内分泌干扰物4-t-辛基酚的生物去除及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烷基酚类物质(APs)作为内分泌干扰物(EDCs)中的一种,已经在环境领域引起了普遍关注,烷基酚类物质中毒性最大、污染范围最为广的为壬基酚(NP)和辛基酚(OP)。
     本文首先以上海安亭污水处理厂的进水为代表,研究了上海典型生活污水中EDCs的种类,并分析了化学生物絮凝工艺(CBF)对内分泌干扰物的去除效果。在进水中共发现8种内分泌干扰物,主要包括以4-t-OP(简称OP)为代表的烷基酚类和邻苯二甲酸酯类。CBF工艺对所有检测到的内分泌干扰物均有一定去除效果,烷基酚类较高,去除率在60%-99%之间;对于酯类物质的去除率略低,约为30%-34%。CBF工艺反应器中EDCs的去除过程可能主要包括生物吸附与化学絮凝作用。
     根据以上研究结果,选择OP作为研究的目标污染物。考虑到现阶段我国城市污水处理主要使用活性污泥工艺,而城市污水处理厂是EDCs进入环境的一个重要途径,因此,本文主要研究了活性污泥对OP的去除特性,包括活性污泥对OP的吸附和降解特性以及好氧、缺氧、好氧-缺氧SBR活性污泥小试工艺对OP的去除效果。结果表明,活性污泥对OP既有吸附作用也有降解作用。
     活性污泥对OP吸附包括快速吸附与慢速吸附两个阶段,吸附过程符合一级动力学方程。随着污泥浓度的增加,吸附速率减小,吸附平衡时间增加,达到吸附平衡时,分配系数K_p与污泥浓度之间的关系可以用方程K_p=a(SC)~b描述。低温有利于吸附,当pH值在5.0-9.0范围时,pH值对吸附的影响不大。活性污泥对OP吸附量的大小与活性污泥粒径成负相关性,因此活性污泥对OP的吸附可能以表面吸附为主。
     活性污泥在好氧环境对OP的降解性能要优于厌氧环境。随着OP初始浓度的增加,降解速率有所降低;好氧条件下活性污泥对OP降解的最佳pH值为8.0,厌氧条件下为7.0;酵母膏的添加对OP降解的促进作用显著,在好氧条件下,苯酚也明显的促进了OP的降解。活性污泥以OP为主要碳源进行培养后,优势菌种主要属于γ-变形菌门。此外,在好氧条件下培养的活性污泥中,也发现相当的优势菌种属于厚壁菌门。
     通过小试装置模拟城市污水条件下活性污泥工艺对OP的去除效果。试验发现活性污泥工艺对OP的去除效果较好,OP的添加并未明显影响反应器对其他污染物的去除效率。活性污泥系统中都存在着钟虫等多种原生动物,出水水质较好。碳/氮比的减小有利于活性污泥对OP的去除;停留时间的延长,增强了OP的去除效果;在OP进水浓度为50~150μg/L的范围内,随着浓度的增加容积负荷也随之增加。在本文研究的三种活性污泥法反应器中,缺氧-好氧SBR反应器对OP的去除效果最佳,当进水浓度为150μg/L时,最高容积负荷可达到85.1μgL~(-1)d~(-1),其次为好氧活性污泥反应器,最后为缺氧活性污泥反应器。对三种活性污泥系统进行微生物群落结构分析,发现均以属于β-变形菌门的优势菌种比例最高,这与普通活性污泥微生物群落结构一致,说明OP的生物毒性没有使活性污泥中的主要优势菌种产生显著的改变。此外,好氧活性污泥反应器中还发现了属于γ-变形菌门和δ-变形菌门的优势菌种,而缺氧和SBR反应器中还发现了属于γ-变形菌门以及厚壁菌门的优势菌种。
     近年来好氧颗粒污泥处理系统得到大力开发。与活性污泥相比,颗粒污泥具有独特的结构特征,可为各种代谢类型的微生物提供适合的生长环境,因此本文也研究了颗粒污泥对OP的降解性能,得出的主要降解规律与活性污泥相类似。颗粒污泥在以OP为主要碳源培养后,生物多样性比接种污泥明显减小。好氧培养后优势菌种主要属于γ-变形菌门;厌氧培养后优势菌种主要属于厚壁菌门。
     本文通过分离纯化,共得到两株OP降解菌。通过鉴定,这两株菌均属于γ-变形菌门,其中OP-1属于假单胞菌属,OP-2属于成团泛菌属。迄今为止,属于成团泛菌属的烷基酚降解菌尚未见报道。降解菌OP-1对OP降解的最佳pH值为7.0,OP-2为8.0;并且葡萄糖的添加有利于菌种OP-1对OP的降解。
In resent years, alkylphenols(APs) as an important class of endocrine disrupting chemicals (EDCs) has been paid intensive attention to in environmental science research. Nonylphenol(NP) and octylphenol(OP) are most toxic compounds among the APs, and have been widely detected in the environment.
