ACCase与除草剂相互作用的分子模拟及反抗性除草剂的计算设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪40年代以来,除草剂就一直被用于农田防除杂草,但是随着长期和大面积的使用,杂草对除草剂的抗性也随之而来,特别是单一靶标的除草剂。抗性杂草的出现,特别是交互抗性,给常规的防除方法带了巨大的困难。同时也使得许多除草剂的使用寿命缩短。例如,澳大利亚麦田抗禾草灵的瑞士黑麦草(A.myosuroides)产生代谢交互抗性,为害面积达0.5×108hm~2,并为害其他作物。因此,了解和研究杂草抗药性的发生和形成机理是现代农药开发和研究中的一项重要任务,基于抗性机理的反抗性除草剂设计也显得尤为重要。
     ACCase是植物代谢过程中催化植物脂肪酸合成的关键酶,它包含有三个亚基,分别为BC、CT和BCCP,其中CT亚基为本论文的研究范畴。CT的生物功能主要为催化乙酰辅酶A形成丙二酸单酰-辅酶A,然后在脂肪酸合成酶作用下形成脂肪酸。APP类和CHD类为CT的两类主要的抑制剂类型,早在80年代这两类抑制剂就被广泛的应用于防除禾本科杂草,但是由于连续使用最终导致了抗性杂草的出现。到目前为止,已经发现有35种禾本科杂草对该类除草剂产生了抗性,主要分布在美国、加拿大、澳大利亚等14个国家。抗性机制主要分为两类:靶酶突变和代谢加速,其中靶酶突变为主要的抗性机制,文献中已报道了多个抗性突变位点。但是对于高等植物中CT的三维结构及其与抑制剂的结合方式仍然未知,分子水平上的抗性机制的研究无法进行。直到2003年,Tong.L等首次报道了酵母中CT的游离型和复合物型的晶体结构,这就为研究高等植物中CT的性质奠定了基础。本论文的主要研究内容如下:
     首先,通过文献查阅和CT一级序列的网络搜索,选取狗尾草中CT抗性型和敏感型的氨基酸序列,以酵母中CT为模板进行同源模建,经过二聚体构建和分子动力学模拟得到了二者的稳定构象。对比二者的构象,我们发现第695位(等同于另一个单体的142位)氨基酸残基的空间取向是不一致的,在敏感性靶酶(foxACC-2S)中,Ile-695的支链是伸向活性腔外部的,而在抗性型靶酶(foxACC-2R)中,Leu-695的支链是伸向活性腔内部的,从而干扰了蛋白质与抑制剂的结合,产生抗性。这是从分子水平上阐述I695L突变产生抗性的分子机制。同时,我们还采用分子对接的方法研究了敏感型CT与APP类抑制剂的结合方式,发现了两个对抑制剂结合起重要作用的氨基酸残基(Ser-698和Tyr-728),为合理药物设计奠定了基础。
     其次,根据2005年Délye等的报道,选取看麦娘中CT的氨基酸序列,以酵母中CT为模板进行同源模建,得到了来源于看麦娘的游离型CT(AJ_free)和抑制剂复合型CT(AJ_com)的三维结构。通过对比发现,两者的构象变化与晶体结构一致。同时,AJ_com模型中受体与配体的结合方式也与晶体复合物类似,从而证明我们所得模型的可靠性。在此基础上,进一步采用手动对接和分子动力学的方法研究了CT与四种APP类抑制剂的相互作用,对每个体系分别进行MM/PBSA和熵的计算,计算得到的结合自由能的定性趋势与实验值一致,进一步从另一侧面证明了模型的可靠性,同时也说明了结合方式是可信的以及采用手动对接研究相似骨架化合物结合方式的方法是可行的。四种APP类抑制剂的结合方式用于后续的抗性机制研究。
     再次,针对上面的结合方式,采用直接进行氨基酸突变和分子动力学模拟相结合的方法,研究了CT中W374C、I388N、D425G和G443A四个抗性位点的抗性机制。一共进行了16个体系的分子动力学模拟和MM/PBSA及熵的计算。结果显示,与野生型靶酶相比,抗性靶酶对APP类抑制剂的结合力发生了不同程度的下降,从而使得结合自由能减小,最终表现出抗性。对于D425G和G443A两个远距离抗性位点,其抗性机制是通过改变或破坏了388-446段氨基酸残基链的Hbond网络,进而带动了活性腔内重要的氨基酸残基发生构象变化,降低了受体与配体之间的范德华或者Hbond相互作用,从而产生抗性。以上抗性机制研究为进一步的反抗性分子设计提供了良好基础。
     最后,在上述的16个突变体系中随机选择了hal_388和dicl_425两个体系开展了反抗性分子设计研究。在不改变抑制剂骨架的基础上,通过改变取代基,调节受体与配体之间的焓变或者熵变,目的就是使得体系的结合自由能增大,克服抗性。结果显示,在haloxyfop分子上把吡啶环邻位-Cl原子取代为-CN,可以增大体系的焓变,而在diclofop分子上把苯环邻位-Cl原子取代为-CH_3,可以增大体系的熵变。以上分子设计为进一步开展反抗性除草剂的合成奠定了理论依据。
Since the 1940s,herbicide has been used for control of weeds in the farmland.But along with the long-term and big area use,the weed's resistance appeared,especially for herbicide only having the single target.And then,it did not easy to control weed by using the general method.At the same time, the service live of many herbicides was reduced.For example,A.myosuroides,which is resistant to diclofop in the Australian wheat field,shows cross-resistance to many herbicides,damages the area to reach 0.5×108hm~2,and damages other crops.Therefore,studying resistant mechanism becomes very important.And then designing anti-resistance inhibitor would be an arduous task for researchers.
     ACCase is the key enzyme in the plant metabolism process catalyzing the plant fatty acid biosynthesis.It contains three subunits:BC,CT and BCCP.The CT subunit is our research category, whose biological function is mainly to catalyze acetyl-CoA to form malonyl-CoA,and then forms the fatty acid under the Fattyacidsynthetase.APPs and CHDs are the two kind of mainly inhibitor type for CT.As early as in 1980s,they had been widely used for control gramineous weed,and they had caused the resistant weed's appearance finally.So far,already discovered that some 35 kind of gramineous weed,mainly distributing in the US,Canada,Australia and so on 14 countries,have showed resistance to APPs and CHDs.The resistant mechanism mainly contains two types:target enzyme mutation and metabolism acceleration.And the former is the main resistant mechanism. Many resistant sites had been reported in the literatures.As to higher plant,the 3D-structure of CT and its binding model with inhibitor were unknown,and the resistant mechanism research in molecular level is unable to carry out.Until 2003,Tong.L et al reported for the first time the crystal structure of CT from yeast in the form of free enzyme and complex with inhibitors,which has laid the foundation for the research in the higher plant.This dissertation may be summarized as follows:
     Firstly,through the literature consult and the network search for CT's primary sequence,we select the sensitive and resistant CT sequence from foxtail millet to carry on the homology modeling. The two sable conformations were obtained followed by the dimer construction and the molecular dynamics simulation.Comparing the conformation of these two models,we found that the spatial orientation of residue 695 is different from each other.In foxACC-2S,the Ile-695 extends its side chain outside the active site,while Leu-695 in foxACC-2R extended its side chain toward the cavity of the active site,inhibiting the entrance of ligand.It is the first time we elaborated from the molecular level the resistant mechanism of I695L.Simultaneously,using molecular docking,we study the interaction between the sensitive CT and APPs inhibitors,and discover two important amino acid residues(Ser-698 and Tyr-728),which would laid the foundation for the reasonable medicine design.
