单胶束为模板的二氧化硅纳米粒子的合成机理、性质及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单胶束为模板的二氧化硅纳米粒子在生物医药等很多领域展示了非常诱人的应用前景,对其合成机理、性质以及应用的研究将会对单分散粒子的合成、性质及应用具有深远的意义。
     本论文在以三嵌段共聚物PEO–PPO–PEO为模板,正硅酸乙酯为硅源合成单分散壳核二氧化硅纳米粒子的基础上,围绕其合成机理、性质、组装及功能化研究展开工作。第一章绪论,概述了本论文的研究背景,主要介绍了单分散二氧化硅纳米粒子的合成方法及其在药物缓释方面的应用,以及单分散二氧化硅纳米粒子的组装工作。第二章研究了抑制剂的分子结构如烷基取代基的个数、碳链长度和电荷对单分散粒子合成的影响,并具体考察了一些抑制剂的有效范围。提出了抑制机理,并通过实验证实。第三章讨论了1,3,5-三甲苯或脂肪酸对粒子粒径的影响,它们可使粒子粒径从10nm调变到90nm。用芘和香豆素-153作为荧光探针分子研究其机理。第四章讨论了以单胶束为模板合成的二氧化硅纳米粒子为结构基元的组装行为,考察了温度、电解质对组装的影响。第五章采用两种方式将粒子功能化,讨论了功能化纳米粒子的合成,考察了功能化后的粒子对金属离子的螯合能力及对药物的担载和缓释能力。
Silica nanoparticles templated with individual micelles have shown a very attractive prospect especially in bio-medicine area, because they not only combine the structure characteristic of micelle and the advantage of silica such as easy modification and bio-compatibility,but also overcome the disadventage of instability of micelle and poor loading capacity of silica particles. The use of individual micelles as template is a novel pathway to ynthesis monodisperse silica nanoparticles. The study on the synthesis of silica nanoparticles is meaningful for their applications in many fields such as drug release, adsorption, catalysis and so on.. In this dissertation, the mechanism of synthesis, properties, assembly and function are the main work. First the basic concept of surfactant and micelle has been presented, their application in the drug delivery system is briefly reviewed. Then the synthesis method of monodisperse silica nanoparticles has been concisely introduced, and their application in the drug delivery system is briefly reviewed. Based on these background, we propose the importance of the search project. Main research results obtained during my Ph. D. study are described as follows:
     1. We investigated the effects of organosilane termination agent in the formation of SCMCSNs. Experimental data (synthesis results, 29Si MAS NMR, molecule probe fluorescence spectra, etc.) from a synthesis system with Pluronic F127 as templates indicate that organosilane covers the surface Si-OH groups of nanoparticles. The reduction of surface Si-OH groups helps the stabilization of the nanoparticles by avoiding aggregation. The terminating behavior of organosilane is determined by its molecular structure including (1) the value of n: agent with larger number of methyls has stronger steric hindrance, which improves the terminating effect. The effective order of termination agent is TMES > DEDMS > MTES. (2) the length of hydrocarbon chain R: agent with longer hydrocarbon chain better blocks the attack from other nanoparticles. Accordingly the terminating effect of PTMS is better than VTES and MTES. (3) the charges of R: agent with charges makes silica nanoparticle well dispersed. (4) The effective organosilane termination agents are also applicable to other synthesis mixtures such as the systems using Si(OC2H4OH)4 as the silica source, or F108 or Brij 700 as the template.
     2. We have successfully prepared stable, monodisperse silica nanoparticles with tunable sizes from <20 nm to ~90 nm (base on DLS results) which is the most useful size range for the applications of nanoparticles in biomedical area. When 1,3,5-trimethylbenzene (TMB) as swelling agent, the size of nanoparticles can increased to 33 nm, the size increased with the increased amount of TMB and decreased temperature, the reason has been disscussd. When fatty acid as swelling agent, the size of nanoparticles can increase to 90 nm, and the effect of the length of fatty acid on the nanoparticles size has been studied. Among the fatty acid, the best swelling agent is octanoic acid. we use pyrene as a probe to investigate the hydrophobic environment of the core of nanoparticles. The ratios of I1/I3 are between 1.31 and 1.18 for the SCMCSNs functionalized with octanoic acid, which means the polarity of the core of nanoparticles is very low and the microenvironment is hydrophobic. The quick decrease of excimer pyrene is due to the decrease of the pyrene concentration in the hydrophobic region, which results from the hydrophobic core of nanoparticle being enlarged by addition of octanoic acid. It is obvious that the C153 emission shifts from 502 to 522 nm with the addition of more octanoic acid. The red shift of 20 nm is attributed to an increase in polarity of microenvironments, which confirms that the carboxyl group of octanoic acid in the nanoparticle locates at the PPO-PEO interface or PEO region. In summary the fluorescent spectrum behaviors of probe molecules indicate that the carboxylic acid groups of fatty acid locate at the PPO-PEO interface region of silica cross-linked F127 micelles (SCMCSNs).
     3.We studied the assembly behavior of the monodisperse silica nanoparticles. We investageted the effect of temperature, electrolyte. To increase the acting force among the nanoparticles, we added TEOS to the system, and obtain mesocellular silica foam (MCF).
     4 We can obtain monodisperse nanoparticles by using the trisodium salt of the triacetic acid N-(trimethoxysilylpropyl) ethylenediamine (TANED) which acts not only as termination agent for the successful synthesis of SCMCSNs but also acts as functional group to improve the performance of SCMCSNs for potential applications.
     The nanoparticles functional by octanoic acid can be used to load and release drug. The drug loading capacity of nanoparticles increases with the increase of the content of the octanoic acid in the block copolymers, because there is interaction between octanoic acid and drug. The release feature is also enhanced by the interaction. When more drug molecules are loaded, the SCMCSN sample can still release drug at a reasonable rate in long time.
引文
[1] Imagawa H,Tanaka T,Takahashi N, et al. Synthesis and characterization of Al2O3 and ZrO2-TiO2 nano-composite as a support for NO, storage-reduction catalyst [J].Journal of Catalysis, 2007, 251: 315-320.
    [2] Johansson F,Carlberg P,Danielsen N, et al. Axonal outgrowth on nano-imprinted patterns [J].Biomaterials, 2006, 27: 1251-1258.