     At first, we took the influent of Anting Wastewater Treatment Plant as an example to study the kinds of EDCs in the influent of typical municipal wastewater in Shanghai, and investigated the removal performance of EDCs in chem-bioflocculation (CBF) treatment process. We have detected 8 kinds of EDCs, mainly including 4-t-OP(OP for short) and phthalates (PAEs). The results showed that all EDCs have been detected could partly be removed by CBF treatment process. The removal rate of the alkylphenols ranged from 60% to 99%, while the removal rate of the esters was 30%-34%. It shows that biosorption and flocculation play the central role of the removal of EDCs in CBF treatment process.
     For OP has been detected in the influent, we decided to take it as our target compound. Recently, activated-sludge process is the most popular process for the municipal wastewater treatments which are important sources of EDCs in the environment. So we mainly researched the removal capability of OP in activated sludge process. There are absorption and biodegradation characters for OP in different process, and the removal performance by aerobic、anoxic and anoxic-aerobic SBR reactors were studied.
     The process of OP absorption by activated sludge could be divided into two steps, one was quick absorption period, and the other was slow absorption period. The quick absorption period fits the first-order kinetics. As the concentration of the sludge increase, the absorption speed became slower, and the equilibrium time went longer The relationship between distribution coefficient (K_p) and the concentration of the sludge could be described by the equation K_p=a(SC)~b. Low temperature benefited the absorption function. When the pH value belonged to 5.0 to 9.0, the pH value could barely affect adsorption. K_p has negative relativity with the diameter of activated sludge, so we think it probably turn out to be a surface adsorption.
     In comparison, OP degradation rate in activated sludge under aerobic condition was higher than that under anaerobic condition. The degradation rate decreased with the increase of the initial OP concentration. The optimal pH values for OP degradation were 8.0 and 7.0 under aerobic and anaerobic condition, respectively. Addition of yeast extract enhanced the OP degradation, and under aerobic condition, phenol could also enhance the degradation. After incubated with OP as a main carbon source, the major species of activated sludge were identified asγ-proteobacteria. Furthermore, we also found major species identified as firmicutes under aerobic condition.
     We simulated OP removal performance in municipal wastewater by activated-sludge process through reactors in our lab. The result showed that the activated-sludge process could remove OP efficiently, and increasing of OP concentration did not affect the removal of other pollutants. There were many protozoa in activated sludge systems, such as vorticella and so on. The removal rate of OP went higher with the C/N decreased. And the longer the residence time was, the higher the removal rate became. When OP concentration was 50-150μg/L in the influent, the volume load became higher with OP concentration increased. When OP concentration was 150μg/L in the influent, the volume load of the anoxic-aerobic SBR reactor could achieve 85.1μgL~(-1)d~(-1), which was the most efficient reactor on OP removal among the three kinds of reactors studied in this paper, second was the aerobic reactor and the third was the anoxic reactor. We investigated microbial community in the three different activated sludge systems, and found that most major species separated identified asβ-proteobacteria which was the same as traditional activated sludge system. This indicated the toxicity of OP did not obversly change the main major species in the sludge. Besides, we also found major species identified asγ- proteobacteria andδ- proteobacteria in aerobic reactor andγ- proteobacteria and firmicutes in anoxic reactor.
