深静脉血栓形成病因学及基因治疗的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景深静脉血栓形成(deep vein thrombosis, DVT)是一种严重的,具有潜在危险的疾病,如未得到适当治疗易发展为血栓形成后综合征、股青肿、股白肿甚至发生肺栓塞而死亡。流行病学研究提示,深静脉血栓形成年发病率为1.60‰~1.82‰。回顾性研究资料报道,静脉血栓栓塞症患者有高达5%-23%的死亡率,即使正规服用抗凝剂的有症状患者,死亡率也有1%-2%。而深静脉血栓形成患者有三分之一发生血栓形成后综合征,肺栓塞患者4%-5%发生肺动脉高压。此外,深静脉血栓形成的治疗效果又不确切。因此,研究深静脉血栓形成的病因、发病机制和治疗至关重要。本研究分两大部分,第一部分探讨静脉血栓形成的病因学,研究亚甲基四氢叶酸还原酶(methylenetetrahydrofolate reductase, MTHFR) C677T和蛋氨酸合成酶还原酶(methionine synthase reductase, MTRR)A66G基因多态性与深静脉血栓形成的关系,试图发现国人静脉血栓形成的易感因子。第二部分为静脉血栓形成基因治疗的体外实验研究,以腺病毒介导的尿激酶型纤溶酶原激活剂(urokinase-type plasminogen activator,uPA)基因转染人脐静脉内皮细胞(human umbilical vein endotheliocyte, HUVEC),研究转uPA基因感染人脐静脉内皮细胞后的蛋白表达以及纤溶活性改变情况,试图探讨uPA基因治疗静脉血栓形成的可行性和可能机制。
     第一部分MTHFR C677T和MTRR A66G基因多态性与深静脉血栓形成的关系
     目的:研究亚甲基四氢叶酸还原酶(methylenetetrahydrofolate reductase, MTHFR)基因和蛋氨酸合成酶还原酶(methionine synthase reductase, MTRR)基因的多态性与深静脉血栓形成的关系,探讨深静脉血栓形成的病因学。
     方法:采用病例对照研究,以101例下肢深静脉血栓形成患者和同期行健康体检的正常人群120例(对照组)的血白细胞为样本,应用等位基因序列特异性引物聚合酶链反应(polymerase chain reaction-sequence specific primer ,PCR-SSP)多态性技术检测两组的MTHFR基因第677位点的多态性和MTRR基因第66位点的多态性,分别比较每两组的基因型和等位基因的分布频率。同时统计下肢深静脉血栓形成的发病部位。
     结果:MTHFR的677位点CC、CT和TT基因型频率在疾病组中分别为41.58%、25.74%、32.67%,在对照组中分别为58.33%、23.33%、18.33%,MTHFR的677位TT基因型频率与对照组的比较差异有显著性(χ2=7.7,P<0.05)。MTRR的66位点AA、AG和GG基因型频率在疾病组中分别为26.76%、43.66%、29.58%,在对照组中分别为43.57%、44.28%、12.14%,两组的分布频率差异无显著性(P>0.05)。左下肢深静脉血栓形成的发病率为83.2%。
     结论:MTHFR基因第677位点的TT基因型多态性可能与DVT的发病有关。MTRR基因A66G多态性可能不是DVT的独立遗传危险因素。下肢DVT好发于左下肢。
     第二部分腺病毒介导uPA基因转染人脐静脉内皮细胞的体外实验研究
     目的:构建含有人uPA基因的重组腺病毒载体,利用重组腺病毒载体介导人uPA基因转染人脐静脉内皮细胞,从基因、蛋白水平检测目的基因uPA的蛋白表达和纤溶活性,探索静脉血栓形成基因治疗的可行性和可能机制。
     方法:用PCR将合成的oligo拼接成完整的uPA基因,将合成好的目的基因序列装入pMD-18T载体,经XhoI和SalI酶切将目的基因uPA克隆到含增强绿色荧光蛋白(Enhanced green fluorescent protein, EGFP)的质粒载体pIRES2-EGFP中,并转化至感受态细胞DH5α。以pIRES2-EGFP质粒为模板,扩增带attB1和attB2的uPA-IRES2-EGFP片段。采用pAD/CMV/V5-DEST Gateway Vector载体系统作为载体,该系统是缺失了E1和E3早期区的AD5型腺病毒,可容纳6~8.5 kb的外源基因,外源基因插入到E1区。以Gateway两步重组技术重组腺病毒质粒:BP重组系统将目的片段重组到载体pDONR221上,LR重组系统将目的序列重组到腺病毒质粒载体pAD/CMV/V5-DEST上,测序验证重组质粒的正确性,构建含有人uPA基因的重组腺病毒载体。Pac I将重组腺病毒载体质粒线性化后用脂质体lipofectamine 2000转染293A细胞进行包装并对病毒液进行扩增、纯化和滴度测定。HUVEC细胞培养后实验分3组:ad.uPA转染组,ad.neg空载体对照组和空白对照组(n=3)。分别以重组腺病毒载体介导的人uPA基因、空载体对照和空白对照转染HUVEC细胞,观察转uPA基因对HUVEC细胞的影响,测定最佳感染复数((multiplicity of infection, MOI);采用实时荧光定量聚合酶链反应(real time fluorescence quantitative polymerase chain reaction , FQ-PCR)、免疫印迹(Western Blot)和酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测转uPA基因在HUVEC的蛋白表达;比色法检测转uPA基因在HUVEC细胞上清中的的纤溶活性变化。