    [3] Li H,Wang Z X,Chen L Q, et al. Research on advanced materials for Li-ion batteries [J].Advanced Materials, 2009, 21: 4593-4607.
    [4] Wilson J R,Kobsiriphat W,Mendoza R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode [J].Nature Materials, 2006, 5: 541-544.
    [5] Lal S,Link SHalas N J. Nano-optics from sensing to waveguiding [J].Nature Photonics, 2007, 1: 641-648.
    [6] Aeschlimann M,Bauer M,Bayer D, et al. Adaptive subwavelength control of nano-optical fields [J].Nature, 2007, 446: 301-304.
    [7] Bonanni A , Dietl T. A story of high-temperature ferromagnetism in semiconductors [J].Chemical Society Reviews, 39: 528-539.
    [8] Rogez G,Donnio B,Terazzi E, et al. The quest for nanoscale magnets: the example of [Mn12] single molecule magnets [J].Advanced Materials, 2009, 21: 4323-4333.
    [9] Ariga K,Hill J P,Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application [J].Physical Chemistry Chemical Physics, 2007, 9: 2319-2340.
    [10] Cozzoli P D,Pellegrino T,Manna L. Synthesis, properties and perspectives of hybrid nanocrystal structures [J].Chemical Society Reviews, 2006, 35:1195-1208.
    [11] Lin W B,Rieter W J,Taylor K. Modular synthesis of functional nanoscale coordination polymers [J].Angewandte Chemie-International Edition, 2009, 48: 650-658.
    [12] Nel A E,Madler L,Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface [J].Nature Materials, 2009, 8: 543-557.
    [13] Jun Y W,Seo J W,Cheon A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences [J].Accounts of Chemical Research, 2008, 41: 179-189.
    [14] Portney N G,Ozkan M. Nano-oncology: drug delivery, imaging, and sensing [J].Analytical and Bioanalytical Chemistry, 2006, 384: 620-630.
    [15] Aliabadi H M,Lavasanifar A. Polymeric micelles for drug delivery [J].Expert Opin Drug Deliv, 2006, 3: 139-62.
    [16] Qiu L Y,Zheng C,Jin Y, et al. Polymeric micelles as nanocarriers for drug delivery [J].Expert Opinion on Therapeutic Patents, 2007, 17: 819-830.
    [17] Schmolka I R. Artificial Skin .1. Preparation and Properties of Pluronic F-127 Gels for Treatment of Burns [J].Journal of Biomedical Materials Research, 1972, 6: 571-582.
    [18] Niu G G,Zhang H B,Song L, et al. Thiol/Acrylate-Modified PEO-PPO-PEO Triblocks Used as Reactive and Thermosensitive Copolymers [J].Biomacromolecules, 2008, 9: 2621-2628.
    [19] Sosnik A,Sefton M V. Semi-synthetic collagen/poloxamine matrices for tissue engineering [J].Biomaterials, 2005, 26: 7425-7435.
    [20] Li X R,Huang Y Q,Chen X W, et al. Self-assembly and characterization ofPluronic P105 micelles for liver-targeted delivery of silybin [J].Journal of Drug Targeting, 2009, 17: 739-750.
    [21] Gonzalez-Lopez J,Alvarez-Lorenzo C,Taboada P, et al. Self-associative behavior and drug-solubilizing ability of poloxamine (Tetronic) block copolymers [J].Langmuir, 2008, 24: 10688-10697.
    [22] Grindel J M,Jaworski T,Piraner O, et al. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans [J].Journal of Pharmaceutical Sciences, 2002, 91: 1936-1947.
    [23] Nagarajan R. Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic (R) (PEO-PPO-PEO) block copolymers [J].Colloids and Surfaces B-Biointerfaces, 1999, 16: 55-72.
    [24] Kabanov A V,Alakhov V Y. Pluronic (R) block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers [J].Critical Reviews in Therapeutic Drug Carrier Systems, 2002, 19: 1-72.
    [25] Chiappetta D A,Sosnik A. Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs [J].European Journal of Pharmaceutics and Biopharmaceutics 2007, 66: 303-317.
    [26] Kabanov A V,Batrakova E VAlakhov V Y. [J].Journal of Controlled Release 2002, 82: 189-212.
    [27] Kozlov M Y,Melik-Nubarov N S,Batrakova E V, et al. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes [J].Macromolecules, 2000, 33: 3305-3313.
    [28] Park J H,Lee S,Kim J H, et al. Polymeric nanomedicine for cancer therapy [J].Progress in Polymer Science, 2008, 33: 113-137.
    [29] Tong R,Cheng J J. Anticancer polymeric nanomedicines [J].Polymer Reviews, 2007, 47: 345-381.
    [30] Gaucher G v,Dufresne M-H l. Block copolymer micelles: preparation, characterization and application in drug delivery [J].Journal of Controlled Release 2005, 109: 169-188.
    [31] Alexander V. Kabanova E V B, Valery Yu. Alakhov. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery [J].Journal of Controlled Release 2002, 82: 189-212.
    [32] Soppimath K S,Aminabhavi T M,Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices [J].Journal of Controlled Release, 2001, 70: 1-20.
    [33] Lavasanifar A,Samuel J,Kwon G S. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery [J].Advanced Drug Delivery Reviews, 2002, 54: 169-190.
    [34] Li Y , Kwon G S. Methotrexate Esters of Poly(Ethylene Oxide)-Block-Poly(2-Hydroxyethyl-L-Aspartamide). Part I: Effects of the Level of Methotrexate Conjugation on the Stability of Micelles and on Drug Release [J].Pharmaceutical Research, 2000, 17: 607-611.
    [35] Jaeyoung Lee,Eun Chul, ChoCho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block–poly(ethylene oxide) micelles [J].Journal of Controlled Release, 2004, 94: 323-335.
    [36] Yoo H S,Park T G. Folate receptor targeted biodegradable polymericdoxorubicin micelles [J].Journal of Controlled Release, 2004, 96: 273-283.
    [37] Yoo H S,Park T G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer [J].Journal of Controlled Release, 2001, 70: 63-70.
    [38] Montree Jaturanpinyo,Atsushi Harada,Xiaofei Yuan, et al. Preparation of Bionanoreactor Based on Core?Shell Structured Polyion Complex Micelles Entrapping Trypsin in the Core Cross-Linked with Glutaraldehyde [J].Bioconjugate Chemistry, 2004, 15: 344-348.