     In recent years, aerobic granular sludge process has been developed quickly. Compared to traditional activated sludge, granular sludge has special particular granular structures which could improve the environment for varieties of bacterium. So we studied the degradation of OP in granular sludge process, too, and got the same result as activated sludge. After incubated with OP as a main carbon source, the biological diversity decreased obviously. The major species found in granular sludge were identified asγ-proteobacteria under aerobic condition, while the major species were identified as firmicutes under anaerobic condition
     After separation and purification, two different strains were obtained for OP degradation. Both of them were identified asγ-proteobacteria. Strain OP-1 belong to Pseudomonas, and strain OP-2 belong to pantoea agglomeran which hasn't been reported as OP degradation bacteria before. The optimal pH value for strain OP-1 degrading OP was 7.0 and was 8.0 for strain OP-2. Strain OP-1 degraded OP more efficiently by adding glucose as a carbon source.
引文
[1]王彬霖,张剑波.中国环境内分泌干扰物的污染现状分析[J].环境污染与防治,2005,27(3):228-231.
    [2]崔文峰.烷基酚系列产品的开发与应用[J].精细石油化工,1994,(6):1-6.
    [3]王秀丽.水环境中的内分泌干扰物质—烷基酚聚氧乙烯醚及烷基酚[J].西南给排水,2004,26(5):42-44.
    [4]陈小泉,古国榜.烷基酚聚氧乙烯醚的环境行为和环境风险评价[J].日用化学工业,2001,6:30-33.
    [5]余楠,舒为群.烷基酚类化合物雌激素效应的研究进展[J].环境与健康杂志,2004,21(4):267-269.
    [6]Routledge E J,Sumpter J P.Structural features of alkylphenolic chemicalsassociated with estrogenic activity[J].J Biol Chem,1997,272:3280-3288.
    [7]Yamakoshi Y,Otani Y,Fujii S,et al.Dependence of estrogenic activity on the shape of the 4-alkyl substituent in simple phenols[J].Biol Pharm Bull,2000,23:259-261.
    [8]孔志明,张国栋,孙立伟等.环境内分泌干扰物诱发小鼠睾丸细胞DNA损伤的研究[J].环境污染与防治,2002,24(2):76-78.
    [9]张国栋,吴笛,孙立伟等.烷基酚类化合物对人外周血淋巴细胞DNA损伤的研究[J].南京大学学报,2002,38(4);539-543.
    [10]刘征涛,徐静波,杨丽等.有机烷酚类化合物致突变性研究[J].环境科学研究,2001,14(3):1-3.
    [11]刘征涛,张颖,徐静波等.烷基酚类的生殖干扰毒性与结构相关研究[J].环境科学研究,2002,15(6):39-43.
    [12]李延,胡双庆,尹大强等.11种取代酚类内分泌干扰活性的初步筛选与评价[J].环境化学,2003,22(4):385-389.
    [13]Chau N T,Wada K,Marumo H,et al.Reproductive effects of nonyphenol in rats after gavage administration:a two-generation study[J].Reprod Toxicol,2001,15:293-315.
    [14]Harazono A,Ema M.effects of 4-t-octylphenol on initiation and maintenance of pregnancy following oral administration during early pregnancy in rats[J].Toxicol Lett,2001,199(1):79-84.
    [15]Nimrod A C,Benson W H.Environmental estrogenic effects of alkylphenol ethoxylates[J].Crit Rev Toxicol,1996,26:335-365.
    [16]卞倩.烷基酚类物质的生殖发育毒效应及其作用机制[J].卫生研究,2004,33(5):357-360.
    [17]Diel P,Olff S,Schmidt S,et al.Effects of the environmental estrogens bisphenol A,p'-DDT,p-tert-octylphenol and coumestrol on apoptosis induction,cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7[J].Steroid Biochem Mol Biol,2002,80(1):61-70.
    [18]Paris F,Balaguer P,Terouanne B,et al.Phenylphenols,biphenols,bisphenol-A ane 4-tert-octylphenol ehibit a and 6 estrogen activities and antiandrogen activity in reporter cell lines[J].Mol Cell Endocrinol,2002,193:43-49.
    [19]Nikula H,Talonpoika T,Kaleva M,et al.Inhibition of hCG simulated steroidogenesis in mouse Leydig tumor cells by Bisphenol A and octylphenols[J].Toxicol Appl Pharmacol,1999,157(3):166-173.
    [20]Majdic G,Sharpe R M,O'Shaughnessy P J,et al.Expression of cytochrome P450 17alpha-hydroxylase/C17-20 lyase in the fetal rat testis is reduced by maternal exposure to exogenous estrogens[J].Endocrinol,1996,137(3):1063-1070.
