, Webster A J F. Changes during eating in oxygenconsumption, cardiac function and body fluids of sheep[J]. The Journal of Physiology,1972,221,441-457.
    [125] Sehested J, Andersen J B, Aaes O, et al. Feed induced changes in the transportof butyrate, sodium and chloride ions across the isolated bovine rumen epithelium[J].Acta Agriculturae Scandinavica, Section A,2000,50:47-55.
    [126] Dirksen G U, Liebich H G, Mayer E. Adaptive changes of the ruminal mucosaand their functional and clinical significance[J]. Bovine Pract,1985,20:116-120.
    [127] Penner G B, Beauchemin K A, Mutsvangwa T, et al. Adaptation of ruminalpapillae in transition dairy cows as affected by diet[J]. Canadian Journal of AnimalScience,2006,86:578.
    [128] Andersen J B, Sehested J, Ingvartsen K L. Effect of dry cow feeding strategy onrumen pH, concentration of volatile fatty acids and rumen epithelium development[J].Acta Agriculturae Scandinavica, Section A,1999,49:149-155.
    [129] Penner G B, Taniguchi M, Guan L L, et al. Effect of dietary forage toconcentrate ratio on volatile fatty acid absorption and the expression of genes relatedto volatile fatty acid absorption and metabolism in ruminal tissue[J]. Journal of DairyScience,2009,92:2767-2781.
    [130] Owens F N, Secrist D S, Hill W J, et al. Acidosis in cattle: A review[J]. Journalof Animal Science,1998,76:275-286.
    [131] Beharka A A, Nagaraja T G, Morrill J L, et al. Effect of form of the diet onanatomical,and fermentative development of rumen of neonatal calves[J]. Journal ofDairy Science,1998,81:1946-1955.
    [132] Steele M A, Croom J, Kahler M, etal. Bovine rumen epithelium undergoesrapid structural adaptation during grain-induced subacute ruminal acidosis[J].American of Journal of Physiology-Regulatory,Integrative and ComparativePhysiology,2011,300:1515-1523.
    [133] Wang Y H, Xu M, Wang F N, et al. Effect of dietary starch on rumen and smallintestine morphology and digesta pH in goats[J]. Livestock Science,2009,122:48-52.
    [134]黄智南.日粮营养对前胃上皮生长和组织形态的影响[D].硕士学位论文.南京:南京农业大学,2010.
    [135]张双奇,昝林森,梁大勇,等.日粮精粗比对荷斯坦公犊瘤胃组织结构的影响[J].西北农林科技大学学报,2009,37:59-64.
    [136] Baldwin R L, Jesse B W. Developmental changes in glucose and butyratemetabolism by isolatedsheep ruminal cells[J]. The Journal of Nutrition,1992,122:1149-1153.
    [137] Gaebel G, Martens H, Suendermann M, et al. The effect of diet,intraruminal pHand osmolarity on sodium, chloride and magnesium absorptionfrom the temporarityisolated and washed reticulorumen of sheep[J]. Experimental Physiology,1987,72:501-511.
    [138] Henrikson R C. Ultrastructure of ovine ruminal epithelium and localization ofsodium in the tissue[J]. Journal of Ultrastructure of Research,1970,30:385-401.
    [139] Plaizier J C, Krause D O, Gozho G N, et al. Subacute ruminal acidosis in dairycows: The physiological causes, incidence and consequences[J].The VeterinaryJournal,2008,176:21-31.
    [140] Dirksen G, Liebich H G, Brosi G, et al. Morphologie der Pansenschleimhaut undFetts ureresorption beim Rind-bedeutende Faktoren für Gesundheit und Leistung[J].Zentralblatt fürVeterin rmedizin Reihe A,1984,31:414-430.
    [141] G bel G, Sehested J. SCFA transport in the forestomach of ruminants[J].Comparative Biochemistry and Physiology, Part A,1997,118:367-374.
    [142] Tamai I, Sai Y, Ono A, et al. Immunohistochemical and functionalcharacterization of pH-dependent intestinal absorption of weak organic acids bythe monocarboxylic acid transporter MCT1[J]. Journal of Pharmacy andPharmacology,1999,51:1113-1121.
