天然有机质介导的多氯联苯环境转化与降解机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯具有高毒性、环境持久性与长距离迁移特性,能在生物体内富集并通过食物链得到放大,对生态环境安全与人体健康存在极大的威胁,已被列为《斯德哥尔摩公约》首批控制的持久性有机污染物(persistent organic pollutants, POPs)之一。在自然环境中多氯联苯能一定程度地进行光降解与微生物降解,然而环境因子如普遍存在的作为疏水性有机污染物承载介质的天然有机质对多氯联苯的自然消减影响及影响机制却尚未明晰。
     由于电子电器废弃物的拆解是导致我国多氯联苯区域性污染的主要原因,本论文首先以台州电子电器废弃物拆解点为例,通过毒理诊断与化学诊断相结合的方法对该地区南官河表层沉积物进行了污染风险评价,通过源解析与相关性分析筛选风险的关键因子;然后结合实验室模拟与野外调查,考察了水-沉积物体系中多氯联苯的自然消减现象及有机质、光照等环境因子的影响;之后通过模拟光照条件添加天然有机质及特异性分子探针研究天然有机质重要的光化学过程对多氯联苯的耦合降解机制;通过从沉积物中富集得到腐殖质还原菌加入到多氯联苯的厌氧反应体系中,结合微生物的分子生物学方法,研究了天然有机质参与的醌呼吸过程对多氯联苯的祸合降解机制;同时探索了电化学-质谱技术及量子化学计算方法在此类研究中的应用,并结合传统的气相-色谱技术探讨了体系中多氯联苯的转化路径。主要的研究结果如下:
     1)粗放型的电子电器废弃物的拆解是导致研究河段表层沉积物受严重污染的主要原因,且多氯联苯沉积物生态风险产生的关键因子之一。实验室模拟消减研究发现水-沉积物体系中多氯联苯商业混合物Aroclor1254存在明显的消减现象,90天后沉积物中总多氯联苯的降解率达到了14.8~28.8%,同时高含量的有机质与光照均有利于多氯联苯的消减。野外调查发现前后五年沉积物中多氯联苯的浓度显著降低,其中总多氯联苯的降解率达40.3-70.0%,且与沉积物的有机质含量存在显著相关。
     2)天然有机质在模拟太阳光照下对多氯联苯2,4’,5-三氯联苯(PCB-31)和2,2’,4,4’,5,5’-六氯联苯(PCB-153)的光降解产生显著的促进作用,其中在5mg/L的腐殖酸(HA)溶液中PCB-31和PCB-153的准一级光解速率常数分别达到了0.0933h-1和0.0413h-1。天然有机质中芳香结构的含量对多氯联苯的敏化光解作用存在较大的影响,因而不同来源的天然有机质对多氯联苯敏化光解的作用存在显著的差异。结合气相色谱-质谱方法、电化学-质谱技术及量子化学计算,得出多氯联苯分子结构中对位为优先发生化学反应的位点,光解产物主要为羟基化多氯联苯及氯代苯甲酸,中间产物双羟基多氯联苯易与天然有机质的亲核结构形成结合残留态产物。采用电子自旋共振技术及分子探针的方法鉴定出了敏化光解过程中存在的活性氧物种,其中羟基自由基(·OH)和天然有机质内部疏水微区中的单线态氧(1O2)起着主要的作用。利用分子探针捕获与模型拟合方法,估算出了·OH和HA内部疏水微区’O2的稳态浓度分别约为1.75×10-17mol/L和5.79×10-10mol/L。
     3)从高有机质含量的沉积物中富集培养得到的腐殖质还原菌在厌氧条件下能使PCB-153脱氯转化,其中在添加1mmol/L的蒽醌-2,6-双磺酸钠(AQDS)和200mg/L的HA体系中,15天后PCB-153的去除率分别达到了43.5%和56.2%。采用气相色谱-质谱方法鉴定出降解产物为对位脱氯产物2,2’,4,5,5’-五氯多氯联苯(PCB-101)和2,2’,5,5’-四氯多氯联苯(PCB-52);电化学-质谱的结果表明PCB-153的化学还原产物为PCB-101;根据量子化学空间位阻效应理论,亦可推断对位为优先脱氯位点。在机理研究中发现,PCB-153的降解很大程度地依赖醌呼吸过程,无菌的还原态AQDS对PCB-153亦存在一定的化学降解作用,结合关键微生物的分子生物学研究结果,可以推断醌呼吸过程对多氯联苯的耦合降解过程中同时存在共代谢脱氯及电子穿梭的机制,其中共代谢脱氯为主要的方式。
     本研究从天然有机质的光化学与醌呼吸过程的角度,探讨了天然有机质介导的多氯联苯环境转化与降解机制,研究结果对揭示自然环境中多氯联苯的消减机制具有重要的意义,同时也为发展新的多氯联苯污染修复技术提供一定的理论依据。
Polychlorinated biphenyls (PCBs), one of the persistent organic pollutants, show high toxicity and high environment persistence and can transport at long distances. The contamination of PCBs has caused high risk to the ecological safety and human health. Though PCBs can be reduced by photo-degradation and biodegradation in the nature, the impact of natural organic matter (NOM) which is universal in the environment is still unclear.
     The primitive recycling of electronic waste (e-waste) is the main cause for the regional contamination of PCBs in China. In this study, one e-waste recycling site in Taizhou was taken as an example. Bioassay and chemical analysis were performed to determine the contamination levels and ecological risk of the surface sediments from Nanguan River. Source analysis and correlation analysis were carried out afterwards to find the key factor for the risk. Natural attenuation of PCBs in water-sediment was studied by lab simulation as well as field investigation. Coupled degradation mechanism by the photochemical process of NOM was studied by adding NOM and specific molecule probes under simulated sunlight. Humic respiration bacteria were enriched from the sediment and added into the reaction solutions of PCBs. Coupled degradation mechanism by the quinone respiration process of NOM was discussed according to the degradation results and the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) results. In the same time, the application of electrochemistry MS (EC-MS) and quantum chemistry calculation were explored and transformation pathways of PCBs in the natural attenuation processes were accordingly proposed. The main results of this research are as follows:
     1) The disassembly process of electronic waste was the main cause for the contamination in the surface sediment and polychlorinated biphenyls (PCBs) were mainly responsible for the ecological risk of the sediments. Attenuation of the commercial PCB mixture Aroclor1254was observed in the lab study. The total PCBs turned out to be degraded after90days in water-sediment systems with the loss of14.8~28.8%. Besides, high content of organic matter and solar irradiation accelerated the degradation of PCBs. Significant attenuation of PCBs was also observed in the real environment according to the field investigation. Degradation percentages of the total PCBs were in range of40.3~70.0%, with a significant correlation with the organic matter contents in the sediments.