    [21]彭俊华.辛基酚对机体健康的影响极其机理的研究进展[J].西北国防医学杂志,2004,25(6):445-447.
    [22]An B S,Kang S K,Shin J H,et al.Stimlation of calbindin-D9k mRNA expression in the rat uterus by octylphenol,nonylphenol and bisphenol[J].Mol Cellar End,2002,191:177-186
    [23]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染现状调查[J].环境科学学报,2002,22(1):12-16.
    [24]杜兵,张彭义,张祖麟,等.北京市某典型污水处理厂中内分泌干扰物的初步调查[J].环境科学,2004,25(1):114-116.
    [25]周云,戴婕,李富生,等.内分泌干扰物质烷基酚(AP)的测定[J].中国给水排水,2003,9(3):95-96.
    [26]汤先伟,金一和,张颖花,等.沈阳市自来水中的烷基酚类污染物[J].环境与健康杂志,2005,22(3):190-191.
    [27]段菁春,陈兵,麦碧娴,等.洪季珠江三角洲水系烷基酚污染状况研究[J].环境科学,2004,25(3):48-52.
    [28]Jin X L,Jiang G B,Huang G L,et al.Determination of 4-tert-octylphenol,4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring[J].Chemosphere,2004,56:1113-1119.
    [29]曹仲宏,马永民,胡伟,等.再生水中内分泌干扰物的初步研究[J].环境与健康杂志,2005,22(3):171-173.
    [30]Blackburn M A,Kirby S J,Waldock M J.Concentrations of alkyphenol polyethoxylates entering UK estuaries[J].Marine Polhaion Bulletin,1999,38(2):109-18.
    [31]Uguz C,Togan I,Eroglu Y,et al.Alkylphenol concentrations in two rivers of Turkey[J].Environmental Toxicology and Pharmacology,2003,14:87-88.
    [32]Ferrara F,Fabietti F,Delise M,et al.Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea(Italy)[J].Chemosphere,2005,59:1145-1150.
    [33]Ce'spedes R,Lacorte S,Raldu' D,et al.Distribution of endocrine disruptors in the Llobregat River basin(Catalonia,NE Spain)[J].Chemosphere,2005,61:1710-1719.
    [34]Lacorte S,Raldu' D,Marti'nez E,et al.Pilot survey of a broad range of priority pollutants in sediment and fish from the Ebro river basin(NE Spain)[J].Environmental Pollution,2006,140:471-482.
    [35]Basheer C,Lee H K,Tan K S.Endocrine disrupting alkylphenols and bisphenol-A in coastal waters and supermarket seafood from Singapore[J].Baseline / Marine Pollution Bulletin,2004,48:1145-1167.
    [36]Heemken O P,Reincke H,Stachel B,et al.The occurrence of xenoestrogens in the Elbe river and the North Sea[J].Chemosphere,2001,45:245-259.
    [37]Stachel B,Ehrhorn U,Heemken O P,et al.Xenoestrogens in the River Elbe and its tributaries[J].Environmental Pollution,2003,124:497-507.
    [38]Sabik H,Gagne F,Blaise C,et al.Occurrence of alkylphenol polyethoxylates in the St.Lawrence River and their bioconcentration by mussels(Elliptio complanata)[J].Chemosphere,2003,51:349-356.
    [39]Bennie D T,Sullivan C A,Lee H B,et al.Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St.Lawrence River[J].The Science of the Total Environment,1997,193:263-275.
    [40]Li Z Y,Li D H,Oh J R,et al.Seasonal and spatial distribution of nonylphenolin Shihwa Lake,Korea[J].Chemosphere,2004,56:611-618.
    [41]Li D H,Kim M,Shim W J,et al.Seasonal flux of nonylphenol in Han River,Korea[J].Chemosphere,2004,56:1-6.
    [42]Tsuda T,Takino A,Kojima M,et al 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa[J].Chemosphere,2000,41:757-762.
    [43]Nuria C,Joseeph M B,Joan A.Determination of nonyllphenol as pentafluorobenzyl derivatives by capillary gas chromatography with electroncapture and mass spectrometric detection in environmental matrices[J].Journal of Chromatography A,1994,694:275-281.