     Secondly,according to Délye et al reports in 2005,selects the sequence of CT from A. myosuroides to be used for homology modeling.The two models(AJ_free and AJ_com) were obtained alter molecular dynamics simulation.The difference between AJ_free and AJ_com in conformation is consistent with the difference between the crystal structures.The binding model in AJ_com is similar to the crystal complex structure.These results had proven the models we obtained are credible.And then,based on manual docking and molecular dynamics methods,the binding model between CT and four APPs inhibitors were obtained.We carried on the MM/PBSA and entropy computations for every system.The tendency obtained from computing binding free energy is consistent with the experiment value.So,from another point of view,these results had proven the model accuracy and the binding model's accuracy,simultaneously,also showed the method of manual docking for similar skeleton compound was feasible.And the binding models of four APPs inhibitors were used in the following resistance mechanism research.
     Thirdly,combining with the amino acid mutation directly and molecular dynamics simulation, the resistant mechanism of four resistant sites(W374C,I388N,D425G and the G443A) for each compound were studied.There are all sixteen mutated systems.We carried on the MM/PBSA and entropy computation for each system.The results show that the binging free energy was reduced by enthalpy and entropy for each mutated system.The enthalpy mainly manifests for VDW interaction or the Hbond interaction between acceptor and ligand,the entropy mainly represents by the conformation entropy.Meanwhile,as to D425G and G443A,belonging to the non-active site,they firstly changed or broken the Hbond network of 388-446,then led the residues in the active site to have the conformation change.Therefore,the binding free energy was reduced by VDW or Hbond interaction between receptor and ligand.The resistant mechanism provides the theory instruction for anti-resistant design.
     Finally,we randomly selected two mutated system for re-designing anti-resistant compound. Based on not changing the inhibitor's skeleton,we substituted different groups in order to increasing the binding free energy between receptor and ligand.The results show that the enthalpy would increase by substituting o-Cl to-CN for the haloxyfop,and the entropy would increase by substituting o-Cl to -CH_3 for diclofop.When the binding free energy increased,the resistance would be overcome. All these results would be helpful for synthesis anti-resistant herbicide.
引文
1.Burton,J.D.;Gronwald,J.W.;Somers,D.A.;Connelly,J.A.;Gengenbach,B.G.;Wyse,D.L.Inhibition of plant Acetyl-Coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop.Biochem.Biophys.Res.Commun.1987,148,1039-1044.
    2.Marshall,L.C.;Somers,D.A.;Dotray,P.D.;Gengenbach,D.L.;Gronwald,J.W.Allelic mutations in Acetyl-Coenzyme A carboxylase confer herbicide tolerance in maize.Theor.Appl.Genet.1992,83,435-442.
    3.Egli,M.A.;Gengenbach,B.G.;Gronwald,J.W.;Somers,D.A.;Wyse,D.L.Characterization of maize Acetyl-Coenzyme A carboxylase.Plant Physiol.1993,101,499-506.
    4.De,Prado.R.;Gonzalez-Gutierrez,J.;Menendez,J.;Gasquez,J.;Gronwald,J.W.;Gimenez-Espinosaet,R.Resistance to Acetyl CoA carboxylase-inhibition herbicides in lolium multiflorum.Weed.Sci.2000,48,311-318.
    5.Boldt,L.D.;Barrett,M.Effects of diclofop and haloxyfop on lipid synthesis in corn(Zea mays)and bean(Phaseolus vulgaris).Weed Sci.1991,39,143-148.
    6.Taylor,W.S.;Hixon.M.;Chi,H.;Marsilii,E.;Rendina,R A.Inhibition of Acetyl-Coenzyme A carboxylase by coenzyme a conjugates of grass-selective herbicides.Pesticide Sci.1995,43,177-180.
    7.Devine,M.D.Mechanisms of resistance to Acetyl-Coenzyme A carboxylase inhibitors.Pestic.Sci.1997,51,259-264.
    8.Babczinski,P.;Fischer,R.Inhibition of acetyl-coenzyme a carboxylase by the novel grass-selective herbicide 3-(2,4-dichlorophenyl)-perhydroindolizine-2,4-dione.Pestic.Sci.1991,33,455-466.
    9.Matthews,N.;Powles,S.B.;Preston,C.Mechanisms of resistance to Acetyl-Coenzyme A carboxylase-inhibiting herbicides in a hordeum leporinum population.Pest.Manag.Sci.2000,56,441-447.
    10.Wakil,S.J.A malonic acid derivative as an intermediate in fatty acid synthesis,J.Am.Chem.Soc.1958,80,6465.
    11.靳莉.;任天瑞.;向文胜.;陈馥衡.乙酰辅酶A羧化酶抑制剂的研究进展.农药学学报.2002,4,9-17.
    12.Kannangara,C.G.;Stumpf,P.K.Fat metabolism in higher plants.LIV.A prokaryotic type acetyl CoA carboxylase in spinach chloroplasts.Arch.Biochem.Biophys.1972,152,83-91.
    13.Tanabe,T.;Wada,K.;Okazake,T.;Numa,S.Acetyl-coenzyme-A carboxylase from rat liver.Subunit structure and proteolytic modeification.Eur.J.Biochem.1975,57,15-24.
    14.Harwood,J.L.Fatty acid metabolism.Annu.Rev.Plant.Physiol.Plant.Mol.Biol.1988,39,101-138.
    15.Ohyama,K.;Fukuzawa,H.;Kohchi,T.;Shirai,H.;Sano,T.;Sano,S.;Umesono,K.;Shiki,Y.;Takeuchi,M.;Chang,Z.;Aota,S.;Inokuchi,H.;Ozeki,H.Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA.Nature.1986,322,572-574.
    16.Shinozaki,K.;Ohme,M.;Tanaka,M.;Wakasugi,T.;Hayashida,N.;Matsubayashi,T.;Zaita,N.;Chunwongse,J.;Obokata,J.;Yamaguchi-Shinozaki,K.;Ohto,C.;Torazawa,K.;Meng,B.Y.;Sugita,M.;Deno,H.;Kamogashira,T.;Yamada,K.;Kusuda,J.;Takaiwa,F.;Kato,A.;Todoh,N.;Sugiura,M.The complete nucleotide sequence of the tobacco chloroplast genome:Its gene organization and expression.EMBO.J.1986,5,2043-2049.
    17.Herbert,D.;Walker,K.A.;Price,L.J.;David,J.C.;Kenneth,E.P.;Ruclley,S.M.;Harwood,J.L.Acetyl-CoA carboxylase-a graminicide target site.Pestic.Sci.1997,50,67-71.
    18.Gengenbach.Transgenic plants expressing maize acetyl CoA carboxylase gene and method of altering oil content.United States Patent,6,222,099,2001-4-24.
    19.赵虎基.;王国英.植物乙酰辅酶A羧化酶的分子生物学与基因工程.中国生物工程杂志.2003,23,12-16.
    20.Sasaki,Y.;Nagano,Y.Plant acetyI-CoA carboxylase:structure,biosynthesis,regulation and gene manipulation for plant breeding.Biosci.Biotechnol.Biochem.2004,68,1175-1184.
    21.Kondo,H.;Shiratsuchi,K.;Yoshimoto,T.;Masuda,T.;Kitazono,A.;Tsuru,D.;Anai,M.;Sekiguchi,M.;Tanabe,T.Acetyl-CoA carboxylase from Escherichia coli:gene organization and nucleotide seauence of the biotin carboxylase subnnit.Proc.Natl.Acas.Sci.USA.1991,88,9730-9733.
    22.Kozaki,A.;Ayuni,M.K.;Sasaki,Y.;Thioi-Disulfide exchange between nuclear-encode and chloroplast-encoded subunit of pea caetyl-CoA carboxylase,J.Biol.Chem.2001,276,39919-39925.