    [143] Cuff M A, Lambert D W, Shirazi-Beechey S P. Substrate-induced regulation ofthe humancolonic monocarboxylate transporter, MCT1[J]. The Journal of Physiology,2002,539:361–371.
    [144] Halestrap A P, Meredith D. The SLC16gene family-from monocarboxylatetransporters (MCTs) to aromatic amino acid transporters and beyond[J]. PflügersArchiv-Eurpopean Journal of Physiology,2004,447:619-628.
    [145] Halestrap A P, Price N T. The proton-linked monocarboxylate transporter(MCT) family: structure, function, and regulation[J]. Biochemical Journal,1999,343:281-299.
    [146] Koho N, Maijala V, Norberg H, et al. Expression of MCT1, MCT2and MCT4in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.)[J].Comparative Biochemistry and Physiology, Part A,2005,141:29-34.
    [147] Sehested J, Diernaes L, Moller P D, et al. Transport of sodium across theisolated bovine rumen epithelium: interaction with short-chain fatty acids, chlorideand bicarbonate[J]. Experimental Physiology,1996,81:79-94.
    [148] Diernaes L, Sehested J, Moller P D, et al. Sodium and chloride transport acrossthe rumen epithelium of cattle in vitro: effect of shortchain fatty acids andamiloride[J]. Experimental Physiology,1994,79:755-762.
    [149] Zouzoulas A, Dunham P B, Blostein R. The effect of the gamma modulator onNa/K pump activity of intact mammalian cells[J]. Journal of Membrane Biology,2005,204:49-56.
    [150] Harrison F A, Keynes R D, Rankin J C, et al. The effect of ouabain on iontransport across isolated sheep rumen epithelium[J]. Journal of Physiology,1975,249:669-677.
    [151] Burke J M, Jaffe G J, Brzeski C M. The effect of culture density andproliferation rate on the expression of ouabain-sensitive Na/KATPase pumps incultured human retinal pigment epithelium[J]. Experimental Cell Research,1991,194:190-194.
    [152] McLeod K R, Baldwin R L. Effects of diet forage:concentrate ratio andmetabolizable energy intake on visceral organ growth and in vitro oxidativecapacityof gut tissues in sheep[J]. Journal of Animal Science,2000,78:760-770.
    [153] Kuzinski J, Zitnan R, Viergutz T, et al. Altered Na+/K+-ATPase expressionplays a role in rumen epithelium adaptation in sheep fed hay ad libitum or a mixedhay/concentrate diet[J]. Veterinarni Medicina,2011,56:35-47.
    [154] Brown A J, Goldsworthy S M, Barnes A A, et al. The Orphan Gprotein-coupled receptors GPR41and GPR43are activated by propionate and othershort chain carboxylic acids[J]. The Journal of Biological Chemistry,2003,278:11312-11319.
    [155] Nilsson N E, Kotarsky K, Owman C, et al. Identification of a free fatty acidreceptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids[J].Biochemical and Biophysical Research Communications,2003,303:1047-1052.
    [156] Wang A, Akers R M, Jiang H. Short communication: Presence of Gprotein-coupled receptor43in rumen epithelium but not in the islets of Langerhans incattle[J]. Journal of Dairy Science,2012,95:1371-1375.
    [157] Firth S M, Baxter R C. Cellul ar actions of theinsulin-like growth factor bindingproteins[J]. Endocrine Reviews,2002,23:824-854.
    [158] Baxter R C. Signalling pathways involved in antiproliferative effects ofIGFBP-3: a review[J]. Molecular Pathology,2001,54:145-148.
    [159] Bach B L. IGFBP-6five years on; not so “forgotten”?[J] Growth HormoneIGF Research,2005,15:185-192.
    [160] Naeem A, Drackley J K, Stamey J, et al. Role of metabolic and cellularproliferation genes in ruminal development in response to enhanced plane of nutritionin neonatal Holstein calves[J]. Journal of Dairy Science,2012,95:1807-1820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700