    [44]袁理,曾光明,张长等.痕量壬基酚及相关化合物的样品预处理和测定[J].环紧污染与防治,2004,26(6):475-478.
    [45]张景明.回流萃取法提取水中有机物[J].环境监测管理与技术,2002,4(2):24-25.
    [46]Maruian A,Giger W.Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organiec solvents[J].Chemosphere,1993,26(8):1471-1478.
    [47]Knutsson M,Nilve G.,Mathiasson L,et al.Supported liquid membranes for sampling and sample preparation of pesticides in water[J].J Chromatogr,1996,754(1-2):197-205.
    [48]Shen Y,Jonsson J A,Mathiasson L.On-line microporous membrane liquid-liquid extraction for sample pretreatment combined with C GC applied to local anaesthetics in blood plasma[J].Anal Chem,1998,70(5):946-957.
    [49]陆峰,林培英,杨根金.色谱分析前处理技术的新进展[J].药学实践杂志,2002,20(2):91-94.
    [50]梁霞,刘景富,江桂斌等.连续流动液膜萃取中液膜有机溶剂的选择[J].分析测试学报,2003,22(2):19-21.
    [51]Cai Y Q,Jiang G B,Liu J F,et ah Muhiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of Bisphenol A,4-n-nonylphenol,and 4-tert-octylphenol[J].Anal Chem,2003,75:2517-2521.
    [52]杨佰娟,蒋风华,徐晓琴等.固相萃取柱上衍生气相色谱-质谱法测定水中烷基酚[J].分析化学,2007,5:43-46.
    [53]Fisher C,Fisher U.Analysis of cork taint in wine and cork materia at olfactory subthreshold lever by solid-phase microextraction[J].J agric Food Chem,1997,45:1995-997.
    [54]Denis P B,Lacroix G Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volitile organochlorine contaminants in aqueous matrices[J].J chrmatogr A,1997,757:173-182.
    [55]Pan L,Pawliszyn J.Derivatization solid-phase microextraction:new approach to polar analytes[J].Anal Chem,1997,69(2):196-205.
    [56]Garcia D,Magnaghi S,Reichenbacher M,et al.Systematic optimization of the analysis of wine bouquet components by solid-phase microextraction[J].J high Resol Chromatogr,1996,19:257-262.
    [57]Boyd-Boland A A,Pawliszyn J B.Solid phase microextraction of nitrogen-containing herbicides[J].J Chromatogr A,1995,704:163-172.
    [58]Pan L,Adames M,Pawliszyn J.Determination of fatty acids using solid-phase microextraction[J].Anal Chem,1995,67:4396-4403.
    [59]Alfredo D,Francesc V,Teresa M G Development of a solid-phase microextr-action method for the determination of short-ethoxy-chain nonylphenols and their brominated analogs in raw and treated water[J].Journal of Chromatography A,2002,963:159-167.
    [60]邵兵,韩灏,李冬梅等.加速溶剂萃取-液相色谱-质谱/质谱法分析动物组织中的壬基酚、辛基酚和双酚A[J].色谱,2005,23(4):362-365.
    [61]罗方若,钱力,刘明臣.微波制样的应用[J].理化检测-化学分册,2004, 40(1):59-62.
    [62]Liu R,Zhou J L,Wilding A.Microwave-assisited extraction followed by gas chromatography-mass spectrometry for the determination of endocrine disrupting chemicals in river sediments[J].Journal of Chromatography A,2004,1038:19-26.
    [63]Lee H.B.Thomas E.P.Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants[J].Anal Chem,1995,67(13):1976-1980.
    [64]Taizo T,Akihiko T,Mihoko K,et al.Gas chromatographic-mass spectrometric determination of 4-nonylphenols and 4-tert-octylphenol in biological samples[J].Journal of Chromatography B,1999,723:273-279
    [65]Liu R,Zhou J L,Wilding A.Simultaneous determinationg of endocrine disrupting phenolic compounds and steroids in water by solid -phase extrationg-gas chromatography-mass spectrometry[J].Journal of Chromato--graphy A,2004,1022:179-189.
    [66]张宏,毛炯,孙成均,等.气相色谱-质谱法测定尿及河底泥中的环境雌激素[J].色谱,2003.21(5):451-455.