     2) Addition of NOM accelerated the photo-degradation of2,4',5-trichlorobiphenyl (PCB-31) and2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) significantly, with a pseudo-first-order rate constant of0.0933h-1and0.0413h-1respectively in presence of5mg/L humic acid (HA). The content of aromatic moieties could make a difference on the degradation of PCBs. The photo-degradation products of PCBs were hydroxylated PCBs and polychlorinated benzoic acid identified by GC-MS. The results from electrochemistry MS (EC-MS) study showed the binding of di hydroxy-PCBs with NOM. According to the quantum chemistry calculation the para-Cl was supposed to be more reactive. Reactive oxygen species (ROS) involved in the photo-sensitized degradation of PCBs were determined by ESR and molecule probe methods, among which·OH and intra-1O2were mostly important. By using molecule probes and modeling the steady-state concentrations of·OH and intra-1O2were calculated, approximately1.75×1O-17mol/L and5.79×10-10mol/L respectively.
     3) The humic respiration bacteria enriched from the sediment showed acceleration to the anaerobic degradation of PCB-153. The loss percentages of PCB-153after15days reached43.5%and56.2%in1mmol/L of antraquinona2,6-disulfonato (AQDS), and200mg/L HA solutions respectively. The degradation products were identified to be2,2',4,5,5'-Pentachlorobiphenyl (PCB-101) and2,2',5,5'-Tetrachlorobiphenyl (PCB-52), the para-dechlorination products. PCB-101was suggested to be the main chemical reduction product of PCB-153according to the result of EC-MS. The para position was also the preferential reaction position from the viewpoint of stereo-hindrance effect. The degradation of PCB-153mostly depended on the quinone respiration. According to the fact that PCB-153could be reduced by AH2QDS chemically and the results from PCR-DGGE study for microorganisms, it is suggested that co-metabolism dechlorination was the major mechanism for the degradation of PCB-153by humic respiration bacteria as well as the electron shuttling mechanism.
     In general, the role of natural organic matter (NOM) in the attenuation of PCBs in water-sediment systems was studied from the aspects of its photochemical process and quinone respiration in this research. The results will help us to understand the natural attenuation mechanisms better and also provide a new way for the remediation of PCB contamination.
引文
Abramowicz DA, Brannan MJ, van Dort HM, et al. Factors influencing the rate of polychlorinated biphenyls dechlorlnation in Hudson River sediments. Environ Sci Technol 1993,27:1125-1131.
    Aeschbacher M, Sander M, Schwarzenbach PR. Novel electrochemical approach to assess the redox properties of humic substances. Environ Sci Technol 2010,44:87-93.
    Aguer JP, Richard C. Influence of the excitation wavelength on the photoinductive properties of humic substances. Chemosphere 1999,38:2293-2301.
    Aguer JP, Richard C, Andreux F. Effect of light on humic substances:production of reactive species. Analusis 1999,27:387-390.
    Ahmed M, Focht DD. Degradation of polychlorinated biphenyls by two species of Achromobacter. an J Microb 1973,19:47-52.
    Akkanen J, Kukkonen JVK. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 2003,22:518-524.
    al Housari F, Vione D, Chiron S, et al. Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes. Photochem Photobiol Sci 2010,9:78-86.
    Amaro AR, Oakley GG, Bauer U, et al. Metabolic activation of PCBs to quinones:reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 1996,9:623-629.
    Anne B, Wiebke L, Birthe S, et al. Metabolic studies of tetrazepam based on electrochemical simulation in comparison to in vivo and in vitro methods. J Chromatogr A 2009,1216: 3192-3198.
    Arnold SF, Robinson MK, Notides AC, et al. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environ Health Perspect 1996,104:544-548.
    Bachman J, Patterson HH. Photodecomposition of the carbamate pesticide carbofuran:kinetics and the influence of dissolved organic matter. Environ Sci Technol 1999,33:874-881.
    BAN and SVTC (The Basel Action Network and Silicon Valley Toxics Coalition) Exporting harm: the high-tech trashing of Asia. Seattle, WA.2002, www.ban.org.
    Barkani H, Catastini C, Emmelin C, et al. Study of the phototransformation of imazaquin in aqueous solution:a kinetic approach. J Photoch Photobio A:Chemistry 2005,170:27-35.
    Baumann A, Karst U. Online electrochemistry/mass spectrometry in drug metabolism studies: principles and applications. Expert opin drug metab toxicol 2010,6:715-31.
    Bedard DL. Polychlorinated biphenyls in aquatic sediments:environmental fate and outlook for biological treatment. In:Haggblom MM, Bossert ID (Eds). Dehalogenation:Microbial Processes and Environmental Applications. Kluwer Academic Publishers, Boston, MA,2003: 443-465.
    Bedard DL, Bunnell S C,Smullen LA. Stimulation of microbial para-dechlorination of polychlorinated biphenyls that have persisted in housatonic river sediment for decades. Environ Sci Technol 1996,30:687-694.
    Bedard DL, Haberl ML. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb Ecol 1999,20:87-102.
    Bedard DL, Wagner RE, Brennan MJ, et al. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol 1987,53:1094-1102.
    Ben M, Schink B, Brune A. Humic acid reduction by Propionibacterium freudenreichii and other fermentative bacteria. Appl Environ Microbiol 1998,64:4507-4512.
    Bertilsson S, Tranvik L. Photochemically produced carboxylic acids as substrates for freshwater bactefioplankton. Limnol Ocenaogr 1998,43:885-895.
    Bhushan B, Halasz A, Hawari J. Effect of iron(III) humic acids and anthraquinone 2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2. J Appl Microbiol 2006,100: 555-563.
