N-邻羟苯基取代氨基酸衍生物的设计合成及抗菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1998年,美国Tufts大学McMurry等发现三氯生是通过阻断细菌的脂肪酸合成而杀灭细菌的,首次证明负责编码脂肪酸合成的烯酰基-ACP还原酶(简称ENR)的FabI基因是其实质的作用靶标。随后的大量实验证明,“邻羟苯基”、“卤代邻羟苯基”等,是三氯生及其类似物抑杀病原体特异性基因的关键结构,可作为设计抗生化合物分子的核心结构单元。
     近年来研究发现,将氨基酸引入活性分子后,可以改变活性分子的性质,增强其对靶细胞的作用和选择性,还可增强药物对膜的透过性,提高生物利用度,因而被广泛地应用于药物的分子设计和产品开发。
     本课题以“邻羟苯基”、“卤代邻羟苯基”为母核,设计、合成了一系列N-(2-羟基苯基)桥连氨基酸类化合物。根据桥键的不同,将化合物进行如下分类:
     1.“邻羟苯基”、“卤代邻羟苯基”直接修饰的氨基酸类化合物以邻氨基苯酚和溴乙酸乙酯为起始原料,经N-烷基化反应后得到N-(2-羟基苯基)甘氨酸乙酯,然后在碱性条件下水解得到N-(2-羟基苯基)甘氨酸。同时,采用Ullmann反应,也可得到N-(2-羟基苯基)甘氨酸和N-(2-羟基苯基)缬氨酸,验证了氨基酸在Cu+的催化下加速了Ullmann反应。
     2.亚甲基为桥基的“邻羟苯基”、“卤代邻羟苯基”修饰氨基酸类化合物氨基酸和水杨醛先发生席夫碱缩合反应,经NaBH4还原后得到一系列的邻羟苄基氨基酸类化合物。将水杨醛溴化得到溴代的邻羟苄基氨基酸类化合物。通过对比反应揭示了水杨醛、溴代水杨醛与氨基酸反应的基本规律。在反应过程中,带有疏水性脂肪R基的氨基酸与水杨醛反应的速率较带有极性R基的氨基酸快;R基空间位阻越小,反应速率越快,其中,甘氨酸与水杨醛的反应速率最快。同时,单溴代后的席夫碱缩合反应更容易进行,二溴代时该效应更加明显,且伴随有收率增加的结果。
     3.甲酰胺基为桥基的“邻羟苯基”、“卤代邻羟苯基”修饰氨基酸化合物以水杨酸甲酯为起始原料,经过肼解、N-烷基化反应得到N-(2-羟基苯甲酰胺基)甘氨酸乙酯,经碱性水解得到N-(2-羟基苯甲酰胺基)甘氨酸。
     本文重点阐述了上述化合物的合成,研究了各类反应的影响因素及工艺条件,并探讨了一些反应的基本规律,推测了相关的反应机理。
     同时,本文对合成的大部分化合物进行了抑菌活性的测试,总结了抑菌活性和化合物结构之间的关系。
In 1998, McMurry from American Tufts University discovered that triclosan killed the bacterium by blocking the synthesis of fatty acid, which proved that the FabI gene of acyl-ACP reductive enzyme (ENR) was the essential target for the first time. A lot of experiments were done afterward, which indicated that“2-hydroxyphenyl, 2-hydroxy-halophenyl”were the key structures of triclosan and its analogues that can kill the pathogenic germs. So“2-hydroxyphenyl, 2-hydroxy-halophenyl”were thought to be the core unit of antibiotic structure design.
     According to the recent studies, active units can change their molecular properties、boost up their effects and selectivities to the target cell after linking amino acids, and this kind of structures also have a stronger permeance to the films and a higher biological usage. So this work is wildly applied in the drug molecule design and synthesis research.
     A series of N-(2-hydroxyphenyl)-amino acids derivatives were designed and synthesized based on the key unit of“2-hydroxyphenyl, 2-hydroxy-halophenyl”.