    23.Choi-Rhee,E.;Cronan,J.E.Jr.The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase.J.Biol.Chem.2003,278,30806-30812.
    24.Wakil,S.J.;Stoops,J.K.;Joshi,V.C.Fatty acid synthesis and its regulation.Ann.Rev.Biochem.1983,52,537-579.
    25.Nikolau,B.J.;Ohlrogge,J.B.;Wurtele,E.S.Plant biotin-containing carboxylases.Arch. Biochem.Biophys.2003,414,211-222.
    26.Schulte,W.;Topfer,R.;Stracke,R.;Schell,J.;Martini,N.Multi-functional acetyl-CoA carboxylase from Brassica napus encode by a multi-gene family:indication for plastidic calization of at least one isoform.Proc.Natl.Acad.Sci.USA.1997,94,3465-3470.
    27.Diacovich,L.;Peiru,S.;Kurth,D.;Rodriguez,E.;Podesta,E;Khosla,C.;Gramajo,H.Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2).J Bio.Chem.2002,277,31228-31236.
    28.H(u|¨)gler,M.;Krieger,R.S.;Jahn,M.;Fuchs,G.Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula.Eur.J.Biochem.2003,270,736-744.
    29.Curtis,A.;Carison,KI-HAN KIM.Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation.J.Biol.Chem.1973,248,378-380.
    30.Foufelle,F.;Ferre,P.New perspective in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose:a role for the transcription factor sterol regulatory element binding protein-1c.Biochem.J.2002,366,377-391.
    31.Oh,S.Y.;Park,S.Y.;Kim,J.W.;et al.Acetyl-CoA carboxylase b gene is regulated by sterol regulatory element-binding protein-1 in liver.J.Biol.Chem.2003,278,28410-28417.
    32.Herbert,D.;Price,L.J.;Alban,C.;et al.Kinetic studies on two isoforms of acetyl-CoA carboxylase from maze leaves.Biochem.J.1996,318,997-1006.
    33.Sasake,Y.;Kozaki,A.;Hatano,M.Link between light and fatty acid synthesis:Thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase.Proc.Natl.Acad.Sci.USA.1997,94,11096-11101.
    34.Sauer,A.;Heise,K.P.Regulation of acetyl-coenzyme A carboxylase and acetyl-coenzyme A synthetase in spinach chloroplasts.Z Naturforsch.1984,39,C,268-274.
    35.黄世霞.;王庆亚.;董立尧.;娄远来.乙酰辅酶A羧化酶抑制剂类除草剂与杂草的抗药性.杂草科学.2003,2,1-5.
    36.Kozaki,A.;Kamada,K.;Nagano,Y.;et al.Recombinant carboxyltransferase responsive to redox of pea plastidic acety-CoA carboxylase,J.Biol.Chem.2000,275,10702-10708.
    37.Page,R.A.;Okada,S.;Harwood,J.L.Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants.Biochim Biophys Acta.1994,1210,369-372.
    38.Shintani,D.K.;Ohlrogge,J.B.Feedback inhibition of fatty acid synthesis in tobacco suspension cells.Plant J.1995,7,577-587.
    39.任康太.;李慧英.;杨华铮.芳氧苯氧丙酸酯类除草剂的合成及构效关系研究.农药译丛.1998,20,23-45.
    40.Maier,A.;Golz,A.;Lichtenthaler,H.K.;Meyer,N.;Retzlaff,G.Studies on the effect of different cyclohexane-1,3-diones on de-novo fatty acid biosynthesis in poaceae.Pestic Sci.1994,42,153-161.
    41.Slabas,A.R.;Hellyer,A.;Bambridge,H.E.The basic polypeptide subunit of rape leaf Acetyl-CoA carboxylase is a 220 kDa protein.Biochem.Soc.Trans.1986,14,716.
    42.Focke,M.;Feld,A.;Lichtenthaler,H.K.Inhibition of early steps of de novo fatty-acid biosynthesis by different xenobiotica.Physiol.Plant.1991,81,251-255.
    43.Alberts,A.W.;Vagelos,P.R.Acyl-CoA carboxylases.In:The Enzymes,1972,vol.6,pp.37-82,Boyer P.D.(ed.),Academic Press,New York.
    44.Cronan,J.E.;Waldrop,G.L.Multi-subunit acetyl-CoA carboxylase.Prog.Lipid.Res.2002,41,407-435.
    45.Knowles,J.R.The mechanism of biotin-dependent enzymes.Ann.Rev.Biochem.1989,58,195-221.
    46.Tong,L.Acetyl-coenzyme A carbonxylase:crucial metabolic enzyme and attractive target for drug discovery.Cell.Mol.Life.Sci.2005,62,1784-1803.
    47.Zhang,H.L.;Yang,Z.;Shen,Y.;Tong,L.Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase.Science.2003,299,2064-2067.
    48.Waldrop,G.L.;Rayment,I.;Holden,H.M.Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase.Biochem.1994,33,10249-10256.
    49.Athappilly,F.K.;Hendrickson,W.A.Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.Structure.1995,3,1407-1419.
    50.Shen,Y.;Volrath,S.L.;Weatherly,S.C.;Elich,T.D.;Tong,L.A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A,a macrocyclic polyketide natural product.Mol.Cell.2004,16,881-891.
    51.Zhang,H.L.;Tweel,B.;Tong,L.Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop.Proc.Natl.Acad.Sci.USA.2004,101,5910-5915.
    52.Zhang,H.L.;Tweel,B.;Li,J.;Tong,L.Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186.Structure.2004,12,1683-1691.
    53.Wendt,K.S.;Schali,I.;Huber,R.;Buckel,W.;Jacob,U.Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.EMBO J.2003,22,3493-3502.
    54.Hall,P.R.;Wang,Y.-F.;Rivera-Hainaj,R.E.;Zheng,X.;Pustai-Carey,M.;Carey,P.R.et.al. Transcarboxylase 12S crystal structure:hexamer assembly and substrate binding to a multienzyme core.EMBO J.2003,22,2334-2347.
    55.Diacovich,L.;Mitchell,D.L.;Pham,H.;Gago,G.;Melgar,M.M.;Khosla,C.;Gramajo,H.Tsai,S.-C.Crystal structure of the b-subunit of acyl-CoA carboxylase:structure-based engineering of substrate specificity.Biochemistry.2004,43,14027-14036.
    56.任康太.;李永红.;杨华铮.芳氧苯氧丙酸酯和环己二酮类除草剂的作用机制.农药.1999,3,1-4.
    57.苏少泉.ACCase特性、功能及其抑制除草剂发展与杂草抗性.农药研究与应用.2006,10,1-8.
    58.Nakahira,K.Mode of action of a herbicide,Qulzalofopethyl.J.Pestic.Sci.1998,23:357-366.
    59.徐尚成.环己二酮类除草剂及其合成化学.农药1990,29,31-34.
    60.Markley,L D,Geselius,T C,Hamilton,C T,et al.Aryloxy and pyridyloxyphenyl cyclo-hexanedione grass herbicides[A],Baker D R,et al.Synthesis and chemistry of agrochem-icals Ⅳ,ACS symposium series 5841[C],Washington,D C:American Chemical Society Pres.1995,221-233.
    61.Rendina,A R.;Felts,J.M.Cyclohexanedione herbicides are selective and potent inhibitors of Acetyl-CoA carboxylase from grasses.Plant Physiol.1988,86,983-986.
    62.Regulatory Note:Pinoxaden.Pest.Management.Regulatory.Agency.2006-12-20.
    63.王爽.;张荣全.;叶非.乙酰辅酶A羧化酶抑制剂的研究进展.农药科学与管理.2004,24,26-32.