    Bi X, Chu S, Meng Q, et al. Movement and retention of polychlorinated biphenyls in a paddy field of WenTai area in China. Agricul Ecosys Environ 2002,89:241-252.
    Binelli A, Ricciardi F, Provini A. Present status of POP contamination in Lake Maggiore (Italy). Chemosphere 2004,57:27-34.
    Bond DR, Lovley DR. Reduction of Fe (Ⅲ) oxide by methanogens in the presence and absence of extracellular quinines. Environ Microbiol 2002,4:115-124.
    Bopp LH. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biot 1986,1:23-29.
    Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 2010,44:15-23.
    Borjia J, Taleon DM, Auresenia J, et al. Polychlorinated biphenyls and their biodegradation. Process Biochem 2005,40:1999-2013.
    Boule P, Bolte M, Richard C. Phototransformations induced in aquatic media by NO3-/NO2-, Fe(III) and humic substances. In:Boule P (Ed). The Handbook of Environmental Chemistry: Environmental Photochemistry. Springer, Berlin Heidelberg,1999:204-205.
    Boyle J. A comparison of two methods for estimating the organic matter content of sediments. J Paleolim 2004,31:125-127.
    Bradley PM, Chapelle FH, Lovely DR. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 1998,64: 3102-3105.
    Brown JF, Bedard DL, Brennan MJ, et al. Polychlorinated biphenyl dechlorination in aquatic sediments. Science 1987,236:709-712.
    Bunce NJ. Photodechlorination of PCBs:Current status. Chemosphere 1982,11:701-714.
    CCME (Canadian Council of Ministers of the Environment), Canadian environmental quality guidelines.2003, www.ec.gc.ca/ceqg-rcqe/English/ceqg/default.cfm
    Cervantes FJ, Dijksma W. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 2001,67: 4471-4478.
    Cervantes FJ, Frank AM, Tuan DD, et al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ Microbiol 2002,4:51-57.
    Cervantes FJ, van der Velde S, Lettinga G, et al. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 2000a,34:161-167.
    Cervantes FJ, van der Velde S, Lettinga G, et al. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation,2000b,11:313-321.
    Cervantes FJ, Vu-Thi-Thu L, Lettinga G, et al. Quinone respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Appl Microbiol Biotechnol 2004,64:702-711.
    Chefetz B, Hadar Y, Chen Y. Dissolved organic carbon fractions formed during composting of municipal solid waste:Properties and significance. Acta Hydrochimica Et Hydrobiologica 1998,26:172-179.
    Chen G, White PA. The mutagenic hazards of aquatic sediments:a review. Mutat Res 2004,567: 151-225.
    Chen J, Gu BH, Royerb RA. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 2003,307:167-178.
    Chen L, Shen C, Tang X, et al. Estrogenic effects of dissolved organic matter and its impact on the activity of 17β-estradiol. Environ Sci Pollut Res 2012,19:522-528.
    Chen Y, Hu C, Hu X, Qu J. Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environ Sci Technol 2009,43:2760-2765.
    Chen Y, Hu C, Qu JH, et al. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. J Photoch Photobio A 2008,197:81-87.
    Chen Y, Tang X, Sardar AC, et al. β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. J Environ Monitor 2010,12: 1482-1489.
    Chin WC, Orellana MV, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998,391:568-572.
    Chin YP, Aiken GR, Danielsen K. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ Sci Technol 1997,31:1630-1635.
    Chin YP, Aiken GR, Loughlin EO. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 1994,28:1853-1858.
    Chin YP, Miller PL, Zeng L, et al. Photosensitized degradation of bisphenol A by dissolved organic matter. Environ Sci Technol 2004,38:5888-5894.
    Chu S, Cai M, Xu X. Soil-plant transfer of polychlorinated biphenyls in paddy fields. Sci Total Environ 1999,234:119-126.
    Chu W, Chan KH, Kwan C Y, el al. Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials. Environ Sci Technol 2005,39:9211-9216.
    Chu W, Jafvert CT, Diehl CA, et al. Phototransformations of polychlorobiphenyls in Brij 58 micellar solutions. Environ Sci Technol 1998,32:1989-1993.
    Coates JD, Bhupathiraju VK, Achenbach LA, et al. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbicie, three new strictly anaerobic dissimilatory Fe(III)-reducers. Int J Syst Evol Micr 2001,51:581-588.
    Coates JD, Ellis DJ, Blunt-Harris EL, et al. Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 1998,64:1540-1509.
    Commandeur LCM, May RJ, Mokross H, et al. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1:metabolites and enzymes. Biodegradation 1996,7:435-443.
    Cory RM, Cotner JB, McNeill K. Quantifying interactions between singlet oxygen and aquatic fulvic acids. Environ Sci Technol 2009,43:718-723.
    Costa M, Liss PS. Photoreduction of mercury in sea water and its possible implications for HgO air sea fluxes. Mar Chem 1999,68:87-95.
    Crosby DG, MoiIanen KW. Photodecomposition of chlorinated biphenyls and dibenzofhrans. Bull Environ Contam Toxicol 1973,10:372-377.
    Cutter LA, Watts JEM, Sowers KR, et al. Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyL Environ Microbiol 2001,3:699-709.
    Cuypers C, Grotenhuis T, Nierop KGJ, et al. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter, Chemosphere 2002,48:919-931.
    Dasary SS, Saloni J, Fletcher A, et al. Photodegradation of selected PCBs in the presence of Nano-TiO2 as catalyst and H2O2 as an oxidant. Int J Environ Res Public Healt 2010,7: 3987-4001.
    Deweerd KA,Bedard DL. Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ Sci Technol 1999,33: 2057-2063.
    Draper WM, Crosby DG. The photochemical generation of hydrogen peroxide in natural waters. Arch Environ Contam Toxicol 1983,12:121-126.
    Edhlund BL, Arnold WA, McNeill K. Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol 2006,40:5422-5427.
    Eisler R. Handbook of chemical risk assessment:Health hazards to humans, plants, and animals. Boca Raton:CRC Press,2000:532-728.
    Ekawan L, Singer AC, Yang C, et al. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. FEMS Microbiol Ecol 2002,41:191-197.