    [39] St?ber W,Fink A,Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J].Journal of Colloid and Interface Science, 1968, 26: 62-69.
    [40] Yokoi T,Sakamoto Y,Terasaki O, et al. Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids [J].Journal of the American Chemical Society, 2006, 128: 13664-13665.
    [41] Yokoi T,Wakabayashi J,Otsuka Y, et al. Mechanism of Formation of Uniform-Sized Silica Nanospheres Catalyzed by Basic Amino Acids [J].Chemistry of Materials, 2009, 21: 3719-3729.
    [42] Davis T M,Snyder M A,Krohn J E, et al. Nanoparticles in Lysine-silica Sols [J].Chemistry of Materials, 2006, 18: 5814-5816.
    [43] Hartlen K D,Athanasopoulos A P TKitaev V. Facile Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm) Suitable for Colloidal Templating and Formation of Ordered Arrays [J].Langmuir, 2008, 24: 1714-1720.
    [44] Finnie K S,Bartlett J R,Barbe C J A, et al. Formation of Silica Nanoparticles inMicroemulsions [J].Langmuir, 2007, 23: 3017-3024.
    [45] Hah H J,Kim J S,Jeon B J, et al. Simple preparation of monodisperse hollow silica particles without using templates [J].Chemical Communications, 2003: 1712-1713.
    [46] Wang Q,Liu Y,Yan H. Mechanism of a self-templating synthesis of monodispersed hollow silica nanospheres with tunable size and shell thickness [J].Chemical Communications, 2007: 2339-2341.
    [47] Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges [J].Langmuir, 1994, 10: 8-16.
    [48] Tissot I,Reymond J P,Lefebvre F, et al. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles [J].Chemistry of Materials, 2002, 14: 1325-1331.
    [49] Lu Y,McLellan J,Xia Y. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells [J].Langmuir, 2004, 20: 3464-3470.
    [50] Graf C,Vossen D L J,Imhof A, et al. A General Method To Coat Colloidal Particles with Silica [J].Langmuir, 2003, 19: 6693-6700.
    [51] Qi L,Li J,Ma J. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers [J].Advanced Materials, 2002, 14: 300-303.
    [52] Zhang D,Qi L,Ma J, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J].Advanced Materials, 2002, 14: 1499-1502.
    [53] Ma Y,Qi L,Ma J, et al. Facile Synthesis of Hollow ZnS Nanospheres in BlockCopolymer Solutions [J].Langmuir, 2003, 19: 4040-4042.
    [54] Qisheng Huo, J Liu. A New Class of Silica Cross-Linked Micellar Core-Shell Nanoparticles [J]. Journal of the American Chemical Society, 2006, 128: 6447-6453.
    [55] Zhu J,Tang J,Zhao L, et al. Ultrasmall, Well-Dispersed, Hollow Siliceous Spheres with Enhanced Endocytosis Properties [J].Small, 2010, 6: 276-282.
    [56] Khanal A,Inoue Y,Yada M, et al. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-shell-corona Structure [J].Journal of the American Chemical Society, 2007, 129: 1534-1535.
    [57] Yuan J J,Mykhaylyk O O,Ryan A J, et al. Cross-linking of cationic block copolymer micelles by silica deposition [J].Journal of the American Chemical Society, 2007, 129: 1717-1723.
    [58] Li X Q,Yang T T,Gao Q, et al. Biomimetic synthesis of copolymer-silica nanoparticles with tunable compositions and surface property [J].Journal of Colloid and Interface Science, 2009, 338: 99-104.
    [59] Liu J,Yang Q,Zhang L, et al. Organic-inorganic Hybrid Hollow Nanospheres with Microwindows on the Shell [J].Chemistry of Materials, 2008, 20.
    [60] Liu Y L,Hsu C Y,Wang M L, et al. [J].Nanotechnology, 2003, 14: 813.
    [61] Ying-Ling LShu-Hsien L. Poly(dimethylsiloxane) Star Polymers Having Nanosized Silica Cores [J].Macromolecular Rapid Communications, 2004, 25: 1392-1395.
    [62] Vallet-RegíM,Francisco B,Daniel A. Mesoporous Materials for Drug Delivery [J].Angewandte Chemie International Edition, 2007, 46: 7548-7558.
    [63] Balas F,Manzano M,Horcajada P, et al. Confinement and controlled release ofbisphosphonates on ordered mesoporous silica-based materials [J].Journal of the American Chemical Society, 2006, 128: 8116-8117.
    [64] Arruebo M,Galan M,Navascues N, et al. Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications [J].Chemistry of Materials, 2006, 18: 1911-1919.
    [65] Chang J H,Shim C H,Kim B J, et al. Bicontinuous, Thermoresponsive, L3-Phase Silica Nanocomposites and Their Smart Drug-Delivery Applications [J].Advanced Materials, 2005, 17: 634-637.
    [66] Climent E,Bernardos A,Martinez-Manez R, et al. Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers [J].Journal of the American Chemical Society, 2009, 131: 14075-14080.
    [67] Cauda V,Schlossbauer A,Kecht J, et al. Multiple Core-Shell Functionalized Colloidal Mesoporous Silica Nanoparticles [J].Journal of the American Chemical Society, 2009, 131: 11361-11370.
    [68] Liong M , Angelos S , Choi E, et al. Mesostructured multifunctional nanoparticles for imaging and drug delivery [J].Journal of Materials Chemistry, 2009, 19: 6251-6257.
    [69] Lin H M,Zhu G S,Xing J J, et al. Polymer-Mesoporous Silica Materials Templated with an Oppositely Charged Surfactant/Polymer System for Drug Delivery [J].Langmuir, 2009, 25: 10159-10164.
    [70] Qing Yang,Shichao Wang,Xiao F-S. pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polyelectrolyte for Drug Delivery [J].Chemistry of Materials, 2005, 17: 5999.
    [71] Fujiwara M. photocontrolled reversible release of guest molecules fromcoumarin-modified mesoporous silica [J].Nature, 2003, 421: 350.
    [72] Lai C-Y , Trewyn B G , Jeftinija D M, et al. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules [J].Journal of the American Chemical Society, 2003, 125: 4451-4459.
    [73] Trewyn B G,Slowing, II,Giri S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release [J].Accounts of Chemical Research, 2007, 40: 846-853.