    64.任康太.;喻爱明.;杨华铮.环己二酮类除草剂的合成及构效关系研究.农药译丛.1998,20,32-39.
    65.Webb,S.R.;Lee,H.;Hall,J.C.Cloning and expression in Escherichia coli of an anti-cyclohexanedione single chain variable(ScFv) antibody fragment and comparison to the parent monoclonal antibody.J.Agric.Food Chem.1997,45,535-541.
    66.Steve,R.W.;Gregory,L.D.;Dan,P.;Christopher,J.H.Interaction of Cyclohexane-diones with Acetyl Coenzyme-A Carboxylase and an Artificial Target-Site Antibody Mimic:A Comparative Molecular Field Analysis.J.Agric.Food Chem.2000,48,2506-2511.
    67.马晓渊.农田杂草抗药性的发生为害、原因与治理.杂草科学.2002,1,5-9.
    68.Devine,M.D.Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors:A review.Pestic Sci.1997,51,259-264.
    69.Kevin,W.B.;Wu,J.R.;Hatzios,K,K.;Hagood,E.S.Jr.The mechanism of resistance to aryloxyphe-noxypropionate and cyclohexanedione herbicides in a johnsongrass biotype.Weed Science.2001,49,477-484.
    70.苏少泉.杂草防治的发展趋势.世界农业.1996,7,30-31.
    71.Liu,W.J.;Dion,K.H.;Dominika,C.;Gomicki.P.;Chris,C.O'Donnell,Steve,W.A.;Haselkorn,R.;Richard,R.W.Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides.Proc.Natl.Acad Sci.USA.2007,27,3627-3632.
    72.Heap,I.M.;Morrison,I.N.Resistance to aryloxyphenoxypropionate and cyclohexane-dione herbicides in green foxtail(Setaria viridis).Weed Sci.1996,44,25-30.
    73.Heap,I.M.;Murray,B.G.;Loeppky,H.A.;Morrison,I.N.Resistance to aryloxyphenoxy-propionate and cyclohexanedione herbicides in wild oats(Avenafatua).Weed Sci.1993,41,232-238.
    74.Herbert,D.;David,J.C.;Kenneth,E.P.;Harwoodet,J.L.Susceptibilities of different test systems from maize(Zea mays),Poa annua,and Festuca rubrato herbicides that inhibit the enzyme acetyl-coenzyme A carboxylase.Pestic.Biochem.Physiol.1996,55,129-139.
    75.Daniel,A.B.;Sandra,M.F.;Larry,H.B.ACCase-Inhibitor Herbicide Resistance in Downy Brome(Bromus tectorum) in Oregon.Weed Sci.2007,55,91-94.
    76.Burke,I.C.;Holland,J.B.;Burton,J.D.;York,A.C.;Wilcut,J.W.Johnsongrass(Sorghum halepense) Pollen Expresses ACCase Target-Site Resistance.Weed Technol.2007,21,384-388.
    77.Menchari,Y.;Delye,C.;Corre,V.LE.Genetic variation and population structure in black-grassn(Alopecurus myosuroides Huds.),a successful,herbicideresistant,annual grass weed of winter cereal fields.Mol.Ecology.2007,16,3161-3172.
    78.Bakkali,Y.;Ruiz-Santaella,J.P.;OSUNA,M.D.;Wanget,J.;Fischer,A.J.;Prado,R.DE.Late Watergrass(Echinochloa phyllopogon):Mechanisms Involved in the Resistance to Fenoxaprop-p-ethyl.J.Agric.Food Chem.2007,55,4052-4058.
    79.Valverde,B.E.Status and Management of Grass-Weed Herbicide Resistance in Latin America.Weed Technol.2007,21,310-323.
    80.李宜慰.;梅传生.麦田草和日本看麦娘对绿黄隆抗性的初步研究.江苏农业学报.1996,12,34-38.
    81.张朝贤.;钱益新.农田化学除草与可持续发展农业.农药.1998,37,8-12.
    82.黄春艳.杂草抗药性研究概况.黑龙江农业科学.1997,6,45-47.
    83.Kuk,Y.I.;Wu,J.R.;Derr,J.F.;Hatzios,K.K.Mechanism of Fenoxaprop Resistance in an Accession of Smooth Crabgrass(Digitaria ischaemum).Pestic.Biochem.Physiol.1999,64,112-123.
    84.Delye,C.;Calmes,E.;Matejicek.A.SNP markers for black-grass(Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA carboxylase-inhibiting herbicides.Theor.Appl.Genet.2002,104,1114-1120.
    85.Delye,C.;Matejicek,A.;Gasquez,J.PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass(Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud).Pestic.Manag.Sci.2002,58,474-478.
    86.Delye,C.;Zhang,X-Q.;Chalopin,C.;Michel,S.;Powles,S.B.An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexane-dione inhibitors.Plant.Physiol.2003,132,1716-1723.
    87.Zagnitko,O.;Jelenska,J.;Tevzadze,G.;Haselkorn,R.;Gornicki,P.An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with ayloxyphenoxypropionate and cyclohexanedione inhibitors.Proc.Natl.Acad Sci.USA.2001,98,6617-6622.
    88.Christophe,D.;Zhang,X.Q.;Michel,S.;Matejicek,A.;Powles,S.B.Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass.Plant Physiol.2005,137,794-806.
    89.Menendez,J.;Prado,R.D.Characterization of two acetyl-coenzyme A carboxylase Isoforms in diclofop-resistant and susceptible biotypes of Alopecurus myosuroides.Pestic.Biochem.Physiol.1999,65,82-89.
    90.Yu,Q.;Collavo,A.;Zheng,M.Q.;Mechelle,O.;Maurizio,S.;Stephen,B.P.Diversity of Acetyl-Coenzyme A Carboxylase Mutations in Resistant Lolium Populations:Evaluation Using Clethodim.Plant Physiol.2007,145,547-558.
    91.Christoffers,M.J.;Berg,M.L.;Messersmith,C.G.An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat.Genome.2002,45,1049-1056.
    92.Delye,C.;Wang,T.Y.;Darmency,H.An isoleucine-leucine substitution in chloroplastic acetyl-Co A carboxylase from green foxtail(Setaria viridis L.Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim.Planta.2002,214,421-427.
    93.Tal,A.;Rubin,B.Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum.Pestic.Manag.Sci.2004,60,1013-1018.
    94.Jain,M.;Bhalla-Sarin,N.Glyphosate-induced increase in glutathione S-transferase activity and glutathione content in groundnut(Arachis hypogaeaL.).Pestic.Biochem.Physiol.2001,69,143-152.
    95.Bradley,K.W.;Wu,J.R.;Hatzios,K.K.;Hagood Jr,E.S.The mechanism of resistance to aryloxyphe-noxypropionate and cyclohexanedione herbicides in a johnsongrass biotype.Weed Sci.2001,49,477-484.
    96.Cummins,I.;David,J.C.;Edwards,R.Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass.Pest.Sci.1997,51,244-250.
    97.John,P.H.R.;Andrew,H.C..New,quick tests for herbicide resistance in black-grass based on increased GST activity and abundance.Pestic.Manage.Sci.2001,58,26-32.
    98.Delye,C.Weed resistance to acetyl coenzyme A carboxylase inhibitors:an update.Weed Sci.2005,53,728-746.
    99.欧晓明.;唐德秀.除草剂作用机理研究的新进展.世界农业.2000,10,28-30.
    100.钱希.杂草抗药性研究的进展.生态学杂志.1997,16,58-62.