     结果:成功克隆了人uPA基因,并将携带EGFP的目的基因uPA克隆至质粒载体pIRES2-EGFP,成功构建了uPA cDNA的质粒载体puPA-IRES2-EGFP,测序结果与Genebank公布的人uPA基因cDNA序列完全一致,同源性为100%,该基因编码的蛋白为人uPA。成功构建了人uPA基因重组腺病毒载体pAD-ZWM-PLAU,重组腺病毒载体pAD-ZWM-PLAU经PacI酶切后用Lipofectamine 2000能有效转染293A细胞,包装成功,获得了人uPA基因重组腺病毒ad.uPA。经大量扩增、纯化后病毒滴度为5.74×1010ifu/ml。本研究制备的人uPA基因重组腺病毒ad.uPA感染HUVEC细胞后最佳MOI=800。以MOI=800感染HUVEC细胞后,FQ-PCR检测ad.uPA组、ad.neg组和control组三组目的基因2 -⊿⊿ CT分别为15.2422、4.5631和1,显示阳性感染病毒细胞中目的基因表达量有明显提高(P<0.01)。Western Blot检测结果示ad.uPA侵染病毒的细胞目的蛋白表达量明显提高,而侵染阴性腺病毒对照组和空白对照组的HUVEC细胞中几乎没有检测到目的蛋白的表达。目的蛋白大小为55 kDa。ELISA检测转基因HUVEC培养上清uPA含量结果ad.uPA转基因组,ad.neg空载体组和空白对照组分别为379.4043±2.46 ng/L,240.0099±1.16 ng/L和256.1024±3.04 ng/L,ad.uPA转基因组uPA蛋白含量明显高于空载体组和空白对照组(P<0.01)。比色法检测转基因HUVEC细胞uPA活性结果ad.uPA转基因组,空载体组和空白对照组分别为68.3062±0.64 IU/106cells/24h,5.1845±0.19 IU/106cells/24h和5.0299±0.12 IU/106cells/24h,ad.uPA转基因组uPA活性明显高于各对照组(P<0.01)。
     结论:成功构建了EGFP和uPA双表达重组腺病毒载体pAD-ZWM-PLAU,并于HUVEC成功表达,为静脉血栓形成的基因治疗奠定了基础。转uPA基因感染HUVEC细胞后从基因、蛋白水平均可检测到明显的目的基因表达和纤溶活性增高。外源性基因表达的蛋白在在体情况下有否生物学作用,还有待于动物实验来证实。本研究为静脉血栓形成的基因治疗方案的制定进行了有益的探索。
Background Deep vein thrombosis (DVT) is a serious disease with potential danger to develop into post-thrombotic syndrome (PTS),phlegmasia cerulea dolens,thrombotic phlegmasia and even pulmonary embolism (PE) which can lead to death if it had not got proper treatment. Epidemiologic study has demonstrated that the morbidity of DVT is 1.6 ~1.82 per 1000 population per year. Retrospective studies report that the mortality rate following venous thromboembolism (VTE) is 5%–23%,although the mortality is 1%-2% in symptomatic patients with adequate anticoagulation. Post-thrombotic syndrome occurs in about one-third of DVT sufferers and pulmonary hypertension in 4%–5% of PE sufferers. Moreover, the therapeutic efficacy of DVT is controversy. Therefore, it is important to study the etiology, pathogenesis and therapeutic methods of DVT. In this study, experiment consists of two parts. In part one, the correlations between genetic polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T,methionine synthase reductase (MTRR) A66G and lower extremities deep vein thrombosis was studied so that the risk factor for DVT can be found and the etiology of DVT was evaluated. In part two, in vitro experiment of DVT gene therapy was performed. In this experiment, human umbilical vein endotheliocyte (HUVEC) was transfected by adenovirus-mediated Homo sapiens urokinase-type plasminogen activator (uPA) and the protein expression and change of fibrinolytic activity was determined with the aim to explore the feasibility and possible mechanism of DVT gene therapy with uPA.