    [74] Barb C,Bartlett J,Kong L, et al. Silica Particles: A Novel Drug-Delivery System [J].Advanced Materials, 2004, 16: 1959-1966.
    [75] Suzuki K,Ikari KImai H. Synthesis of Silica Nanoparticles Having a Well-Ordered Mesostructure Using a Double Surfactant System [J].Journal of the American Chemical Society, 2003, 126: 462-463.
    [76] Yu H,Jackie Y Y. Generalized Fluorocarbon-Surfactant-Mediated Synthesis of Nanoparticles with Various Mesoporous Structures13 [J].Angewandte Chemie International Edition, 2005, 44: 288-292.
    [77] Smith R C,Hoilien N,Roberts J, et al. Combinatorial Chemical Vapor Deposition of Metal Dioxides Using Anhydrous Metal Nitrates [J].Chemistry of Materials, 2002, 14: 474-476.
    [78] Wang J,Stucky G D. Materials for Multibit-per-Site Optical Data Storage [J].Advanced Functional Materials, 2004, 14: 409-415.
    [79] Taguchi A,Schüth F. Ordered mesoporous materials in catalysis [J].Microporous and Mesoporous Materials, 2005, 77: 1-45.
    [80] Lei J,Fan J,Yu C, et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J].Microporous and Mesoporous Materials, 2004, 73: 121-128.
    [81] Hartmann M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J].Chemistry of Materials, 2005, 17: 4577-4593.
    [82] Davis M E. [J].Nature, 2002, 417: 813.
    [83] Mesa M,Sierra L,López B, et al. Preparation of micron-sized spherical particles of mesoporous silica from a triblock copolymer surfactant, usable as a stationary phase for liquid chromatography [J].Solid State Sciences, 2003, 5: 1303-1308.
    [84] Jackie Y Y,Christian P MMichael S W. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials [J].Angewandte Chemie International Edition, 1999, 38: 56-77.
    [85] Wang P,Zhao L,Wu R, et al. Phosphonic Acid Functionalized Periodic Mesoporous Organosilicas and Their Potential Applications in Selective Enrichment of Phosphopeptides [J].The Journal of Physical Chemistry C, 2009, 113: 1359-1366.
    [86] Trewyn B G,Slowing I I,Giri S, et al. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-gel Process and Applications in Controlled Release [J].Accounts of Chemical Research, 2007, 40: 846-853.
    [87] Rooke J C,Leonard ASu B-L. Targeting photobioreactors: Immobilisation of cyanobacteria within porous silica gel using biocompatible methods [J].Journal of Materials Chemistry, 2008, 18: 1333-1341.
    [88] Lee C-H,Lin T-S,Mou C-Y. Mesoporous materials for encapsulating enzymes[J].Nano Today, 2009, 4: 165-179.
    [89] Boissiere C,Larbot A,van der Lee A, et al. A New Synthesis of Mesoporous MSU-X Silica Controlled by a Two-Step Pathway [J].Chemistry of Materials, 2000, 12: 2902-2913.
    [90] Yang P,Zhao D,Chmelka B F, et al. Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers [J].Chemistry of Materials, 1998, 10: 2033-2036.
    [91] Feng P,Bu X,Stucky G D, et al. Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals [J].Journal of the American Chemical Society, 1999, 122: 994-995.
    [92] Yu C,Tian B,Fan J, et al. Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts [J].Journal of the American Chemical Society, 2002, 124: 4556-4557.
    [93] Hu Q,Kou R,Pang J, et al. Mesoporous carbon/silica nanocomposite through multi-component assembly [J].Chemical Communications, 2007: 601-603.
    [94] Chen H,He J. Fine control over the morphology and structure of mesoporous silica nanomaterials by a dual-templating approach [J].Chemical Communications, 2008: 4422-4424.
    [95] Jianfang W,Chia-Kuang T,Ryan C H, et al. Single-Crystal Mesoporous Silica Ribbons13 [J].Angewandte Chemie International Edition, 2005, 44: 332-336.
    [96] Marlow F,Spliethoff B,Tesche B, et al. The Internal Architecture of Mesoporous Silica Fibers [J].Advanced Materials, 2000, 12: 961-965.
    [97] Tolbert S H,Schaffer T E,Feng, et al. A New Phase of Oriented Mesoporous Silicate Thin Films [J].Chemistry of Materials, 1997, 9: 1962-1967.
    [98] Poyraz A S,Albayrak C,Dag ?. The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics [J].Microporous and Mesoporous Materials, 2008, 115: 548-555.
    [99] Yang H,Shi Q,Tian B, et al. A Fast Way for Preparing Crack-Free Mesostructured Silica Monolith [J].Chemistry of Materials, 2003, 15: 536-541.
    [100] Kleitz F,Wilczok U,Schüth F, et al. Hollow mesoporous silica fibers: tubules by coils of tubules [J].Physical Chemistry Chemical Physics, 2001, 3: 3486-3489.
    [101] Mou C-Y,Lin H-P. Control of morphology in synthesizing mesoporous silica [J].Pure and Applied Chemistry, 2000, 72: 137-146.
    [102] Zhao D,Sun J,Li Q, et al. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 [J].Chemistry of Materials, 2000, 12: 275-279.
    [103] Yang H,Vovk G,Coombs N, et al. Synthesis of mesoporous silica spheres under quiescent aqueous acidic conditions [J].Journal of materials chemistry, 1998, 8: 743 - 750.
    [104] Beck J S,Vartuli J C,Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J].Journal of the American Chemical Society, 1992, 114: 10834-10843.
    [105] O'Neil A S,Mokaya R,Poliakoff M. Supercritical Fluid-Mediated Alumination of Mesoporous Silica and Its Beneficial Effect on Hydrothermal Stability [J].Journal of the American Chemical Society, 2002, 124: 10636-10637.
    [106] Huo Q,Margolese D I,Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J].Nature, 1994, 368: 317-321.
    [107] Huo Q,Margolese D I,Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J].Chemistry of Materials, 1994, 6: 1176-1191.
    [108] Ji X,Lee K T,Monjauze M, et al. Strategic synthesis of SBA-15 nanorodsw [J].Chemical Communications, 2008: 4288–4290.