    101.Shimabukuro,R.H.;.Hoffer,B.L.Induction of ethylene as an indicator of senescence in the mode of action of diclofop-methyl.Pestic.Biochem.Physiol.1996,54,146-158.
    102.Jose,L D.P.;Rafae,A.D.P.Shimabukuro,R.H.The effect of diclofop on membrane potential,,ethylene induction,and herbicide phytotoxicity in resistant and susceptible biotypes of grasses.Pestic.Biochem.Physiol.1999,63,1-14.
    1.赵虎基.;王国英.植物乙酰辅酶A羧化酶的分子生物学与基因工程.中国生物工程杂志.2003,23,12-16.
    2.Roesler,K.R.;Shorrosh,B.S.;Ohlrogge,J.B.Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene.Plant.Physiol.1994,105,611-617.
    3.Gornicki,P.;Faris,J.;King,I.;Podkowinski,J.;Gill,B.;Haselkorn,R.Plastid-localized acetyl-CoA carboxylase of breadwheat is encoded by a single gene on each of the three ancestral chromosome sets.Proc.Natl.Acad.Sci.USA.1997,94,14179-14184.
    4.Zhao,H.J.;Wang,J.H.;Gao,P.;Gu,R.L.;Zhang,J.Q.;Wang,T.Y.;Wang,G.Y.Cloning of Plastid Acetyl-CoA Carboxylase cDNA from Setaria italica and Sequence Analysis of Graminicide Target Site.植物学报.2004,46,751-756.
    5.Brown,D.;Minoux,H.;Maigret,B.A domain decomposition parallel processing algorithm for molecular dynamics simulations of systems of arbitrary connectivity.Comput.Phys.Comm.1997,103,170-186.
    6.Brown,D.;Julian,H.R.Clarke.;Okuda,M.;Yamazaki,T.A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines.Comput.Phys.Comm.1993,74,67-80.
    7.Nyland,L.;Prins,J.;Huai,R.Y.;Hermans,J.;Kum,H.C.;Wang,L.Achieving Scalable Parallel Molecular Dynamics Using Dynamic Spatial Domain Decomposition Techniques.J.Parall.Distrib.Comp.1997,47,125-148.
    8.Marti-Renom,M.A.;Stuart,A.C.;Fiser,A.;Sanchez,R.;Melo,F.;Sali,A.MDB:the Metalloproten Database and Browser at The Scripps Research Insitute.Annu.Rev.Biophys.Biomol.Stru.2000,29,291-325.
    9.Al-Lazikani,B.;Jung,J.;Xiang,Z.;Honig,B.Protein structure prediction.Curr.Opin.Chem.Biol.2001,5,51-56.
    10.John,M.Predicting protein three-dimensional structure.Curr.Opin.Biotech.1999,10,583-588.
    11.郑清川.蛋白质结构与分子对接的理论研究.吉林大学薄士学位论文.2006.
    12.徐筱杰.;候廷军.;乔学斌.;章威.计算机辅助药物分子设计.化学工业出版社.北京,2004.
    13.徐筱杰.;陈丽蓉.化学及生物体系中的分子识别.化学进展.1996,8,189-201.
    14.Koshland,D.J.Application of a Theory of Enzyme Specificity to Protein Synthesis.Proc.Nat. Acad Sci.USA.1958,44,98-104.
    15.Jiang,F.;Kim,S.H."Soft docking":matching of molecular surface cubes.J.Mol.Biol.1991,219,79-102.
    16.Kuntz,I.D.Structure-based strategies for drug design and discovery.Science.1992,257,1078-1082.
    17.Goodsell,D.S.;Olson,A.J.Automated Docking of Substrates to Proteins by Simulated Annealing.Proteins.1990,8,195-202.
    18.Kohn,W.;Sham,L.J.Self-Consistent Equations Including Exchange and Correlation Effects.Phys.Rev.1965,140,A1133.
    19.Salahub,D.R.;Zerner,M.C.Eds.The Challenge of d and f Electrons,ACS:Washington,D.C.,1989.
    20.Kuntz,I.D.;Blaney,J.M.;Oatley,S.J.;et al.A geometric approach to macromolecular-ligand interactions.J.Mol.Biol.1982,161,269-288.
    21.Desjarlais,R.L.;Sheridan,R.P.;Dixon,J.S.;et al.Docking flexible ligands to macromolecular receptors by molecular shape.J.Med Chem.1986,29,2149-2153.
    22.Sboichet,B.K.;Kuntz,I.D.Protein docking and complementarity.J.Mol.Biol.1991,221,327-346.
    23.Shoichet,B.K.;Bodian,D.L.;Kuntz,I.D.Molecular docking using shape descriptors.J.Comp.Chem.1992,13,380-397.
    24.Meng,E.C.;Shoichet,B.K.;Kuntz,I.D.Automated docking with grid-based energy evaluation.J.Comp.Chem.1992,13,505-524.
    25.Shoichet,B.K.;Kuntz,I.D.Matching chemistry and shape in molecular docking.Protein Eng.1993,6,723-732.
    26.Meng,E.C.;Gschwend,D.A.;Blaney,J.M.;et al.Orientational sampling and rigid-body minimization in molecular docking.Proteins:Str.Func.and Genet.1993,17,266-278.
    27.Kuntz,I.D.;Meng,E.C.;Shoichet,B.K.Receptor-Based Molecular Design.Acc.Chem.Res.1994,27,117-123.
    28.Good,A.C.;Ewing,T.J.A.;Gschwend,D.A.;et al.New molecular shape descriptors:application in database screening J.Comput.Aid.Mol.Des.1995,9,1-12.
    29.Gschwend,D.A.;Kuntz,I.D.Orientational sampling and rigid-body minimization in molecular docking revisited:on-the-fly optimization and degeneracy removal.J.Comput.Aid.Mol.Des.1996,10,123-132.
    30.Briem,H.;Kuntz,I.D.Molecular Similarity Based on Dock-Generated Fingerprints.J.Med. Chem.1996,39,3401-3408.
    31.Makino,S.;Kuntz,I.D.Automated flexible ligand docking method and its application for database search.J.Comput.Chem.1997,18,1812-1825.
    32.Shoichet,B.K.;Leach,A.R.;Kuntz,I.D.Ligand solvation in molecular docking.Proteins:Str.Func.and Genet.1999,34,4-16.
    33.Rarey,M.;Kramer,B.;Lengauer,T.;et al.A fast flexible docking method using an incremental construction algorithm,J.Mol.Biol.1996,261,470-489.
    34.Rarey,M.;Wefing,S.;Lengauer,T.Placement of mediumsized molecular fragments into active sites of proteins,J.Comput-Aided Mol.Design.1996,10,41-54.
    35.Rarey,M.;Kramer,B.;Lengauer,T.Multiple automatic base selection:protein-ligand docking based on incremental construction without manual intervention.J.Comput-Aided Mol.Design.1997,11,369-384.
    36.Rarey,M.;Kramer,B.;Lengauer,T.The particle concept:placing discrete water molecules during protein-ligand docking predictions.Proteins:Str.Func.and Genet.1999,34,17-28.
    37.Kramer,B.;Rarey,M.T.;Lengauer,T.CASP2 experiences with docking flexible ligands using FlexX.Proteins:Str.Func.and Genet.1997,Suppl.1,221-225.
    38.Rarey,M.;Kramer,B.;Lengauer,T.Docking of hydrophobic ligands with interaction-based matching algorithms.Bioinformatics.1999,15,243-250.
    39.Hoffmann,D.;Kramer,B.;Washio,T.;et al.Two-Stage method for protein-ligand docking.J.Med.Chem.1999,42,4422-4433.
    40.Kramer,B.;Rarey,M.;Lengauer,T.Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking.Proteins:Str.Func.and Genet.1999,37,228-241.