     1.“2-hydroxyphenyl, 2-hydroxy-halophenyl”linked amino acids directly N-(2-hydroxyphenyl)-glycine ethyl ester was obtained from 2-amino-phenol and bromo-acetic acid ethyl ester via N-alkylation, then the ester was hydrolyzed under the base condition to produce N-(2-hydroxyphenyl)-glycine. On the other hand, the above compounds also can be gained by Ullmann reaction, and the catalysis of amino acids with Cu+ was proved in this reaction.
     2.“2-hydroxyphenyl, 2-hydroxy-halophenyl”linked amino acids with methylene Salicylaldehyde and halo-salicylaldehyde were condensed with amino acids in the presence of sodium hydroxide to obtain amino acids Schiff base, which were reduced by NaBH4 to produce N-(2-hydroxylbenzyl)-amino acids and N-(2-hydroxyl-halobenzyl)-amino acids respectively. The condensation reaction may be much faster if the amino acids have hydrophobic small R group rather than the hydrophilic and big ones, such as Gly.. The condensation reaction would be more active with the halo-salicylaldehyde, especially with the 3,5-dibromo-salicylaldehyde.
     3.“2-hydroxyphenyl, 2-hydroxy-halophenyl”linked amino acids with N-methyl-acetamide [N'-(2-Hydroxy-benzoyl)-hydrazino]-acetic acid ethyl ester was obtained from 2-hydroxy-benzoic acid methyl ester via hydrazination and N-alkylation, then the ester was hydrolyzed to produce [N'-(2-Hydroxy-benzoyl)-hydrazino]-acetic acid.
     Meanwhile, the antibacterial activities of most compounds were tested, and the relationships between antibacterial activities and structures also were discussed.
引文
[1]李俊萍.三氯生的应用及主要合成方法[J].山东化工, 2003 (32)
    [2]张彪.三氯生在抗菌洗洁精中的应用研究[J].精细化工, 2001(5)
    [3]孙俊.消毒技术与应用[M].北京:化学工业出版社, 2003
    [4] McMurray L. M., Oethinger M, Levy S. B.Triclosan targets lipid synthesis[J]. Nature, 1998,394, 531~32
    [5] C.O. Rock, S. Jackowski. Forty years of bacterial fatty acid synthesis[J]. Biophys. Res. Commun, 2002, 292 ,1155~1166
    [6] Roberts C.W., McLeod R., Rice D.W., et al. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa[J]. Molecular&Biochemical Parasiteology, 2003, 126: 129~142
    [7] Levy C. W., Roujeinikovai A., Sedelnikova S., et al. Molecular Basis of Triclosan Activity[J]. Nature, 1999,398: 383~384
    [8] Perozzo R.,Kuo M.,Sidhu A.S., et al. Stuctural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase[J]. The Journal Of Biological Chemistry, 2002,277(15): 13106~13117
    [9] Jeff Zhiqiang Lu, Patricia J. Lee, Norman C. Waters ,et al. Fatty Acid Synthesis as a Target for Antimalarial Drug Discovery[J]. Combinatorial Chemistry & High Throughput Screening, 2005, 8: 15~26
    [10] Campbell, J.W., Cronan Jr., J.E. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery[J]. Annu. Rev. Microbiol., 2001,55, 305~332
    [11] White, S.W., Zheng, J., Zhang, Y.M.,et al. The structure biology of typeII fatty acid biosynthesis[J]. Annu. Rev. Biochem.,2005, 74, 791~831
    [12] Magnuson, K., Jackowski, S., Rock, C.O.et al. Regulation of fatty acid biosynthesis in Escherichia coli[J]. Microbiol. Rev. , 1993, 57, 522~542