    [109] Sierra L,Valange SGuth J-L. Formation mechanism and morphology of mesoporous SBA-16 type silica particles prepared with the triblock copolymer surfactant PEO140PPO39PEO140 [J].Microporous and Mesoporous Materials 2009, 124: 100-109
    [110] Tang J,Liu J,Wang P, et al. Evolution from hollow nanospheres to highly ordered FDU-12 induced by inorganic salts under weak acidic conditions [J].Microporous and Mesoporous Materials, 2010, 127: 119-125.
    [1] Park J,Joo J,Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J].Angewandte Chemie-International Edition, 2007, 46: 4630-4660.
    [2] Lin Y S,Hung Y,Lin H Y, et al. Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres [J].Advanced Materials, 2007, 19: 577-580.
    [3] Plush S E,Woods M,Zhou Y-F, et al. Nanoassembled Capsules as Delivery Vehicles for Large Payloads of High Relaxivity Gd3+ Agents [J].Journal of the American Chemical Society, 2009, 131: 15918-15923.
    [4] Kim J,Park S,Lee J E, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy [J].Angewandte Chemie-International Edition, 2006, 45: 7754-7758.
    [5] McCarthy J R,Kelly K A,Sun E Y, et al. Targeted delivery of multifunctional magnetic nanoparticles [J].Nanomedicine, 2007, 2: 153-167.
    [6] Ow H,Larson D R,Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles [J].Nano Letters, 2005, 5: 113-117.
    [7] Fuller J E,Zugates G T,Ferreira L S, et al. Intracellular delivery of core-shell fluorescent silica nanoparticles [J].Biomaterials, 2008, 29: 1526-1532.
    [8] Zhao Y,Jiang L. Hollow Micro/Nanomaterials with Multilevel Interior Structures [J].Advanced Materials, 2009, 21: 3621-3638.
    [9] Shylesh S , Schweizer J , Demeshko S, et al. Nanoparticle Supported, Magnetically Recoverable Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for Selective Epoxidation Reactions [J].Advanced Synthesis &Catalysis, 2009, 351: 1789-1795.
    [10] Bell A T. The impact of nanoscience on heterogeneous catalysis [J].Science, 2003, 299: 1688-1691.
    [11] Zhang L H,Liu B FDong S J. Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material [J].Journal of Physical Chemistry B, 2007, 111: 10448-10452.
    [12] Jun Y W,Lee J HCheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging [J].Angewandte Chemie-International Edition, 2008, 47: 5122-5135.
    [13] Braun G,Lee S J,Dante M, et al. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films [J].Journal of the American Chemical Society, 2007, 129: 6378-6379.
    [14] Jovanovic A V,Underhill R S,Bucholz T L, et al. Oil core and silica shell nanocapsules: Toward controlling the size and the ability to sequester hydrophobic compounds [J].Chemistry of Materials, 2005, 17: 3375-3383.
    [15] Lu Y,McLellan J,Xia Y N. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells [J].Langmuir, 2004, 20: 3464-3470.
    [16] Graf C,Vossen D L J,Imhof A, et al. A General Method To Coat Colloidal Particles with Silica [J].Langmuir, 2003, 19: 6693-6700.
    [17] Werner St?ber,Fink A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range [J].Journal of Colloid and Interface Science, 1968, 26: 62-69.
    [18] Yuan J J,Mykhaylyk O O,Ryan A J, et al. Cross-linking of cationic blockcopolymer micelles by silica deposition [J].Journal of the American Chemical Society, 2007, 129: 1717-1723.
    [19] Khanal A,Inoue Y,Yada M, et al. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-shell-corona Structure [J].Journal of the American Chemical Society, 2007, 129: 1534-1535.
    [20] Huo Q S,Liu J,Wang L Q, et al. A new class of silica cross-linked micellar core-shell nanoparticles [J].Journal of the American Chemical Society, 2006, 128: 6447-6453.
    [21] Zhu J,Tang J,Zhao L, et al. Ultrasmall, Well-Dispersed, Hollow Siliceous Spheres with Enhanced Endocytosis Properties [J].Small, 2010, 6: 276-282.
    [22] Liu Z,Ding JXue J. A new family of biocompatible and stable magnetic nanoparticles: silica cross-linked pluronic F127 micelles loaded with iron oxides [J].New Journal of Chemistry, 2009, 33: 88-92.
    [23] Antochshuk VJaroniec M. Functionalized mesoporous materials obtained via interfacial reactions in self-assembled silica-surfactant systems [J].Chemistry of Materials, 2000, 12: 2496-2501.
    [24] Bradley C A,Yuhas B D,McMurdo M J, et al. Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications [J].Chemistry of Materials, 2009, 21: 174-185.
    [25] Jungmann N,Schmidt M,Ebenhoch J, et al. Dye loading of amphiphilic poly(organosiloxane) nanoparticles [J].Angewandte Chemie-International Edition, 2003, 42: 1714-1717.
    [26] Xu Y,Wu D,Sun Y, et al. A new study on the kinetics of St?ber synthesis by in-situ liquid 29Si NMR [J].J Sol-Gel Sci Techn 2007, 42: 13-20.
    [27] Stangar U L,Sassi A,Venzo A, et al. IR and NMR time-resolved studies on the hydrolysis and condensation of methacryloxyalkylsilanes [J].Journal of Sol-Gel Science and Technology, 2009, 49: 329-335.
    [28] de Monredon–Senani S,Bonhomme C,Ribot F, et al. Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidenced by 29Si NMR [J].Journal of Sol-Gel Science and Technology, 2009, 50: 152-157.
    [29] Dong H J,Lee M,Thomas R D, et al. Methyltrimethoxysilane sol-gel polymerization in acidic ethanol solutions studied by Si-29 NMR spectroscopy [J].Journal of Sol-Gel Science and Technology, 2003, 28: 5-14.
    [30] Yokoi T,Yoshitake HTatsumi T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes [J].Journal of Materials Chemistry, 2004, 14: 951-957.
    [31] Shen S K,Hu D D. Fluorescent probe as reporter on the local structure and dynamics in hydrolysis-condensation process of organotrialkoxysilanes [J].Journal of Physical Chemistry B, 2007, 111: 7963-7971.
    [32] Ascah B F. [J]. Journal of Chromatography A, 1990, 506: 357.
    [33] Babonneau F,Maquet JLivage J. First Direct Observation by 17O Liquid NMR of Co-condensation Reactions between Methyl-Substituted Silicon Alkoxides [J].Chemistry of Materials, 2002, 7: 1050-1052.