    Epling, GA, Wang Q, Qiu Q. Efficient utilization of visible light in the photoreduction of chloroaromatic compounds. Chemosphere 1991,22,959-962.
    EU. Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE)-joint declaration of the European parliament, the council and the commission relating to article 9. Official Journal L037,2002, http://europa.eu.int/eur-lex/en/.
    Fagervold SK, May HD, Sowers KR. Microbial reductive dechlorination of Aroclor 1260 in baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum chloroflexi. Appl Environ Microbiol 2007,73:3009-3018.
    Field AJ, Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 2008,155:1-12.
    Fishbein L. Toxicity of chlorinated biphenyls. Annu Rev Pharmacol 1974,14:139-156.
    Fu PQ, Wu FC, Liu CQ, et al. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China. Biogeochemistry 2006,81:179-189.
    Fuhr F, Mittelstaedt W. Plant experiments on the bioavailability of unextracted 14C methabenzthiazuron residues from soil. J Agric Food Chem 1980,28:122-125.
    Galvez F, Donini A, Playle RC, et al. A Matter of potential concern:natural organic matter alters the electrical properties of fish gills. Environ Sci Technol 2008,42:9385-9390.
    Goettfert J, Parlar H, Korte F. Microbial transformation of 14C methabenzthiazuron by soil fungus Hypocrea Cf. pilulifera St. Con:isolation, identification, and characterization of some metabolites from chloroform extract. J Agric Food Chem 1978,26:628-632.
    Goldstone JV, Pullin MJ, Bertilsson S, et al. Reactions of hydroxyl radical with humic substances: Bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 2002,36:364-372.
    Grandbois M, Latch DE, McNeill K. Microheterogeneous concentrations of singlet oxygen in natural organic matter isolate solutions. Environ Sci Technol 2008,42:9184-9190.
    Grimalt JO, van Drooge BL, Ribes A, et al. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 2004,54:549-1561.
    Gu B, Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U (Ⅵ) by different natural organic matter fractions. Geochimicae Cosmochimica Acta 2003,63:3575-3582.
    Guerard JJ, Chin YP, Mash H, et al. Photochemical fate of sulfadimethoxine in aquaculture waters. Environ Sci Technol 2009,43:8587-8592.
    Guthrie EA, Bortiatynski JM, van Heemst JDH, et al. Determination of 13C pyrene sequestration in sediment microcosms using flash pyrolysis-GC-MS and 13C NMR. Environ Sci Technol 1999,33:119-125.
    Haag WR, Hoigne J. Singlet oxygen in surface waters:Photochemical formation and steady-state concentrations invarious types of waters. Environ Sci Technol 1986,20:341-348.
    Haag WR, Hoigne J, Gassman E, et al. Singlet oxygen in surface waters:furfuryl alcohol as a trapping agent. Chemosphere 1984,13:631-640.
    Haitzer M, Hoss S, Traunspurger W, et al. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms. Chemosphere 1998,37: 1335-1362.
    Halladja S, Ter Halle A, Aguer JP, et al. Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol:evidence for reactivity of the phenol with humic triplet excited states. Environ Sci Technol 2007,41:6066-6073.
    Han J, Shen H, Tie X, et al. Polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls in fresh fishes from Qiantangjiang River, China. Chemosphere 2007,68:112-119.
    Hassett JP. Dissolved natural organic matter as a microreactor. Science 2006,311:1723-1724.
    Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol:dechlorination of Aroclor 1254 in soil samples by solar radiation. Environ Sci Technol 1992,26:2022-2027.
    Hickey WJ, Brenner V, Focht DD. Mineralization of 2-chloro-and 2,5-dichloro-biphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiology Lett 1992,98:175-180.
    Hong CS, Wang YB, Bush B. Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorebiphenyl in water. Chemosphere 1998,36:1653-1667.
    Hoffmann Th, Hofmann D, Klumpp E, et al. Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem 2011, 399:1859-1868.
    Hofrichter M, Steinbiichel A. Biopolymers. Wiley-VCH,2001:273-315.
    Hoigne J. Formulation and calibration of environmental reaction kinetics:Oxidations by aqueous photooxidants as an example. In:Stumm W (Ed). Aquatic Chemical Kinetics. Wiley, New York,1990:43-70.
    Hong Y, Guo J. Bacterial anaerobic respiration and electron transfer relevant to the biotransformation of pollutants. Int Biodeter Biodegr 2009,63:973-980.
    Hong Y, Guo J, Xu Z, et al. Humic substances act as electron accep tor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J Microbiol Biotechn 2007,17:428-437.
    Huang I, Hong C, Bush B. Photocatalytic degradation of PCBs in TiO2 aqueous suspensions. Chemosphere 1996,32:1869-1881.
    Hutzinger O, Safe S, Zitko V. The chemistry of PCBs. Cleveland:CRC Press,1974:7-22.
    Ilori MO, Robinson GK, Adebusoye SA. Aerobic mineralization of 4,4'-dichlorobiphenyl and 4-chlorobenzoic acid by a novel natural bacterial strain that grows poorly on benzoate and biphenyl. World J Microbiol Biotechnol 2008,24:1259-1265.
    Izadifard M, Langford CH, Achari G. Photocatalytic dechlorination of PCB 138 using leuco-methylene blue and visible light:reaction conditions and mechanisms. J Hazard Mater 2010,181:393-398.
    Jakher A, Achari G, Langford CH. Photodechlorination of Aroclor 1254 in apilol-scale flow through photoreactor. J Environ Eng ASCE 2007,133:646-654.
    Jansson M, Bergstrom A, Drakare S, et al. Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden. Freshwater Biol 2001,46:653-666.
    Jezierski A, Czechowski F, Jerzykiewicz M, et al. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. S pect rochimica Acta Part A 2000,56:379-385.
    Jurva U, Wikstrom HV, Weidolf L, et al. Comparison between electrochemistry/mass spectrometry and cytochrone P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom 2003,17: 800-810.
    Kang Y, Sheng G, Fu J, et al. Polychlorinated biphenyls in surface sediments from the Pearl River delta and Macau. Mar Pollut Bull 2000,40:794-797.