    [13] Parikh S.L.,Xiao G.P., Tonge P.J. Inhibition of InhA, the Enoyl Reductase from Mycobacterium tuberculosis by Triclosan and Isoniazid[J]. Biochemistry, 2000,39(26), 7645~7650
    [14] Sharada Sivaraman .Inhibition of the Bacterial Enoyl Reductase FabI by Triclosan:A Structure-Reactivity Analysis of FabI Inhibition by Triclosan Analogues[J].J.Med.Chem.2004, 47, 509~518
    [15] Heath,R.J.,Yu,Y.T.,Shapiro,M.A., et al.. Broad Spectrum Antimicrobial Biocides Target the FabI Component of Fatty Acid Synthesis[J]. The Journal OF Biological Chemistry, 1999,273(46): 30316~30320
    [16] Sharada Sivaraman et al. Structure-Activity Studies of the inhibition of FabI,the Enoyl Reductase from Escherichia coli by Triclosan : Kinetic Analysis of Mutant FabI[J]. Biochemistry , 2003, 42, 4406~4412
    [17] Stewart M. J., Parikh S., Xiao G., et al. Structural Basis and Mechanism of Enoyl Reductase Inhibition by Triclosan[J] . J. Mol. Biol. 1999,290, 859~865
    [18] Heath R. J., Rock C O. A triclosan-resisitant bacterial enzyme[J]. Nature, 2000, 406,145-146
    [19] Ward, W. H.; Holdgate, G. A.; Rowsell, S.,et al. Kinetic and structural characteristicsof the inhibition of enoyl (acyl carrier protein) reductase by triclosan[J]. Biochemistry,1999, 38, 12514~12525
    [20] Sivaraman, S., Zwahlen, J., Bell, A. F., et al. Structure-Activity Studies of the Inhibition of FabI, the Enoyl Reductase from Escherichia coli by Triclosan: Kinetic Analysis of Mutant FabIs[J]. Biochemistry , 2003, 42, 4406~4413
    [21]田少雷,赵树纬,朱爱堂.药学学报,1993,28,870
    [22] El-Naggar. A Metal Arab Gluf[J]. J. SciRes,1983,1(1):131~139
    [23] El-Naggar. A Metal Glas Hem DrusBeograd[J]. J. Serd ChemSoc,1984,49(9):527~32
    [24] El-Naggar A Metal[J].J. Serd ChemSoc,1986,51(9~10):441~447
    [25]高达敏.多巴胺肽类衍生物的合成及其对心功能的响[J].药学学报,1989,24:422
    [26]戈平.柔红酮和阿霉酮肚衍生物的合成[J].药学学报, 1987,22:254
    [27] El-Naggar. [J]. A Metal.J. Serd ChemSoc., 1987,31(6~7):241~6
    [28] Ibrahim. [J]. T Metal.Asian J. Chem., 1992, 4(4):909~16
    [29] Ibrahim. [J]T Metal.Bol Soc Quim Peru,1993,59(3):135~41
    [30] Shalaby A. M.. Maximum achievable throughputs for uncoded OPPM and MPPM in optical direct-detection channeld[J]. Egppt J Pharm Sci., 1993,34(4-6):699~710
    [31] Kora F Aetal. Directed metalation of pyridinesulpphonamides synthesis of pyridine-fused and 1,2-athioles[J]. Indian J Heterocycl Chem.,1992,2(1):29~34
    [32]毕思玮,李桂芝,徐承水. N-亚水杨基酸及其铜(Ⅱ)配合物的合成、表征及其抗菌活性[J].《化学工程师》,1995, 51(6)
    [33]毕思玮,高恩庆,田君濂. N-亚水杨基氨基酸3d金属配合物的合成、表征和抑菌活性[J].应用化学,1995, 12(6)
    [34]毕思玮,李桂芝.亮氨酸水杨醛席夫碱及其锌(Ⅱ)配合物的合成、稳定性和抗菌活性[J].四川师范学院学报(自然科学版),1996(9)
    [35] Worbleski,J.T.[J]. Inorg. Chem., 1977,16,2752
    [36]吴自慎. N-氧化吡啶-2-甲醛氨基酸类Schiff碱的钼(Ⅵ)配合物的合成与表征[J].华中师范大学学报,1983,2(1):61
    [37] Basob. F.Noble gas-transition metal complexes coordination of Sco+ by multiple Ar,Kr and Xe[J]. Coordination Chem., 1980, 20, 15
    [38]宋会花,王修建,从彦丽.钼一氮氧化吡啶系列Schiff碱配合物的研究[J].应用化学,1997, 8(4)