    [67]Miki K,Shinii T,Minoru T.Determination of 4-alkylphenols by novel derivatization and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2003,984:237-243.
    [68]张晶,何士龙,张昱等.液相色谱串联质谱法同时测定垃圾渗滤液中的邻苯二甲酸酯和烷基酚[J].《分析化学》医学期刊,2007,7(12):59-63.
    [69]王晓东,赵新华,张新波等.固相萃取-高效液相色谱.荧光检测法同时测定水中的壬基酚和双酚A[J].分析试验室,2006,25(9):27-29.
    [70]Markus N,Magnus M.Klaus W,et al.Determination of the xenoestrogens 4-nonylphenol and bisphenol A by high-performance liquid chromatography and fluorescence detection afterderivatisation with dansyl chloride[J].Journal of Chromatography A,2002,945:133-138.
    [71]Nevskaia D M,Guerrero R A.Comparative Study of the Adsorption from Aqueous Solutions and the Desorption of Phenol and Nonylphenol Sulastrat-on Activated Carbons[J].Journal of Colloid and Interface Science,2001,234:316-324.
    [72] Sasai R, Suglyama D, Takahashi S, et al. The removal and photodecompusition of n-nonylphenol using hydmphobic clay incorporated with copper-phthalo- -cyanine in aqueous media[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 55:223-229.
    
    [73] Ying G G, Kookana R S, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Research, 2003, 37:3785-3791.
    [74] Nimrod A C, Benson W H. Environmental estrogenic effects of alkylphenol ethoxylates[J]. Crit Rev Toxicol, 1996, 26:335-365.
    [75] Staples C A, Williams J B, Blessing R L, et al. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol[J]. Chemosphere, 1999, 38:2029-2039.
    [76] Chang B V, Chiang F, Yuan S Y. Biodegradation of nonylphenol in sewage sludge[J]. Chmosphere, 2005, 60:1652-1659.
    [77] Chang B V, Chiang F, Yuan S Y. Anaerobic biodegradation of nonylphenol in sludge[J]. Chmosphere, 2005,59:1652-1659.
    [78] Atsushi S, Yasushi I, Arata K. Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils[J]. 2006, Sci Total Environ, 367: 979-987.
    [79] Kohtani S, Hiro J, Yamamoto N, et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation[J]. Catalysis Communications, 2005, 6:185-189.
    [80] Yim B, Yoo Y, Maeda Y. Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III) [J]. Chemosphere, 2003,50:1015-1023.
    [81] Brown J M, Drewes J E, Foxc P, et al. Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment[J]. Water Research, 2003, 37: 3672-3681.
    [82] Planas C, Guadayol J M, Droguet M, et al. Degradation of polyethoxylated nonylphenols in a sewage treatment plant. Quantitative analysis by isotopic dilution-HRGC/MS[J]. Water Research, 2002, 36:982-988.
    [83] Johnson A C, Sumpter J P. Removal of Endocrine disrupting Chemicals in Activated Sludge Treatment Works[J]. Environ Sci &Technol, 2001, 35(24):4697-4703.
    [84]Nasu M,Goto M,Kato H Y,et al.Study on endocrine disrupting chemicals in wastewater treatment plants[J].Water Science and Technology,2001,43(2):101-108.
    [85]Alcock R,Sweetman A,Jones K C.Assessment of Organic Contaminant Fate In Waste Water Treatment Plants I:Selected Compounds and Physicochemical Properties[J].Chemosphere,1999,38(10):2247-2262.
    [86]张志斌,夏四清,赵建夫,等.化学生物絮凝工艺处理城市污水的试验究[J].工业水处理,2005,25(7):53-56.
    [87]饶应福,夏四清,陈轶波,等.化学生物絮凝工艺污染物去除试验研究[J].环境科学与技术,2006,29(1):10-11.
    [88]饶应福,夏四清,杨殿海,等.化学生物絮凝-悬浮填料床污水处理工艺的自动控制分析.工业控制与应用[J].2005,24(4):35-36
    [89]金星龙,江桂斌,黄国兰,等.污水处理流程中几种典型酚类化合物的分布[J].环境科学学报,2004,24(6):1027-1031.