    Kannan K, Maruya KA, Tanabe S. Distribution and characterization of polychlorinated biphenyl congeners in soil and sediments from a Superfund site contaminated with Aroclor 1268. Environ Sci Technol 1997,31:1483-1488.
    Karelson M, Lobanov VS, Katrizky AR. Quantum chemical descriptors in QSAR/QSPR studies. Chem Rev 1996,96:102-1043.
    Khalili NR, Scheff PA, Holsen TM. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 1995,29: 533-542.
    Kieber RJ, Li A, Seaton PJ. Production of nitrite from the photodegradat ion of dissolved organic matt er in natural waters. Environ Sci Technol 1999,33:993-998.
    Kochany J. Maguire RJ. Sunlight photodegradation of metolachlor in water. J Agr Food Chem 1994,42:406-412.
    Kohler HPE, Kohler-Staub D, Focht DD. Cometabolism of polychlorinated biphenyls:enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl Environ Microbiol 1988,54: 1940-1945.
    Komancova M, Jurcova I, Kochankova L, et al. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp.2. Chemosphere 2003,50:537-543.
    Kubatova A, Erbanova P, Eichlerova I, et al. PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 2001,43:207-215.
    Kulovaara M, Corin N, Backlund. P, et al. Impact of UV 254-radiation on aquatic humic substances. Chemosphere 1996,33:783-790.
    Lambo AJ, Patel TR. Isolation and characterization of a biphenyl-utilizing psychro trophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221. J Basic Microbiol 2006,46:94-107.
    Laor Y, Rebhun M. Evidence for nonlinear binding of PAHs to dissolved humic acids. Environ Sci Technol 2002,36:955-961.
    Larson RA, Weber EJ. Reaction mechanisms in environmental organic chemistry. CRC Press, Boca Raton, FL,1994.
    Latch DE, McNeill K. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 2006,311:1743-1747.
    Leech DM, Snyder MT, Wetzel RG. Natural organic matter and sunlight accelerate the degradation of 17β-estradiol in water. Sci Total Environ 2009,407:2087-2092.
    Li Y, Xu XJ. Wu KS, et al. Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China. J Environ Monit 2008,10:1233-1238.
    Lin Y, Gupta G, Baker J. Photodegradation of chlorinated biphenyl congeners using simulated sunlight and dielhylamine. Chomosphere 1995,31:3323-3344.
    Lin Y, Gupta G, Baker J. Photodegradation of Aroclor 1254 using simulated sunlight and various sensitizers. Bull Environ Contam Toxicol 1996a,56:566-570.
    Lin Y, Gupta G, Baker J. Photodegradation of Aroclor 1254 using diethylamine and simulated sunlight. J hazard mater 1996b,45:259-264.
    Lin Y, Teng L, Lee A, et al. Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls. Chemosphere 2004,55:879-884.
    Lin YJ, Chen YL, Huang CY, et al. Photocatalysis of 2,2,3,4,4,5-hexachlornbiphenyl and its intermediates using various catalytical preparing methods. J hazard mater 2006,136: 902-910.
    Lindsey ME, Tarr MA. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter. Environ Sci Technol 2000,34:444-449.
    Lohmann W, Meermann B, Karst U, et al. Quantification of electrochemically generated iodine-containing metabolites using inductively coupled plasma mass spectrometry. Anal Chem 2009,80:9769-9775.
    Long ER, MacDonald DD, Smith SL, et al. Incidence of adverse biological effects within ranges of chemical concentration in marine and estuary sediments. Environ Manage 1995,19: 81-97.
    Lovley DR. Dissimilatory metal reduction. Annu Rev Microbiol 1993,47:263-290.
    Lovley DR, Coates JD, Blunt-harris EL, et al. Humic substances as electron acceptors for microbial respiration. Nature 1996,382:445-448.
    Lovley DR, Fraga HL, Coates JD, et al. Humics as an electron donor for anaerobic respiration. Environ Microbiol 1999,1:89-98.
    Lovley DR, Fraga JL, Blunt-harris EL, et al. Humic substances as a mediator formicrobially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica 1998,26:152-157.
    Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. Adv Microb Physiol 2004,49:219-286.
    Lu XQ, Johnson WD, Hook J. Reaction of vanadate with aquatic humic substances:an ESR and 51V NMR study. Environ Sci Technol 1998,32:2257-2263.
    Ma M, Rao, K, Wang Z. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China. Environ Pollut 2007,147:331-336.
    MacNeil JD, Safe S, Hutzinger O. The ultra-violet absorption spectra of some chlorinated biphenyls. Bull Environ Contam Toxicol 1976,15:66-77.
    Maltseva OV, Tsoi TV, Quonse JF, et al. Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four anaerobic bacteria. Biodegradation 1999,10:363-371.
    Martin MB, Reiter R, Pham T, et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 2003,144:2425-2436.
    Marulanda V, Bolanos G Supercritical water oxidation of a heavily PCB contaminated mineral transformer oil:Laboratory-scale data and economic assessment. J Supercrit Fluid 2010,54: 258-265.
    Master ER, Mohn WW. Psychrotolerant bacteria isolated from arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl Environ Microbiol 1998,64: 4823-4829.
    McKnight DM, Boyer E, Westerhoff PK. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Ocean 2001,46:38-48.
    Miao XS, Chu SG, Xu XB. Degradation pathways of PCBs upon UV irradiation in hexane. Chemosphere 1999,39:1639-1650.
    Moan J, Wold E. Detection of singlet oxygen production by ESR. Nature 1979,279:450-451.
    Momberg A, Carrera ME, von Baer D, et al. The oxidative voltammetric behaviour of some sulphonamides at the glassy carbon electrode. Anal Chim Acta 1984,159:119-127.
    Moore T, Pagni RM. Unusual photochemistry of 4-chlorobiphenyl in water. J Org Chem 1987,52: 770-773.
    Natarajan MR, Wu WM, Wang H, et al. Dechlorinatlon of spiked PCBs in lake sediment by anaerobic microbial granules. Water Res 1998,32:3013-3020.
    Nesatyy VJ, Ammann AA, Rutishauser BV, et al. Effect of cadmium on the interaction of 17beta-estradiol with the rainbow trout estrogen receptor. Environ Sci Technol 2006,40: 1358-1363.