    [39] Ngoh Khang Goh,Chit Kay Chu, Lian Ee Khoo.Thesynthesis,structural characterization and biocidal properties of some triorganotin(Ⅳ) ester of N-arylidene-w-amino acids[J].Applied Organometallic Chemistry,1998,12,457-466
    [40] SunH,Lih, Sadler PJ.Chem.Ber[J].1997,130,669
    [41]李锦州,安郁美,王天赤.噻吩甲酰基吡唑啉酮缩氨基酸稀土配合物的合成、表征及生物活性[J].无机化学学报,2004,20(8)
    [42] Sadler PJ,LiHY,SunHZ.Coord.Chem.Rev.[J].1999,186,689
    [43] Briand G.G., Burford N. DNA-bingding property and antitumor activity of bismuth complex[J]. Chem.Rev., 1999,99,2601
    [44] Ming-Zhao Wang, Zhao-Xing Meng, Bo-Li Liu, Guan-Liang Cai. Inorganic Chemisty Communications[C].2005, 8, 368-371
    [45] YE Yong,HU Ji-Ming,ZENG Yun-E. Polyoxometalate materials, metal-containing materials[J]. WujiHuaxue Xuebao, 1998, 14(1):84
    [46]孟凡德,赵全芹,李明霞.银-氨基酸席夫碱配合物的合成、表征及对烟草花叶病毒抑制作用初探[J].化学试剂,2000,22(3):176-177
    [47]周丽芳,倪家宝,冼美明.非天然氨基酸N-保护的D-(L-)4-吡啶丙氨酸的合成研究[J].氨基酸和生物资源,2000,22(3):33-36
    [48]李锦州,安郁美,王天赤.噻吩甲酰基吡唑啉酮缩氨基酸稀土配合物的合成、表征及生物活性[J].无机化学学报,2004,120(8)
    [49] G. Oros, I. Ujvdry, R. J. Nachman.Antimicrobial activity of o-carboranylalanine[J]. Amino Acids, 1999, 17,357-368
    [50] Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences[J]. Trends Microbiol, 2000, 8, 402–410
    [51] Risso A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity[J]. J. Leukoc Biol., 2000, 68, 785–92
    [52] Sugimori T., Masuda H., Ohata N. et al. Chemical binding in hypervalent molecules[J]. Inorg. Chem.[J].1997,36 ,576
    [53]李红,乐学义,计量年.邻菲咯啉-铜(Ⅱ)-L-亮氨酸配合物与DNA的结合[J].化学通报, 2003, 66(12): 847-850
    [54]李红,乐学义,吴建中.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究[J].化学学报, 2003, 61(2): 245-250
    [55]宋智君,乐学义.多吡啶氨基酸铜配合物研究进展[J].广东化工, 2004(6)
    [56] Makoto Chikira,Yuji Tomizawa,Dai Fukita,et a1. DNA-binding and cleavage studies of novel binuclear copper(Ⅱ) complex with 1,1’-dimethyl-2,2’-biimidazole ligand[J]. Journal of Inorganic Biochemistry, 2002, 89:163
    [57]徐石海,岑颖洲,曾陇梅.杂环生物碱类化合物的分离及结构鉴定[J].有机化学, 2000, 20, 248
    [58]曾向潮,徐石海,李毅群. Aldisin及其衍生物的合成和葡萄糖苷酶抑制活性研究[J].有机化学, 2005, 25(8):954-958
    [59] Annoura H.,Tatsuoka. Zinc-mediated radical reaction of per-florophenyl-phyrin[J] Tetrahedron Lett, 1995, 36, 413
    [60]洪爱华,尹平河,赵玲等.碘伏和异噻唑啉酮灭杀球形棕囊藻机理的初步研究[J].暨南大学学报(自然科学版), 2005, Jun., 26(3):396-400
    [61]曾向潮,徐石海,李毅群. N-(2-吡咯甲酰基)氨基酸甲酯的合成[J].有机化学, 2004, 24(7): 802-805
    [62]王占岳,花文廷,程桂芳.手性多取代吡咯的合成和抗炎活性[J].化学研究与应用, 1998, 10(3):290—292
    [63]刘长令.农用杀菌剂开发的新进展[M].农药科学与管理, 2000, 21(3)
    [64] Larrick J.W., Hirata M., Balint R.F.. Human CAP18: a novel antimicrobial lipopolysac -charide -binding protein[J]. Infect Immun., 1995, 63:1291-1297
    [65] Kirikae T., Hirata M., Yamasu H. et al. Protective effects of a human 18-killodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia[J]. Infect Immun., 1998, 66:1861-1868
    [66] Levy O.,Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents[J]. Blood, 2000, 96: 2664-2672