    [34] Brinker C J,Scherer G W. Sol-Gel Science [J].Academic Press: San Diego, 1990.
    [35] Fyfe C A,Aroca P P. A Kinetic Analysis of the Initial Stages of the Sol-gel Reactions of Methyltriethoxysilane (MTES) and a MixedMTES/Tetraethoxysilane System by High-Resolution 29Si NMR Spectroscopy [J].The Journal of Physical Chemistry B, 1997, 101: 9504-9509.
    [36] Hook R J. A 29Si NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes [J].Journal of Non-Crystalline Solids, 1996, 195: 1-15.
    [37] J. C. Pouxviel,J. P. Boilot. NMR Study of the sol/gel polymerization [J].Journal of Non-Crystalline Solids, 1987, 89: 345-360.
    [38] Sunseri J D,Cooper W T,Dorsey J G. [J].Journal of Chromatography A, 2003, 1011: 23-29.
    [39] Backer M,Grimmer A R,Auner N, et al. 29Si chemical shift tensors of silyl silicate cages [J].Solid State Nuclear Magnetic Resonance, 1997, 9: 241-255.
    [40] Xu Y,Liu R L,Wu D, et al. Ammonia-catalyzed hydrolysis kinetics of mixture of tetraethoxysilane with methyltriethoxysilane by Si-29NMR [J].Journal of Non-Crystalline Solids, 2005, 351: 2403-2413.
    [41] Rao A V,Kulkarni M M. Hydrophobic properties of TMOS/TMES-based silica aerogels [J].Materials Research Bulletin, 2002, 37: 1667-1677.
    [42] Chambers R C,Haruvy Y,Fox M A. Excited State Dynamics in the Structural Characterization of Solid Alkyltrimethoxysilane-Derived Sol-Gel Films and Glasses Containing Bound or Unbound Chromophores [J].Chemistry of Materials, 1994, 6: 1351-1357.
    [43] Rampazzo E,Bonacchi S,Montalti M, et al. Self-organizing core-shell nanostructures: Spontaneous accumulation of dye in the core of doped silica nanoparticles [J].Journal of the American Chemical Society, 2007, 129: 14251-14256.
    [44] Tan H,Liu N S,He B, et al. Facile synthesis of hybrid silica nanocapsules byinterfacial templating condensation and their application in fluorescence imaging [J].Chemical Communications, 2009: 6240-6242.
    [1] Huo Q S,Liu J,Wang L Q, et al. A new class of silica cross-linked micellar core-shell nanoparticles [J].Journal of the American Chemical Society, 2006, 128: 6447-6453.
    [2] Yuan J J,Mykhaylyk O O,Ryan A J, et al. Cross-linking of cationic block copolymer micelles by silica deposition [J].Journal of the American Chemical Society, 2007, 129: 1717-1723.
    [3] Yu C,Fan J,Tian B, et al. Synthesis of Mesoporous Silica from Commercial Poly(ethylene oxide)/Poly(butylene oxide) Copolymers: Toward the Rational Design of Ordered Mesoporous Materials [J].The Journal of Physical Chemistry B, 2003, 107: 13368-13375.
    [4] Namba S,Mochizuki A,Kito M. Fine Control of Pore Size of Highly Ordered MCM-41 by Using Template Mixture of Dodecyltrimethylammonium Bromide/Hexadecyltrimethylammonium Bromide with Various Molar Ratios [J].Chemistry Letters, 1998, 27: 569-570.
    [5] Zhao D,Huo Q,Feng J, et al. [J].Journal of the American Chemical Society 1998, 120: 6024-6036.
    [6] Huo Q,Margolese D I,Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J].Chemistry of Materials, 1994, 6: 1176-1191.
    [7] Wan Y,Zhao. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J].Chemical Reviews, 2007, 107: 2821-2860.
    [8] Zhang P L,Wu Z F,Xiao N, et al. Ordered Cubic Mesoporous Silicas with Large Pore Sizes Synthesized via High-Temperature Route [J].Langmuir, 2009, 25:13169-13175.
    [9] Fulvio P F,Pikus SJaroniec M. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis [J].Journal of Materials Chemistry, 2005, 15: 5049-5053.
    [10] Wang A,Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture [J].Chemical Communications, 1999: 2067 - 2068.
    [11] Jie F,Chengzhong Y,Feng G, et al. Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties13 [J].Angewandte Chemie International Edition, 2003, 42: 3146-3150.
    [12] Fan J,Yu C,Wang L, et al. Mesotunnels on the Silica Wall of Ordered SBA-15 to Generate Three-Dimensional Large-Pore Mesoporous Networks [J].Journal of the American Chemical Society, 2001, 123: 12113-12114.
    [13] Blin J L,Su B L. Tailoring Pore Size of Ordered Mesoporous Silicas Using One or Two Organic Auxiliaries as Expanders [J].Langmuir, 2002, 18: 5303-5308.
    [14] Kruk M,Cao L. Pore Size Tailoring in Large-Pore SBA-15 Silica Synthesized in the Presence of Hexane [J].Langmuir, 2007, 23: 7247-7254.
    [15] Zhang H,Sun J,Ma D, et al. Engineered Complex Emulsion System:鈥?Toward Modulating the Pore Length and Morphological Architecture of Mesoporous Silicas [J].The Journal of Physical Chemistry B, 2006, 110: 25908-25915.
    [16] Jana S K,Nishida R,Shindo K, et al. Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals [J].Microporous and Mesoporous Materials, 2004, 68: 133-142.
    [17] Cao L,Man TKruk M. Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As MicelleExpander [J].Chemistry of Materials, 2009, 21: 1144-1153.
    [18] Vallet-Regi M,Balas FArcos D. Mesoporous materials for drug delivery [J].Angewandte Chemie-International Edition, 2007, 46: 7548-7558.
    [19] Lei J,Fan J,Yu C, et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J].Microporous and Mesoporous Materials, 2004, 73: 121-128.
    [20] Sun J,Ma D,Zhang H, et al. Phase evolution in the alkane-P123-water-TEOS quadru-component system: a feasible route to different complex mesostructured materials [J].Journal of Materials Chemistry, 2006, 16: 1507-1510.
    [21] Sun J,Zhang H,Ma D, et al. Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores [J].Chemical Communications, 2005: 5343-5345.