    Newman DK. Microbiology-how bacteria respire minerals. Science 2001,292:1312-1313.
    Nganje TN, Edet AE, Ekwere SJ. Distribution of PAHs in surface soils from petroleum handling facilities in Calabar. Environ Monit Assess 2007,130:27-34.
    Nie X, Lan C, Wei T, et al. Distribution of polychlorinated biphenyls in the water, sediment and fish from the Pearl River estuary, China. Mar Poll Bull 2005,50:537-546.
    Nies L, Vogel TM. Effects of organic substrates on dechlorination of aroclor 1242 in anaerobic sediments. Appl Environ Microbiol 1990,56:2612-2617.
    Nies L, Vogel TM. Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Appl Environ Microbiol 1991,57:2771-2774.
    Nomiyama K, Tanizaki T, Ishibashi Ⅱ, et al. Production mechanism of hydroxylated PCBs by oxidative degradation of selected PCBs using TiO2 in water and estrogenic activity of their intermediates. Environ Sci Technol 2005,15:8762-8769.
    Palekar LD, Maruya KA, Kosta JE, et al. Dehalogenation of 2,6-dibromobiphenyl and 2,3,4,5,6 pentachlorobiphenyl in contaminated estuarine sediment. Chemosphere 2003,53:593-600.
    Pavlikova D, Macek T, Mackova M. Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int J Phytorem 2007,9:71-78.
    Qu X, Chen S, Quan X, et al. Photoinductive activity of humic acid fractions with the presence of Fe(III):The role of aromaticity and oxygen groups involved in fractions. Chemosphere 2008, 72:925-931.
    Quensen JF, Tiedje JM, Boyd SA. Reductive dechlorination of polychlorinated-biphenyls by anaerobic microorganisms from sediments. Science 1988,242:752-754.
    Quiroga JM, Riaza A, Manzano MA. Chemical degradation of PCB in the contaminated soils slurry:direct Fenton oxidation and desorption combined with the photo-Fenton process. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009,44:1120-1126.
    Rice CP, OKeefe PW, Kubiak TJ. Source, pathways, and effects of PCBs, dioxins, and dibenzofurans. In:Hoffman DJ, Rattner BA (Eds). Handbook of Ecotoxicology.2nd Edition. Boca Raton:CRC Press,2002:501-573.
    Richard C, Canonica S. Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. Handb Environ Chem 2005,2m:299-323.
    Robinson BH. E-waste:An assessment of global production and environmental impacts. Sci Total Environ 2009,408:183-191.
    Rocher V, Azimi S, Moilleron R, et al. Hydrocarbons and heavy metals in the different sewer deposits in the Le Marais' catchment (Paris, France):stocks, distributions and origins. Sci Total Environ 2004,323:107-122.
    Rosenfeldt EJ, Linden KG. Degradation of endocrine disrupting chemicals bisphenol a, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 2004,38:5476-5483.
    Rouchaud J, Roucourt P, van Himme M, et al. Metabolism of methabenzthiazuron in the soil of pea crops. J Agric Food Chem 1988,36:642-645.
    Ruzo LO, Zabik MJ, Schuetz RD. Photochemistry of bioactive compounds:Photochemical processes of polychlorinated biphenyls. J Am Chem Soc 1974,96:3809-3813.
    Sakai M, Ezaki S, Suzuki N, et al. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl Environ Microbiol 2005,68: 111-116.
    Sandan D, Ayotte P, DewaiHy E, et al. Pentachlorophenol and hydroxylated polycldorinatcd biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ Health Perspect 2002,110:411-417.
    Sarathy SR, Mohseni M. The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ Sci Technol 2007,41: 8315-8320.
    Sawhney BL. Chemistry and properties of PCBs in relation to environmental effects. In:Waid JS (Ed), PCBs and the Environment. Boca Raton:CRC Press,1986:47-64.
    Schniter M, Khan SU. Humic substances in the environment. New York:Marcel Dekker Inc., 1972:23.
    Shen C, Chen Y, Huang S, et al. Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China:chemical and bioanalytical characterization. Environ Int 2009,35:50-55.
    Shen C, Huang S, Wang Z, et al. Identification of Ah receptor agonists in soil of E-waste recycling sites fromTaizhou area in China. Environ Sci Technol 2008,42:49-55.
    Shen M, Yu Y, Zheng G, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta. Mar Pollut Bull 2006,52:1299-1304.
    Shi Z, LaTorre KA, Ghosh MM. Biodegradation of UV-irradiated polychlorinated biphenyls in surfactant micelles. Wat Sci Technol 1998,38:25-32.
    Shields MS, Hooper S, Sayler GS. Plasmid-mediated mineralization of 4-chlorobiphenyl. J Bacteriol 1985,163:882-889.
    Shiraishi F, Okumura T, Nomaehi M, et al. Estrogenic and thyroid hormone activity of a series of hydroxy-polychlorinated biphenyls. Chemosphere 2003,52:33-42.
    Shiu W, Mackay D. A critical review of solubilities, vapor pressures. Henry's law constants and octanol-law partition coefficients of the polychlorinated biphenyl. J Phys Chem Ref Data 1986,15:911-929.
    Smith KE, Schwab AR, Banks MK. Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment:A greenhouse feasibility study. J Environ Qual 2007,36:239-244.
    Steinberg CEW, Kamara S, Prokhotskaya VY, et al. Dissolved humic substances-ecological driving forces from the individual to the ecosystem level. Freshwater Biol 2006,51: 1189-1210.
    Steo M, Kimbara K, Shimura M, et al. Novel transformation of polychlorinated biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 1995,61:3353-3358.
    Stevenson FJ. Humus, chemistry:genesis, composition, reactions.2nd Edition. John Wiley & Sons, New York,1994:443.
    Takeda K, Takedoi H, Yamaji S, et al, Determination of hydroxyl radical photoproduction rates in natural waters. Anal Sci 2004,20:153-158.
    Tang L, Tang X, Zhu Y, et al. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 2005,31:822-828.
    Thomas RL, Vernet JP, Frank R. SDDT, PCBs, and HCB in the sediments of Lake Geneva and the upper Rhone River. Environ Geol 1984,5:103-113.