    41.Kramer,B.;Metz,G.;Rarey,M.;et al.Ligand docking and screening with FlexX.Med.Chem.Res.1999,9,463-478.
    42.B(o|¨)hm,H.J.LUDI:rule-based automatic design of new substituents for enzyme inhibitor leads.J.Comput.-Aided Mol.Design.1992,6,593-606..
    43.Jorgensen,W.L.Free Energy Calculations:A Breakthrough for modeling Organic Chemistry in Solution.Acc.Chem.Res.1989,22,184-189.
    44.Kollman,P.Free energy calculations:applications to chemical and biochemical phenomena.Chem.Rev.1993,93,2395-2417.
    45.Tomioka,N.;Itai,A.;Iitaka,Y.A method for fast energy estimation and visualization of protein-ligand interaction.J.Comput.-Aided Mol.Design.1987,1,197-210.
    46.Novotny,J.;Bruccoleri,R.E.;Saul,F.A.On the attribution of binding energy in antigen-antibody complexes McPC 603,D1.3,and HyHEL-5.Biochemistry.1989,28,4735-4749.
    47.Williams,D.H.;Cox,J.P.L.;Doig,A.J.;et al.Toward the semiquantitative estimation of binding constants.Guides for peptide-peptide binding in aqueous solution,J.Am.Chem.Soc.1991,113,7020-7030.
    48.Luty,B.A.;Wasserman,Z.R.;Stouten,P.F.W.;Hodge,C.N.;Zacharias,M.;McCammon,J.A."A Molecular Mechanics/Grid Method for Evaluation of Ligand-Receptor Interactions".J.Comp.Chem.1995,16,454-464.
    49.Kohn,W.;Sham,L.J.Self-Consistent Equations Including Exchange and Correlation Effects.Phys.Rev.1965,140,A1133.
    50.Alder,B.J.;Wainwright,T.E.Phase Transition for a Hard Sphere System.J.Chem.Phys.1957,27,1208-1209.
    51.Laskowski,R.A.;MacArthur,M.W.;Moss,D.S.;Thornton,J.M.PROCHECK:A program to check the stereochemical quality of protein structures.J.Appl.Crystallogr.1993,26,283-291.
    52.Rullmann,J.A.C.AQUA;Utrecht University:Utrecht,The Netherlands,1996.
    53.Sippl,M.J.Boltzmann's principle,knowledge-based mean fields and protein folding.An approach to the computational determination of protein structures,J.Comput.-Aided Mol.Des.1993,7,473-501.
    54.Luthy,R.;McLachlan,A.D.;Eisenberg,D."Secondary structure-based profiles:Use of structure-conserving scoring tables in searching protein sequence databases for structural similarities",Proteins.1991,10,229-239.
    55.Case,D.A.;Pearlman,D.A.;Caldwell,J.W.;Cheatham,T.E.,Ⅲ;Wang,J.;Ross,W.S.;Simmerling,C.L.;Darden,T.A.;Merz,K.M.;Stanton,R.V.;Cheng,A.L.;Vincent,J.J.;Crowley,M.;Tsui,V.;Gohlke,H.;Radmer,R.J.;Duan,Y.;Pitera,J.;Massova,I.;Seibel,G.L.;Singh,U.C.;Weiner,P.K.;Kollman,P.A.AMBER 7;University of California,San Francisco,CA,2002.
    56.Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.;Klein,M.L.Comparison of simple potential functions for simulating liquid water.J.Chem.Phys.1983,79,926-935.
    57.Darden,T.;York,D.L.Pedersen,Particle mesh Ewald:An N log-(N) method for Ewald sums in large sysytem,J.Chem.Phys.1993,98,10089-10092.
    58.Ryckaert,J.P.;Ciccotti,G;Berendsen,H.J.C.Numerical intergration of the Cartesian equations of motion of a system with constraints:Molecular synamics of n-alkanes,J.Comput.Phys.1977,23,327-341.
    59.Berendsen,H.J.C.;Postma,J.P.M.;van Gunsteren,W.F.;DiNola,A.;Haak,J.R.Molecular dynamics with coupling to an external bath.J.Comput.Phys.1984,81,3684-3690.
    60.Zagnitko,O.,Jelenska,J.,Tevzadze,G.,Haselkom,R.,Gornicki,P.An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with ayloxyphenoxypropionate and cyclohexanedione inhibitors.Proc.Natl.Acad.Sci.USA.2001,98,6617-6622.
    61.Delye,C.,Zhang,X-Q.,Chalopin,C.,Michel,S.,Powles,S.B.An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexane-dione inhibitors.Plant Physiol.2003,132,1716-1723.
    62.Delye,C.,Wang,T.Y.,Darmency,H.An isoleucine-leucine substitution in chloroplastic acetyl-Co A carboxylase from green foxtail(Setaria Viridis L.Beauv.) is responsible for resistance to the cyclohexanedione herbicide sethoxydim.Planta,2002,214,421-427.
    63.Vistoli,G.;Pedretti,A.;Cattaneo,M.;et al.Homology Modeling of Human Serum Carnosinase,a Potential Medicinal Target,and MD Simulations of Its Allosteric Activation by Citrate.J.Med.Chem.2006,49,3269-3277.
    64.Wang,D.F.;Helquist,P.;Wiech,N.L.;Wiest,O.Toward Selective Histone Deacetylase Inhibitor Design:Homology Modeling,Docking Studies,and Molecular Dynamics Simulations of Human Class I Histon Deacetylase.J.Med Chem.2005,48,6936-6947.
    65.Marinell,L.;Gottschalk,K-E.;Meyer,A.et al.Human Intergrin αVβ5:Homology Modeling and Ligand Binding.J.Med Chem.2004,47,4166-4177.
    66.Biswas.S.Functional propertise of soybean nodulin 26 from a comparative three-diimensional model.FEBS.L.2004,558,39-44.
    67.Xial,J-F.;Li,Z-SH.;Sun,M.et al.Homology modeling and molecular dynamics study of GSK3/SHAGGY-like kinase.Comput.Biol.Chem.2004,28,179-188.
    68.Marabotti,A.;Facchiano,A.M.Homology Modeling Studies on Human Galactose-1-phosphate Uridylyltransferase and on Its Galactosemia-Related Mutant Q188R Provide an Explanation of Molecular Effects of the Mutation on Homo- and Heterodimers.J.Med.Chem.2005,48,773-779
    69.Evers,A.;Klebe,Gerhard.Ligand-Supported Homology Modeling of G-Protein-Coupled Receptor Sites:Models Sufficient for Successful Virtual Screening.Angew.Chem.Int.Ed.2004,43,248-251.
    70.Mukherjee,P.;Desai,P.V.;Srivastava,A.;Tekwani,B.L.;Mitchell,A.A.Probing the Structures of Leishmanial Farnesyl Pyrophosphate Synthases:Homology Modeling and Docking Studies J.Chem.Inf.Model.2008,48,1026-1040.
    71.Gagnidze,K.;Sachchidanand.;Rozenfeld,R.et al.Homology Modeling and Site-Directed Mutagenesis To Identify Selective Inhibitors of Endothelin-Converting Enzyme-2 J.Med.Chem.2008-05-29.
    72.Steve,R.W.;Christopher Hall,J.Development and evaluation of an immumologocal approach for the identification of novel acetyl coenzyme-A carboxylase inhibitors:Assay optimization and pilot screen results.J.Agric.Food.Chem.2000,48,1219-1228.
    73.James,A.T.;Daniel,J.P.Origin of enantiomeric selectivity in the aryloxyphenoxypropionic acid class of herbicidal acetyl coenzyme A carboxylase(ACCase) inhibitors.J.Agric.Food.Chem.2002,50,4554-4566.