     MTRR A66G and lower extremities deep vein thrombosis
     Objective:To detect the distribution of polymorphism of MTHFR gene and MTRR gene in lower extremities deep vein thrombosis (disease group) and normal controls, and to evaluate the etiology of deep venous thrombosis.
     Methods:Polymorphism of the 677th site C/T of MTHFR gene and the 66th site A/G of MTRR gene in disease group (n=101) and normal controls(n=120) was detected by polymerase chain reaction-sequence specific primer (PCR-SSP). The patients in the disease group were from the clinical cases which were diagnosed as DVT and the health examination adults were used as the normal control. The morbidity site of DVT was assayed simultaneously.
     Results:The 677th site of MTHFR gene frequencies of CC,CT and TT genotypes were 41.58%, 25.74% and 32.67% in disease group, while 58.33%, 23.33% and 18.33% in normal controls, respectively.A significant difference was observed in the distribution frequency in two groups(χ2=7.7,P<0.05). The 66th site of MTRR gene frequencies of AA,AG and GG genotypes were 26.76%, 43.66% and 29.58% in disease group, while 43.57%, 4.28% and 12.14% in normal controls.No significant difference was seen in the distribution frequency in two groups (χ2=3.22, P>0.05). Conclusions:The distribution frequency of MTHFR 677TT genotype may have a correlation with morbility of deep vein thrombosis. However, the distribution frequency of MTRR gene seems to have nothing to do with morbility of deep vein thrombosis. Moreover, left lower extremity is the predilection site of deep venous thrombosis.
     Part Two
     The in vitro experimental study of adenovirus-mediated gene transfer of uPA to infect HUVEC
     Objective:To construct recombinant adenovirus vector expressing with human uPA gene, then to transfect cultured HUVEC in vitro and detect the protein expression and
     Part One
     The relationship between genetic polymorphism of MTHFR C677T, change of fibrinolytic activity after adenovirus-mediated gene transfer uPA in the level of gene and protein so that the feasibility and possible mechanism of venous thrombosis gene therapy with uPA can be explored.
     Methods:The synthetical oligo which was amplified with PCR and was then spliced into integrated uPA gene and cloned into pMD﹣18T vector. Next, the aim gene uPA was cloned into plasmid vector pIRES2-EGFP which contains the enhanced green fluorescent protein (EGFP) by Xho I and Sal I restriction enzyme digestion and was transformed into competent cells DH5α. The uPA-IRES2-EGFP fragment containing attB1 and attB2 was amplified from plasmid vector pIRES2-EGFP using polymerase chain reaction. The pAD/CMV/V5-DEST Gateway Vector system was adopted as a vector, which was an AD5 adenovirus absenced of E1 and E3 early region with 6~8.5kb exogenous gene which was inserted into E1 region. The Gateway two-step recombinant technology was taken to construct recombinant adenovirus plasmid. The aim gene fragment was carried to pDONR221 vector through BP recombinant system, and the aim gene sequence was recombined into adenovirus vector pAD/CMV/V5-DEST through the LR recombinant system and sequencing was performed to verify the correctness of recombinant plasmid. The recombinant adenovirus vector plasmid was linearizated using Pac I and then transfected into 293A cells by Lipofectamine 2000. The recombinant plasmid was then packaged, amplified and purified and the titre was measured. For transfection experiment of HUVEC cells, HUVEC cells were infected by adenovirus-mediated uPA gene, empty vector and the blank control, respectively. The multiplicity of infection (MOI) was determined and the protein expression of uPA gene in HUVEC was detected by real time fluorescence quantitative polymerase chain reaction (FQ-PCR), Western Blot and enzyme linked immunosorbent assay (ELISA), respectively. The activity of uPA gene in HUVEC cells was detected with chromatometry.