    [90]夏凤毅,郑平,周琪,等.7种邻苯二甲酸酯化合物的模拟曝气降解研究[J].环境科学,2002,23:11-15.
    [91]Zhou J L.Sorption and remobilization behavior of 4-tert-octylphenol in aquatic systems[J].Environ Sci Technol,2006,40:2225-2234.
    [92]During R A,Krahe S,Gath S.Sorption behavior of nonylphenol in terrestrial soils[J].Environ Sci Technol,2002,36:4052-4057.
    [93]Zhou J L,Liu Y P.Kinetics and equilibria of the interactions between diethylhexyl phthalate and sediment particles in simulated estuarine systems[J].Marine Chem,2000,71:165-176.
    [94]陈华林,陈英旭,沈梦蔚.西湖底泥对多环芳烃(菲)的吸附性能[J].农业环境科学学报,2003,22(5):585-589.
    [95]Ho Y S,Mckay G Kinetic models for the sorption of dye from aqueous solution by wood[J].Trans Ichem E,1998,76:183-191.
    [96]孙家寿,刘羽,鲍世聪等.交联膨润土吸附磷行为研究[J].滑雪工业与工程技术,1998,19(2):1-5.
    [97]韦林,刘绍根,倪丙杰等.污泥吸附性能的研究[J].工业用水与废水,2005, 36(1):38-40.
    [98] Hoof P L, Andren A W. Partitioning and sorption kinetics of a PCB in aqueous suspensions of model particles: solids concentration effect[J]. Organic substances and sediments in water, 1991, 2:149-167.
    [99] Lick W, Rapaka V. A quantitative analysis of the dynamics of the sorption of hydrophobic organic chemicals to suspended sediments[J]. Environ Toxicol Chem, 1996,15:1038-1048.
    [100] Bowman J W, Zhou J L, Readman J W. Sediment-water interactions of natural oestrogens under ertuarine conditions[J]. Mar Chem, 2002, 77:263-276.
    
    [101] 朱利中,徐霞,胡松等. 西湖底泥对水中苯胺、苯酚的吸附性能及机理[J]. 环境科学, 2002, 21(3):28-31. [93]
    [102] Chang B V, Yu C H, Yuan S Y. Degradation of nonylphenol by anaerobic microorganisms from river sediment[J]. Chemosphere, 2004, 55(4): 493-500.
    [103] Yuan S Y, Yu C H, Chang B V. Biodegradation of nonylphenol in river sediment[J]. Environmental Pollution, 2004,127(3):425-430.
    [104] Chang B V, Chiang B W, Yuan S Y. Biodegradation of nonylphenol in soil[J]. Chemosphere, 2007, 66(10):1857-1862.
    [105] Soares A, Guieysse B, Delgado O et al. Aerobic biodegradation of nonylphenol by cold-adapted bacteria[J]. Biotechnol Lett, 2003, 25(9):731-738.
    [106] Liu X, Tani A , Kimbara K et al. Metabolic pathway of xenoestrogenic short ethoxy chain-nonylphenol to nonylphenol by aerobic bacteria, Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90[J]. Appl Microbiol Biotechnol, 2006, 72 (3):552-559.
    [107] Barberio C, Pagliai L, Cavalieri D et al. Biodiversity and horizontal gene transfer in culturable bacteria isolated from activated sludge enriched in nonylphenol ethoxylates[J]. Res Microbiol, 2001,152 (1): 105-112.
    [108] Fujii K, Urano N, Ushio H et al. Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo[J]. Int J Syst Evol Microbiol, 2001, 51 (2):603-610.
    [109] Ushiba Y, Takahara Y, Ohta H. Sphingobium amiense sp. nov., a novel nonylphenol degrading bacterium isolated from a river sediment[J]. Int J Syst Evol Microbiol, 2003, 53(6): 2045-2048.
    [110] Wagner M, Amann R, Lemmer H, et al. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure[J]. Applied and Environmental Microbiology, 1993, 59(5): 1520-1525.
    [111] Snaidr J, Amann R, Huber I, et al .Phylogenetic analysis and in situ identification of bacteria in activated sludge[J]. Applied and Environmental Microbiology, 1997, 63(7):2884-2896.
    [112] Juretschko S, Loy A, Lehner A, et al. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach[J]. Systematic and Applied Microbiology, 2002, 25(1):84-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700