    1.Johnsson,H.Meitic.Aberrations and sterility in Alopecurus myosuroides Huds.Hereditas.1994,30,469-565.
    2.Barralis,G.La biologie du vulpin des champs(Alopecurus agrestis L.).I.Dormance primaire et faculte germinative.Revue Generale de Botanique.1970,77,429-433.
    3.Menchari,Y.;Delye,C.;Le Corre,V.Genetic variation and population structure in black-grass (Alopecurus myosuroides Huds.),a successful,herbicideresistant,annual grass weed of winter cereal fields.Molecular Ecology.2007,16,3161-3172.
    4.Delye,C.;Calmes,E.;Mate jicek.A.SNP markers for black-grass(Alopecurus myosuroides Huds.) genotypes resistant to acetyl CoA carboxylase-inhibiting herbicides.Theor Appl Genet.2002,104,1114-1120.
    5.Delye,C.;Matejicek,A.;Gasquez,J.PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass(Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud).Pest Manag.Sci.2002,58,474-478.
    6.Delye,C.;Zhang,X-Q.;Chalopin,C.;Michel,S.;Powles,S.B.An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors.Plant Phys.2003,132,1716-1723.
    7.Zagnitko,O.;Jelenska,J.;Tevzadze,G.;Haselkorn,R.;Gornicki,P.An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with ayloxyphenoxypropionate and cyclohexanedione inhibitors.Proc.Natl.Acad Sci.USA.2001,98,6617-6622.
    8.Christophe,D.;Zhang,X.Q.;Michel,S.;Matejicek,A.;Powles,S.B.Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass.Plant Phys.2005,137,794-806.
    9.Menendez,J.;Prado,R.D.Characterization of two acetyl-coenzyme A carboxylase Isoforms in diclofop-resistant and susceptible biotypes of Alopecurus myosuroides.Pest.Bio.Phys.1999,65,82-89.
    10.Eswar,N.;Webb,B.;Marti-Renom,M.A.;Madhusudhan,M.S.;Eramian,D.;Shen,M.Y.;Pieper,U.;Sali,A.Comparative protein structure modeling using modeller.Curr.Protoc.Bioinf.2006,Chapter 5,Unit 5.6.
    11.Sali,A.;Blundell,T.L.Comparative protein modelling by satisfaction of spatial restraints.J.Mol.Biol.1993,234,779-815.
    12.Sali,A.;Overington,J.P.Derivation of rules for comparative protein modeling from a database of protein structure alignments.Protein Sci.1994,3,1582-1596.
    13.Sali,A.;Potterton,L.;Yuan,F.;et al.Evaluation of comparative protein modeling by MODELLER.Proteins,1995,23,318-326.
    14.Sali,A.Modelling mutations and homologous proteins.Curr.Opin.Biotechnol.1995,6,437-451.
    15.Cornell,W.D.;Cieplak,P.;Balyly,C.I.;et al.Application of Resp Charges to Calculate Conformational Energies,Hydrogen-Bond Energies,and Free-Energies of Solvation.J.Am.Chem.Soc.1993,115,9620-9631.
    16.Case,D.A.;Cheatham,T.E.;Darden,T.;Gohlke,H.;Luo,R.;Merz,K.M.;Onufriev,A.;Simmerling,C.;Wang,B.;Woods,R.J.The Amber biomolecular simulation programs.J.Comput.Chem.2005,26,1668-1688.
    17.Srinivasan,J.;Cheatham,T.E.;Cieplak,P.;Kollman,P.A.;Case,D.A.Continuum solvent studies of the stability of DNA,RNA and phosphoramideat-DNA helices.J.Am.Chem.Soc.1998,120,9401-9409.
    18.Vorobjev,Y.N.;Almagro,J.C.;Hermans,J.Proteins:Struct.Funct.Genet.1998,32,399-413.
    19.Jayaram,B.;Sprous,D.;Young,M.A.;Beveridge,D.L.Free Energy Analysis of the Conformational Preferences of A and B Forms of DNA in Solution.J.Am.Chem.Soc.1998,120,10629-10633.
    20.Chong,L.T.;Duan,Y.;Wang,L.;Massova,I.;Kollman,P.A.Proc.Natl.Acad Sci.USA.1999,96,14330-14335.
    21.Reyes,C.M.;Kollman,P.A.Investigating the binding specificity of U1A-RNA by computational mutagenesis.J.Mol.Biol.2000,295,1-6
    22.Massova,I.;Kollman,P.A.Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding.Perspect.Drug Discov.2000,18,113-135.
    23.Kuhn,B.;Kollman,P.A.Binding of a Diverse Set of Ligands to Avidin and Streptavidin:An Accurate Quantitative Prediction of Their Relative Affinities by a Combination of Molecular Mechanics and Continuum Solvent Models.J.Med.Chem.2000,43,3786-3791
    24.Donini,O.A.T.;Kollman,P.A.Calculation and Prediction of Binding Free Energies for the Matrix Metalloproteinases.J.Med.Chem.2000,43,4180-4188
    25.Wang,W.;Kollman,P.A.Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.J.Mol.Biol.2000,303,567-582.
    26.Kollman,P.A.;Massova,I.;Reyes,C.;et al.Calculating Structures and Free Energies of Complex Molecules:Combining Molecular Mechanics and Continuum Models.Accounts Chem. Res.2000,33,889-897
    27.Wang,J.M.;Morin,P.;Wang,W.;Kollman,P.A.Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA.J.Am.Chem.Soc.2001,123,5221-5230.
    28.Honig,B.;Nicholls,A.Classical electrostatics in biology and chemistry.Science.1995,268,1144-1149.
    29.Sitkoff,D.;Sharp,K.A.;Honig,B.Accurate Calculation of Hydration Free-Energies Using Macroscopic Solvent Models.J.Phys.Chem.1994,98,1978-1988.
    30.Bardi,J.S.;Luque,I.;Freire,E.Structure-Based Thermodynamic Analysis of HIV-1 Protease Inhibitors.Biochemistry.1997,36,6588-6596.
    31.Xiong,Y.;Li,Y-J.;He,H-W.;Zhan,C-G.Theoretical calculation of the binding free energies for pyruvate dehydrogenase E1 binding with ligands.Bioor.Med.Chem.L.2007,17,5186-5190.
    32.Hamza,A.;Zhan,C.-G.How Can(-)-Epigallocatechin Gallate from Green Tea Prevent HIV-1Infection? Mechanistic Insights from Computational Modeling and the Implication for Rational Design of Anti-HIV-1 Entry Inhibitors.J.Phys.Chem.B.2006,110,2910-2917.
    33.Rafi,S.B.;Cui,G-L.;Song,K.;et al.Insight through Molecular Mechanics Poisson-Boltzmann Surface Area Calculations into the Binding Affinity of Triclosan and Three Analogues for FabI,the E.coil Enoyl Reductase.J.Med.Chem.2006,49,4574-4580.
    34.Posocco,P.;Ferrone,M.;Fermeglia,M.;et al.Binding at the Core.Computational Study of Structural and Ligand Binding Properties of Naphthyridine-Based Dendrimers.Macromolecules.2007,40,2257-2266.
    35.Brown,S.P.;Muchmore,S.W.Rapid Estimation of Relative Protein-Ligand Binding Affinities Using a High-Throughput Version of MM-PBSA.J.Chem.Inf.Model.2007,47,1493-1503.
    36.Tan,J-J.;Chen,W-Z.;Wang,C-X.Investigating interactions between HIV-1 gp41 and inhibitors by molecular dynamics simulation and MM-PBSA/GBSA calculations,J.Mol.Stru.Theo.2006,766,77-82.