    Thrash JC, Coates JD. Review:direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 2008,42:3921-3931.
    Totten LA, Eisenreich SJ, Brunciak PA. Evidence for destruction of PCBs by the-OH radical in urban atmospheres. Chemosphere 2002,47(7):735-46.
    Toussaint A, Merlin C, Monchy S, et al. The biphenyl-and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 2003,69:4837-4845.
    Tratnyek PG, Hoigne J. Photo-oxidation of 2.4,6-trimethylphenol in aqueous laboratory solutions and natural waters:kinetics of reaction with singlet oxygen. J Photochem Photobiol A 1994, 84:153-160.
    Tsai PJ, Shih TS, Chen HL, et al. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos Environ 2004,38:333-343.
    Tsiridis V, Petala M, Samaras P, et al. Interactive toxic effect of heavy metals and humic asids on Vibrio fischeri. Environ Ecol Stat 2006:158-167.
    USEPA, Method 3540C revision 3, soxhlet extraction.1996a. www.epa.gov/epaoswer/hazwaste/test/main.htm
    USEPA, Method 3660B revision 2, sulfur cleanup.1996b. www.epa.gov/epaoswer/hazwaste/test/main.htm
    USEPA, Method 3620C revision 3, soxhlet extraction.1996c. www.epa.gov/epaoswer/hazwaste/test/main.htm
    van Leeuwen MS, Blankert B. Kauffmann J, et al. Prediction of clozapine metabolism by on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem 2005,382: 742-750.
    Vaughan PP, Blough NV. Photochemical formation of hydroxyl radical by constituents of natural waters. Environ Sci Technol 1998,32:2947-2953.
    Vialmon D, Richard C, Baglio D, et al. Phototransformation of 4-chloro-2-methylphenol in water: influence of humie substances on the reaction. J Photoch Photobio A:Chemistry 1998,119: 39-45.
    Viilaverde J, Maqueda C, Undabeytia T, et al. Effect of various cyclodextrins on photodegradation of a hydrophobie herbicide in aqueous suspensions of different soil colloidal components. Chemosphere 2007,69:575-584.
    Vione D, Bagnus D, Maurino V, et al. Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water. Environ Chem Lett 2010,8:193-198.
    Vione D, Falletti G, Maurino V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 2006,40:3775-3781.
    Wallnofer P, Tillmans G, Thomas R, et al. Microbial degradation of the herbicide methabenzthiazuron and identification of the metabolites. Chemosphere 1976,5:377.
    Wang Y, Hong CS. TiO2-mediated photomineralization of 2-chlorobiphenyl:the role of O2. Water Res 2000,34:2791-2797.
    Weber FA, Voegelin A, Kretzschmar R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 2009,73:5513-5527.
    Wenk J, von Gunten U, Canonica S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ Sci Technol 2011,45:1334-1340.
    Wetzel RG. Limnology:Lake and River Ecosystems.3rd Edition. Academic Press, San Diego, 2001.
    Wong KH, Tan S, Dawson R, et al. Optimization of photoc atalytlc oxidation of 2,2,3,3-tetrachlorebiphenyl. J Hazard Mater 2004,109:149-155.
    Wong KH, Wong PK. Degradation of polychlorinated biphenyls by UV-catalyzed photolysis. Hum Ecol Risk Assess 2006,12:259-269.
    Wong MH, Wu SC, Deng WJ, et al. Export of toxic chemicals-A review of the case of uncontrolled electronic-waste recycling. Environ Pollut 2007,149:131-140.
    Wu Q, Bedard DL, Wiegel J.2,6-Dibromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediment at 8-30 ℃ by stimulating growth of PCB-dehalogenating microorganisms. Environ Sci Technol 1999,33:1148-1148.
    Wu Q, Watts JEM, Sowers KR, et al. Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol 2002,68:807-812.
    Xu MY, Guo J, Zhong XY, et al. A broad spcetrum decoloration shewanella new species-Shewanella cinica. Acta Microbiologica Sinica 2004,44:562-566.
    Xu ZC, Hong YG, LuoW. The effects of the humic substances on Azoreduction by Shewanella spp. Acta Microbiologica Sinica 2006,46:591-597.
    Yang XQ, Sun Y, Qian SJ. Biodegradation of seven polychlorinated biphenyls by a new isolated aerobic bacterial (Rhodococcus sp. R04). Ind Microbiol Biotechnol 2004,31:415-420.
    Yao Y, Kakimoto K, Ogawa HI, et al. Futher study on the photochemistry of non-ortho substituted PCBs by UV irradiation in alkaline 2-propanol. Chemosphere 2000,40:951-956.
    Yu JC, Ho WK, Yu JG, et al. Efficient visible light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 2005,39:1175-1179.
    Yu XZ, Gao Y, Wu SC, et al. Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies. Chemosphere 2006,65:1500-1509.
    Yunker MB, Macdonald RW, Vingarzan R, et al. PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 2002,33: 489-1515.
    Zeeb BA, Amphlett JS, Rutter A. Potential for phytoremediation of polychlorinated biphenyl-(PCB-) contaminated soil. Int J Phytorem 2006,8:199-221.
    Zepp RG, Schlotzhauer PF, Sink RM. Photosensitized transformations involving electronic energy transfer in natural waters:role of humic substances. Environ Sci Technol 1985,19:74-81.
    Zhan MJ, Yang X, Xian QM, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere 2006,63:378-386.
    Zhang PC, Scfudato RJ, Pagano JJ, et al. Photodecomposition of PCBs in aqueous systems using TiO2 as catalyst. Chemosphere 1993,26:1213-1223.
    Zhang ZL, Huang J, Yu G, et al. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut 2004,130:249-261.
    Zhao G, Wang Z, Dong M, et al. PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources. Sci Total Environ 2008,397:46-57.
    Zhao G, Xu Y, Li W, et al. Prenatal exposures to persistent organic pollutants as measured in cord blood and meconium from three localities of Zhejiang, China. Sci Total Environ 2007a,377: 179-191.
    Zhao G, Xu Y, Li W, et al. PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China. Sci Total Environ 2007b,378:281-292.