    [22] Kim M J,Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1 [J].Chemistry of Materials, 1999, 11: 487-491.
    [23] Chen D H,Li Z,Wan Y, et al. Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures [J].Journal of Materials Chemistry, 2006, 16: 1511-1519.
    [24] Nguyen T P B,Lee J W,Shim W G, et al. Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA [J].Microporous and Mesoporous Materials, 2008, 110: 560-569.
    [25] Wan H H,Liu L,Li C M, et al. Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography [J].Journal of Colloid and Interface Science, 2009, 337: 420-426.
    [26] Boissiere C,Martines M A U,Tokumoto M, et al. Mechanisms of Pore SizeControl in MSU-X Mesoporous Silica [J].Chemistry of Materials, 2002, 15: 509-515.
    [27] Zhao D Y,Feng J L,Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J].Science 1998, 279: 548.
    [28] Fan J,Yu C,Lei J, et al. Low-Temperature Strategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores [J].Journal of the American Chemical Society, 2005, 127: 10794-10795.
    [29] Colin B,David A. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution [J].Macromolecular Rapid Communications, 2000, 21: 501-527.
    [30] Wanka G,Hoffmann H,Ulbricht W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J].Macromolecules, 1994, 27: 4145-4159.
    [31] Alexandridis P , Alan Hatton T. Poly(ethylene oxide)---poly(propylene oxide)---poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96: 1-46.
    [32] Lam Y M,Grigorieff N,Goldbeck-Wood G. Direct visualisation of micelles of Pluronic block copolymers in aqueous solution by cryo-TEM [J].Physical Chemistry Chemical Physics, 1999, 1: 3331-3334.
    [33] Kalyanasundaram K,Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies ofmicellar systems [J].Journal of the American Chemical Society 1977, 99: 2039-2044.
    [34] Matsui K,Tominaga M,Arai Y, et al. Fluorescence of pyrene in sol-gel silica derived from triethoxysilane [J].Journal of Non-Crystalline Solids, 1994, 169: 295-300.
    [35] Shen S K,Hu D D. Fluorescent Probe as Reporter on the Local Structure and Dynamics in Hydrolysis-Condensation Process of Organotrialkoxysilanes [J].The Journal of Physical Chemistry B, 2007, 111: 7963-7971.
    [36] Kaufman V R,Avnir D. Structural changes along the sol-gel-xerogel transition in silica as probed by pyrene excited-state emission [J].Langmuir, 1986, 2: 717-722.
    [37] http://www.emolecules.com. .
    [1] Bishop K J M,Wilmer C E,Soh S, et al. Nanoscale Forces and Their Uses in Self-Assembly [J].Small, 2009, 5: 1600-1630.
    [2] Ji X,Lee K T,Monjauze M, et al. Strategic synthesis of SBA-15 nanorodsw [J].Chemical Communications, 2008: 4288–4290.
    [3] Sierra L,Valange SGuth J-L. Formation mechanism and morphology of mesoporous SBA-16 type silica particles prepared with the triblock copolymer surfactant PEO140PPO39PEO140 [J].Microporous and Mesoporous Materials 2009, 124: 100-109
    [4] Tang J,Liu J,Wang P, et al. Evolution from hollow nanospheres to highly ordered FDU-12 induced by inorganic salts under weak acidic conditions [J].Microporous and Mesoporous Materials, 127: 119-125.
    [5] Irigoyen J,Moya S E,Iturri J J, et al. Specific zeta-Potential Response of Layer-by-Layer Coated Colloidal Particles Triggered by Polyelectrolyte Ion Interactions [J].Langmuir, 2009, 25: 3374-3380.
    [6] Znidarsic W J,Chen I W,Shastri V P. zeta-potential characterization of collagen and bovine serum albumin modified silica nanoparticles: a comparative study [J].Journal of Materials Science, 2009, 44: 1374-1380.
    [7] Nakamura MIshimura K. Size-Controlled, One-Pot Synthesis, Characterization, and Biological Applications of Epoxy-Organosilica Particles Possessing Positive Zeta Potential [J].Langmuir, 2008, 24: 12228-12234.
    [8] Wong K,Lixon P,Lafuma F, et al. Intermediate structures in equilibrium flocculation [J].Journal of Colloid and Interface Science, 1992, 153: 55-72.
    [9]冯绪胜,刘洪国,郝京诚, et al.胶体化学[M].化学工业出版社, 2006.
    [10] Fresnais J,Lavelle CBerret J F. Nanoparticle Aggregation Controlled by Desalting Kinetics [J].The Journal of Physical Chemistry C, 2009, 113: 16371-16379.
    [11] Orlin D V,Shalini G. Materials Fabricated by Micro- and Nanoparticle Assembly - The Challenging Path from Science to Engineering [J].Advanced Materials, 2009, 21: 1897-1905.
    [12] Colin B,David A. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution [J].Macromolecular Rapid Communications, 2000, 21: 501-527.
    [13] Desai P R,Jain N J,Sharma R K, et al. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 178: 57-69.
    [14] Chen S Y,Cheng S,Abdelhamid Sayari and Mietek J, "Acid-Free synthesis of mesostructured silica materials in a triblock copolymer-based system," in Studies in Surface Science and Catalysis, 2005, 156: 89-96.
    [15] Wang Y Q,Yang C M,Zibrowius B, et al. Directing the Formation of Vinyl-Functionalized Silica to the Hexagonal SBA-15 or Large-Pore Ia3d Structure [J].Chemistry of Materials, 2003, 15: 5029-5035.
    [16] Jorgensen E B,Hvidt S,Brown W, et al. Effects of Salts on the Micellization and Gelation of a Triblock Copolymer Studied by Rheology and Light Scattering [J].Macromolecules, 1997, 30: 2355-2364.
    [17] Jain N J,Aswal V K,Goyal P S, et al. Micellar Structure of an Ethylene Oxide-ropylene Oxide Block Copolymer: A Small-Angle Neutron Scattering Study [J].The Journal of Physical Chemistry B, 1998, 102: 8452-8458.
    [18] Wan Y,Zhao D Y. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J].Chemical Reviews, 2007, 107: 2821-2860.
    [19]周倩,董鹏,程丙英. [J].化学通报, 2004, 4: 290-294.
    [20] Babayan D,Chassenieux C,Lafuma F, et al. Formation of Rodlike Silica Aggregates Directed by Adsorbed Thermoresponsive Polymer Chains [J].Langmuir, 2010, 26: 2279-2287.