    37.Kalra,P.;Reddy,T.V.;Jayaram,B.Free Energy Component Analysis for Drug Design:A Case Study of HIV-1 Protease-Inhibitor Binding.J.Med Chem.2001,44,4325-4338.
    38.Masukawa,K.M.;Kollman,P.A.;Kuntz,I.D.Investigation of Neuraminidase-Substrate Recognition Using Molecular Dynamics and Free Energy Calculations.J.Med.Chem.2003,46,5628-5637.
    39.Wang,J-M.;Morin,P.;Wang,W.;et al.Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA.J.Am.Chem.Soc.2001,123,5221-5230.
    40.Weis,A.;Katebzadeh,K.;Nilsson,I.;et al.Ligand Affinities Predicted with the MM/PBSA Method:Dependence on the Simulation Method and the Force Field.J.Med.Chem.2006,49,6596-6606.
    41.Page,C.S.;Bates,P.A.Can MM-PBSA Calculations Predict the Specificities of Protein Kinase Inhibitors?J.Comput.Chem.2006,27,1990-2007.
    42.Rizzo,R.C.;Toba,S.;Kuntz,I-D.A Molecular Basis for the Selectivity of Thiadiazole Urea Inhibitors with Stromelysin-1 and Gelatinase-A from Generalized Born Molecular Dynamics Simulations.J.Med.Chem.2004,47,3065-3074.
    43.Kuhn,B.;Gerber,P.;Tanja,S-G.;Stahl,M.Validation and Use of the MM-PBSA Approach for Drug Discovery.J Med.Chem.2005,48,4040-4048.
    44.Stoica,I.;Sadiq,S.K.;Coveney,P.V.Rapid and Accurate Prediction of Binding Free Energies for Saquinavir-Bound HIV-1 Proteases.J.Am.Chem.Soc.2008,130,2639-2648.
    45.Christophe,D.;Zhang,X.Q.;Michel,S.;Matejicek,A.;Powles,S.B.Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass.Plant Phys.2005,137,794-806.
    46.Delye,C.;Zhang,X-Q.;Chalopin,C.;Michel,S.;Powles,S.B.An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexane-dione inhibitors.Plant.Phys.2003,132,1716-1723.
    47.Kuhn,B.;Kollman,P.A.A Ligand That Is Predicted to Bind Better to Avidin than Biotin:Insights from Computational Fluorine Scanning.J.Am.Chem.Soc.2000,122,3909-3916
    48.Cramer,C.J.;Truhlar,D.G.Implicit Solvation Models:Equilibria,Structure,Spectra,and Dynamics.Chem.ReV.1999,99,2161-2200.
    49.Sitkoff,D.;Sharp,K.A.;Honig,B.Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models.J.Phys.Chem.1994,98,1978-1988.
    1.Delye,C.;Zhang,X-Q.;Chalopin,C.;Michel,S.;Powles,S.B.An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-CoA carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors.Plant Physiol.2003,132,1716-1723.
    2.Christophe,D.;Zhang,X.Q.;Michel,S.;Matejicek,A.;Powles,S.B.Molecular Bases for Sensitivity to Acetyl-Coenzyme A Carboxylase Inhibitors in Black-Grass.Plant Physiology.2005,137,794-806.
    3.Liu,W.J.;Dion,K.H.;Dominika,C.;Gornicki.P.;Chris,C.O'Donnell,Steve,W.A.;Haselkorn,R.;Richard,R.W.Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides.Proc.Natl.Acad.Sci.USA.2007,27,3627-3632.
    4.Samantha,L.K.;Sansom,Mark S.P.;Philip,C.B.In Silico Mutation of Cysteine Residues in the Ligand-Binding Domain of an N-Methyl-D-aspartate Receptor.Biochemistry.2007,46,2136-2145.
    5.Hirotaka,O.;Saburo,N.;Masayuki,H.;et al.Computational Simulations of HIV-1ProteasessMulti-drug Resistance Due to Nonactive Site Mutation L90M.J.Am.Chem.Soc.2006,128,7887-7895.
    6.Ernesto,E.;Eugenio,U.;Santiago,V.Effect of Protein Backbone Folding on the Stability of Protein-Ligand Complexes.J.Prote.Res.2006,5,105-111.
    7.Kovalevsky,A.Y.Tie,Y-E;Liu,F-L.;et al.Effectiveness of Nonpeptide Clinical Inhibitor TMC 114 on HIV-1 Protease with Highly Drug Resistant Mutations D30N,150V,and L90M.J.Med.Chem.2006,49,1379-1387.
    8.Skalova,T.;Dohnalek,J.;Duskova,J.;et al.HIV-1 Protease Mutations and Inhibitor Modifications Monitored on a Series of Complexes.Structural Basis for the Effect of the A71V Mutation on the Active Site.J.Med Chem.2006,49,5777-5784.
    9.Hou,T-J.;Yu,R.Molecular Dynamics and Free Energy Studies on the Wild-type and Double Mutant HIV-1 Protease Complexed with Amprenavir and Two Amprenavir-Related Inhibitors:Mechanism for Binding and Drug Resistance.J Med.Chem.2007,50,1177-1188.
    10.Ode,H.;Matsuyama,S.;Hata,M.;et al.Mechanism of Drug Resistance Due to N88S in CRF01_AE HIV-1 Protease,Analyzed by Molecular Dynamics Simulations.J.Med.Chem.2007, 50,1768-1777.
    11.Aruksakunwong,O.;Wolschann,P.;Hannongbua,S.;et al.Molecular Dynamic and Free Energy Studies of Primary Resistance Mutations in HIV-1 Protease-Ritonavir Complexes.J.Chem.Inf.Model.2006,46,2085-2092.
    12.Hirotaka,O.;Masami,O.;Saburo,N.;et al.Resistant Mechanism against Nelfinavir of Human Immunodeficiency Virus Type 1 Proteases.J.Phys.Chem.B 2005,109,565-574.
    13.Wittayanarakul,K.;Aruksakunwong,O.;Sompornpisut,P.Structure,Dynamics and Solvation of HIV-1 Protease/Saquinavir Complex in Aqueous Solution and Their Contributions to Drug Resistance:Molecular Dynamic Simulations.J.Chem.Inf.Model.2005,45,300-308.
    14.Layten,M.;Hornak,V.;Simmerling,C.The Open Structure of a Multi-Drug-Resistant HIV-1Protease is Stabilized by Crystal Packing Contacts.J.Am.Chem.Soc.2006,128,13360-13361.
    15.Freire,E.Overcoming HIV-1 resistance to protease inhibitors.Drug.Discover.Today:Mech.2006,3,281-285.
    1.Freire,E.Overcoming HIV-1 resistance to protease inhibitors.Drug.Discover.Today:Mech.2006,3,281-285.
    2.Vega,S.;Kang,L-W.;Adrian,V-C.;et al.A Structural and Thermodynamic Escape Mechanism from a Drug Resistant Mutation of the HIV-1 Protease.Proteins.2004,55,594-602.
    3.Crespo,A.;Fernandez,A.Induced Disorder in Protein-Ligand Complexes as a Drug-Design Strategy.Mol Pharmaceutics.2008,5,430-437.
    4.Fernandez,A.;Sanguino,A.;Peng,Z-H.;et al.Rational Drug Redesign to Overcome Drug Resistance in Cancer Therapy:Imatinib Moving Target.Cancer Res.2007,67,4028-4033.
    5.Kuhn,B.;Kollman,P.A.A Ligand That Is Predicted to Bind Better to Avidin than Biotin:Insights from Computational Fluorine Scanning.J.Am.Chem.Soc.2000,122,3909-3916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700