    Zhao G, Zhou H, Wang D, et al. PBBs, PBDEs, and PCBs in foods collected from e-waste disassembly sites and daily intake by local residents. Sci Total Environ 2009,407: 2565-2575.
    Zhao X, Zheng M, Zhang B, et al. Evidence for the transfer of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans from soil into biota. Sci Total Environ 2006,368:744-752.
    Zhou X, Mopper K. Photochemical Production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar Chem 1997,56:201-213.
    J.A波普尔,D.L贝弗里奇,江元生译.分子轨道近似理论方法.北京:科学出版社,1976.
    安琼,董元华,王辉,等.长江三角洲典型地区农田土壤中多氯联苯残留状况.环境科学,2006,27(3):528-532.
    毕新慧,徐晓白.多氯联苯的环境行为.化学进展,2000,12(2):152-160.
    陈景文,全燮.环境化学.大连:大连理工出版社,2009.
    陈满荣,俞立中,许世远,等.长江口PCBs污染及水环境PCBs研究趋势.环境科学与技术,2004,27(5):24-25.
    陈瑞蕊.林先贵.尹睿,等.有机污染土壤中菌根的作用.生态学杂志,2005,24(2),176-180.
    邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003.
    陈蕾,沈超峰,陈英旭.溶解性有机质与水生生物的直接相互作用研究进展.湖泊科学,2011,23(1):1-8.
    陈伟琪,洪华生,张珞平,等.珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物.厦门大学学报(自然科学版),2004,43(B08):230-235.
    储少刚,徐晓白.多氯联苯在典型污染地区环境中的分布及其环境行为.环境科学学报,1995,15(4):423-432.
    戴树桂.有机污染物定量结构-活性关系研究进展.环境化学进展.北京:化学工业出版社,2005:440-463.
    傅献彩,沈文霞,姚天扬.物理化学(下册).北京:高等教育出版社,1990.
    耿存珍,李明伦,杨永亮,等.青岛地区土壤中OCPs和PCBs污染现状研究.青岛大学学报(工程技术版),2006,21(2):42-48.
    国家环保总局.水和废水监测分析方法:蚕豆根尖微核试验.北京:中国环境科学出版社,2002:769-772.
    何升良,韩关根,李朝林,等.母乳和脐血中多氯联苯暴露水平研究.中国预防医学杂志,2006,7(4):334-336.
    黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.生态学报,2002,22(2):259-263.
    李君文,子祚斌,高明,等.紫外线分解腐植酸的研究.环境保护,1995,4:45-47.
    李霜,韩关根,徐盈,等.南方某地妇女儿童血液中多氯联苯蓄积水平调查.中国卫生工程学,2005,4(5):278-280.
    李霜,韩关根,徐盈,等.南方某地产妇和婴儿体内多氯联苯蓄积水平的调查.中国工业医学杂志,2006,19(3):136-138.
    林金明,屈峰,单孝全.活性氧测定的基本原理与方法.分析化学,2002,30(12):1507-1514.
    凌婉婷,徐建明,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响,应用生态学报,2004,15(2):326-330.
    刘华林,杨毅,刘敏,等.长江口湖滩表层沉积物中PCBs和OCPs的分布.中国环境科学,2003,23(2):215-219.
    马梅.新的生物毒性测试方法及其在水生态独立研究中的应用.北京:中国科学院生态环境 研究中心,2002.
    孟庆星,毕新慧,储少岗.污染区大气中多氯联苯的表征与分布研究初探.环境化学,2000,19(6):501-506.
    莫凌云,刘海玲,刘树深,等.5种取代酚化合物对淡水发光菌的联合毒性.生态毒理学报,2006,1:259-264.
    聂湘平,蓝崇钰,栾天罡等.珠江广州段水体、沉积和及底栖生物中的多氯联苯.中国环境科学,2001,21(5):417-421.
    申荣艳,骆永明,章钢娅,等.长江三角洲地区城市污泥中多氯联苯和有机氯农药含量与组分研究.土壤,2006,38(5):539-546.
    宋玉芳,周启星,宋雪英,等.土壤环境污染的生态毒理学诊断方法研究进展.生态科学,2002,21(2):182-186.
    宋玉芳,周启星,宋雪英,等.土壤整体质量的生态毒性评价.环境科学,2005,26(1):130-134.
    孙铁珩,宋玉芳.土壤污染的生态毒理诊断.环境科学学报,2002,22(6):689-695.
    孙艳,杨秀清,钱世钧.嗜吡啶红球菌多氯联苯降解基因克隆及表达.中国环境科学,2004,6:734-737
    王海棠,贾凌云,杨凤林.紫外光照射与生物降解耦合用于PCBs降解的研究.环境污染治理技术与设备,2003:4(5):60-65.
    王连生.有机污染化学.北京:高等教育出版社,2004:348.
    王泰,张祖麟,黄俊,等.海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查.环境科学,2007,28(4):730-735.
    王弋博,武春媛,周顺桂.腐殖质在Comamonas koreensis CY01介导的2,4-二氯苯氧乙酸还原脱氯过程中的作用.草业学报,20(1):248-252.
    武春媛,李芳柏,周顺桂.腐殖质呼吸作用及其生态学意义.生态学报,2009,29(3):1535-1542.
    吴丰昌,王立英,黎文,等.天然有机质及其在地表环境中的重要性.湖泊科学,2008,20(1):1-12.
    习志群,储少岗,徐晓白,等.东湖水体中多氯联苯的研究.海洋与湖沼,1998,29(4):436-440.
    许光辉.土壤微生物分析方法手册.北京:农业出版社,1986.
    徐志伟.腐殖质微生物还原的影响因素及其去除污染物的研究.浙江大学博士学位论文.杭州:2008.
    王春霞,彭安.不同来源腐殖酸的光解及过氧化氢对其影响.环境科学学报,1996,16(3):270-275.
    余刚,牛军峰,黄俊.持久性有机污染物:新的全球性环境问题.北京:科学出版社,2005.
    张祖麟,洪华生,哈里德,等.厦门港表层水体中有机氯农药和多氯联苯的研究.海洋环境科学,2000,19(3):48-51.
    赵高峰.电子垃圾中多氯联苯的环境转移和潜在的健康风险博士论文.中国科学研究院博士论文.北京:2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700