    [21] Lettow J S,Han Y J,Schmidt-Winkel P, et al. Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas [J].Langmuir, 2000, 16: 8291-8295.
    [22] Kim S-S,Pauly T RPinnavaia T J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates [J].Chemical Communications, 2000: 1661-1662.
    [23] Karkamkar A,Kim S-SPinnavaia T J. Hydrothermal Restructuring of the Cell and Window Sizes of Silica Foams [J].Chemistry of Materials, 2002, 15: 11-13.
    [24] Schmidt-Winkel P,Lukens W W,Zhao D, et al. [J].Journal of the American Chemical Society 1999, 121: 254-255.
    [25] Chen S Y,Cheng S. Acid-Free Synthesis of Mesoporous Silica Using Triblock Copolymer as Template with the Aid of Salt and Alcohol [J].Chemistry of Materials, 2007, 19: 3041-3051.
    [26] Wang H,Wang Y,Zhou X, et al. Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating [J].Advanced Functional Materials, 2007, 17: 613-617.
    [27] Lukens W W,Schmidt-Winkel P,Zhao D, et al. Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and aSimplified Broekhoff Boer Method [J].Langmuir, 1999, 15: 5403-5409.
    [28] Lukens W W,Yang P,Stucky G D. Synthesis of Mesocellular Silica Foams with Tunable Window and Cell Dimensions [J].Chemistry of Materials, 2001, 13: 28-34.
    [29] Han Y,Lee S S,Ying J Y. Pressure-Driven Enzyme Entrapment in Siliceous Mesocellular Foam [J].Chemistry of Materials, 2006, 18: 643-649.
    [30] Yuan Z Y,Ren T Z,Azioune A, et al. Self-Assembly of Hierarchically Mesoporous-Macroporous Phosphated Nanocrystalline Aluminum (Oxyhydr)oxide Materials [J].Chemistry of Materials, 2006, 18: 1753-1767.
    [31] Gagea B C,Liang D,Van Tendeloo G, et al., "Synthesis and characterization of nanocrystal zeolite/mesoporous matrix composite material," in Studies in Surface Science and Catalysis, 2006, 162: 259-266.
    [1] Lu Y,McLellan J,Xia Y N. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells [J].Langmuir, 2004, 20: 3464-3470.
    [2] Liu S H,Han M Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes [J].Advanced Functional Materials, 2005, 15: 961-967.
    [3] Begum G,Rana R K,Singh S, et al. Bioinspired Silicification of Functional Materials: Fluorescent Monodisperse Mesostructure Silica Nanospheres [J].Chemistry of Materials, 2010, 22: 551-556.
    [4] Wang G N,Wang C,Dou W C, et al. The Synthesis of Magnetic and Fluorescent Bi-functional Silica Composite Nanoparticles via Reverse Microemulsion Method [J].Journal of Fluorescence, 2009, 19: 939-946.
    [5] Lei Q,Yip W T. Probing the Effect of Post-Synthesis Grafting on Guest-Host Interactions in Sol-Gel Silica with Single-Molecule Mobility and Photostability [J].Journal of Physical Chemistry C, 2009, 113: 21130-21138.
    [6] Casagrande M , Moretti E , Storaro L, et al. Synthesis and structural characterization of MSU-type silica-tin molecular sieves: Post-synthesis grafting of tin chlorides [J].Microporous and Mesoporous Materials, 2006, 91: 261-267.
    [7] Guido K. Hybrid Inorganic-Organic Mesoporous Materials [J].Angewandte Chemie International Edition, 2004, 43: 3102-3104.
    [8] Hoffmann F , Cornelius M , Morell J, et al. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials [J].Angewandte Chemie InternationalEdition, 2006, 45: 3216-3251.
    [9] Huh S,Wiench J W,Yoo J C, et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method [J].Chemistry of Materials, 2003, 15: 4247-4256.
    [10] Yokoi T,Yoshitake H,Tatsumi T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes [J].Journal of Materials Chemistry, 2004, 14: 951-957.
    [11] Radu D R,Lai C Y,Huang J G, et al. Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method [J].Chemical Communications, 2005: 1264-1266.
    [12] Fiorilli S,Onida B,Bonelli B, et al. In situ infrared study of SBA-15 functionalized with carboxylic groups incorporated by a co-condensation route [J].Journal of Physical Chemistry B, 2005, 109: 16725-16729.
    [13] Hsu Y T , Chen W L , Yang C M. Co-Condensation Synthesis of Aminopropyl-Functionalized KIT-5 Mesophases Using Carboxy-Terminated Triblock Copolymer [J].Journal of Physical Chemistry C, 2009, 113: 2777-2783.
    [14] Shen S C,Chow P S,Kim S G, et al. Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation [J].Journal of Colloid and Interface Science, 2008, 321: 365-372.
    [15] Aguado J,Arsuaga J M,Arencibia A. Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained byco-condensation [J].Microporous and Mesoporous Materials, 2008, 109: 513-524.
    [16] Koehler F M,Rossier M,Waelle M, et al. Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water [J].Chemical Communications, 2009: 4862-4864.
    [17] Rieter W J,Taylor K M,Lin W B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing [J].Journal of the American Chemical Society, 2007, 129: 9852-+.
    [18] Bürgisser C S,Stone A T. Determination of EDTA, NTA, and Other Amino Carboxylic Acids and Their Co(II) and Co(III) Complexes by Capillary Electrophoresis [J].Environmental Science and Technology 1997, 31: 2656-2664.
    [19] Xue Y,Traina S J. Oxidation Kinetics of Co(II)-EDTA in Aqueous and Semi-Aqueous Goethite Suspensions [J].Environmental Science and Technology 1996: 1975-1981.
    [20] Lei J,Fan J,Yu C, et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J].Microporous and Mesoporous Materials, 2004, 73: 121-128.
    [21] Yiu H H,Wright P A,Botting N P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J].Journal of Molecular Catalysis B: Enzymatic, 2001, 15: 81-92.
    [22] Jaeyoung Lee,Eun Chul Cho,Cho K. Incorporation and release behavior ofoxide) micelles [J].Journal of Controlled Release, 2004, 94: 323-335. hydrophobic drug in functionalized poly(D,L-lactide)-block–poly(ethylene

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700