    [67] Nagaoka I., Hirota S., Niyonsaba F. et al. Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-a by blocking the binding of LPS to CD14+ cells[J]. J. Immunol, 2001, 167:3364-3373
    [68] Hancock REW, Lehrer R.. Cationic peptides: a new source of antibiotics[J]. Trends Biotechnol, 1998, 16:82-88
    [69] Hancock REW, Scott MG. The role of antimicrobial peptides in animal defenses[J]. Proc Natl Acad Sci. USA, 2000, 97: 8856-8861
    [70] M. Roice,1 G. Suma, K. S. Kumar.et al. Synthesis of Esculentin-1 Antibacterial Peptide Fragments on 1,4-Butanediol Dimethacrylate Cross-Linked Polystyrene Support[J]. Journal of Protein Chemistry, 2001, 20(1)
    [71] Pawe? Mak, Kinga W′ojcik, Jerzy Silberring et al. Antimicrobial peptides derived from heme-containing proteins: Hemocidins[J]. Antonie van Leeuwenhoek, 2000, 77:197-207
    [72] Anne-Marie Bencivengo 1, Mare Cudic 1, Ralf Hoffmann 2. et al.The efficacy of the antibacterial peptide, pyrrhocoricin, is finely regulated by its amino acid residues and active domains[J]. Letters in Peptide Science, 2002, 8:201-209
    [73] K. Abiraj, A. S. Prakasha Gowda, D. Channe Gowda. Synthesis of shorter active analogues of Bactenecin7: The effect of change of N-terminal configuration on antimicrobial activity[J]. Letters in Peptide Science, 2003, 9:283-290
    [74] I. Nagaoka, K. Kuwahara-Arai, H.Tamura, K. Hiramatsu.et al. Augmentation of the bactericidal activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by amino acid substitutions[J]. Inflamm. res., 2005, 54, 66-73
    [75]陈振峰,章明,石少明等. 2-氨基苯并噻唑合硝酸银(Ⅰ)的合成、晶体结构及抑菌活性[J].应用化学, 2005, 22(7):730-733
    [76]梁芳珍. 3,5-二溴取代水杨醛[J].应用化学, 2003, 20(7):693-695
    [77] Gutkowska,Bozena,Biniecki.et al. Preparation of aminoethylamides and guanylhydrazides of aromatic acids[J]. Acta Polon. Pharm., 1962, 19: 243-249
    [78] Micheal J.A., Laurence D.H..Improved Synthesis of acids for use in solid phase peptide synthesis[J]. Chem. Soc. Chem.Comm. 1979, 234
    [79] Joseph Topich. Schiff base complexes of zirconium(Ⅳ)[J]. lnorg.Chem., 1981, 20, 3704
    [80] Piero Zanllo, Tamburini S., Vigato P.A. et al. Protein and nucleotide binding sites[J]. Coor.Chem.Rev., 1987, 77, 165
    [81] Neets Kanoonga, Panvir Singh, Tandon J. P. . Amino acids-benzene substrates is the p-isomer[J]. Bull. Chem. Soc .Jpn., 1989, 62, 1385
    [82]杨海峰,王惠,段锦霞.有机配体Schiff碱-(2-羟基苯基)-亚氨基-戊-2-酮的从头算研究[J].冉新权无机化学学报, 2001, 17(2):20-22
    [83] Dawei Ma, Yongda Zhang, Jiangchao Yao. et al. Accelerating Effect Induced by the Structure of R-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides with R-Amino Acids. Synthesis of Benzolactam-V8, J.Am.Chem.Soc.,1998, 120,12459-12467
    [84] Lang D., Zewge, Houpis I.N. et al. Copper-caralyzed aryl amination in aqueous solvents[J]. Tetrahedron Letters, 2005, 46, 2997–3001
    [85] Abdel Moneim El Massry1, Adel Amer, Yousry M. Gohar.A versatile synthetic route to chiral quinoxaline derivatives from amino acids precursors Ayman El-Faham1[J]. Letters in Peptide Science, 2002, 9:49-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700