     Results : The aim gene uPA with EGFP was cloned into plasmid vector pIRES2-EGFP to construct plasmid vector puPA-IRES2-EGFP of uPA cDNA and sequencing showed its complete homology with Homo sapiens urokinase-type plasminogen activator cDNA published in Genebank. The Homo sapiens urokinase-type plasminogen activator gene recombination adenovirus vector pAD-ZWM-PLAU was successfully reconstructed, which can effectively transfect 293A cells by Lipofectamine 2000. The titer of the recombinant Ad was measured by infection units’method and was 5.74×1010 ifu/ml after generous amplification and purification. The best MOI is 800 when HUVEC cells were infected by the Homo sapiens urokinase-type plasminogen activator gene recombination adenovirus ad.uPA which prepared in our experiment. After HUVEC cells infected by ad.uPA, the aim gene 2 -⊿⊿ CT is 15.2422、4.5631and 1 in ad.uPA group, ad.neg group and control group, respectively. It showed that the expression of interest protein in the ad.uPA infected cells was increased obviously(P<0.01). The expression of aim protein was increased obviously in ad.uPA infected cells, but no expression in the HUVEC cells in ad.neg group and control group by Western Blot assay. The molecular weight of aim protein is 55 kDa. The uPA contents in transfected HUVEC culture supernatant are 379.4043±2.46 ng/L, 240.0099±1.16 ng/L and 256.10±3.04 ng/L in ad.uPA group, ad.neg group and control group by ELISA, respectively. A significant difference was seen in the ad.uPA group compared with ad.neg group and control group(P<0.01). Moreover, the activity of uPA in transgenic HUVEC cells is 68.3062±0.64 IU/106cells/24h, 5.1845±0.19 IU/106cells/24h and 5.0299±0.12 IU/106cells/24h in ad.uPA group, ad.neg group and control group by chromatometry,respectively. A significant difference was seen in ad.uPA group compared with the other groups(P<0.01).
     Conclusions:The recombinant Ad expressing uPA and EGFP was successfully constructed and could effectively mediate target genes’expression in infected HUVEC cells, which lays foundation of gene therapy for venous thrombosis. The increase of interest gene expression and fibrinolytic activity were detected in gene and protein level after transgenic uPA infected HUVEC cells. However, it should be verified by animal experiment whether the exogenous gene expression protein had biology effect in vivo. Our study showed an important implication for the exploration of ideal gene therapy style for the treatment of venous thrombosis.
引文
1. Bell WR. Present-day thrombolytic therapy:therapeutic agents-pharmacokinetics and pharmacodynamics. Rev Cadiovasc Med,2002,3(Suppl 2):s34-s44
    2.宁荣霞,王瑞,崔晓迎.新型溶栓药物重组人尿激酶原.中国新药杂志,2008,17(5):430-432
    3. Goldhaber SZ. Pulmonary embolism thrombolysis:do we need another agent?Am Heart J,1999,138:1-2
    4.王洋,杨媛华,王辰.尿激酶型纤溶酶原激活剂治疗血栓栓塞性疾病的研究.国际呼吸杂志, 2007, 27(6):460-462
    5. Edelstein ML, Abedi MR,Wixon J,et al.Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med, 2004,6:597-602
    6. Yang Z, Eton D, Zheng F,et al. Effect of tissue plasminogen activator on vascular smooth muscle cells. J Vasc Surg, 2005,42(3):532-538
    7. Tabuchi N, Shichiri M, Shibamiya A,et al. Non-viral in vivo thrombomodulin gene transfer prevents early loss of thromboresistance of grafted veins. Eur J Cardiothorac Surg, 2004,26(5):995-1001
    8. Pan S, Kleppe LS, Witt TA, et al. The effect of vascular smooth muscle cell-targeted expression of tissue factor pathway inhibitor in a murine model of arterial thrombosis. Thromb Haemost, 2004,92(3):495-502
    9. White SJ, Newby AC. Gene therapy for all aspects of vein-graft disease. J Card Surg, 2002,17(6):549-555
    10. Thomas AC, Wyatt MJ, Newby AC.Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer.Thromb Haemost,2009,102(1):145-152
    11. Hagemeyer CE, Peter K. Ex-vivo thrombolytic gene therapy for vein graft patency: the frontier for development of selective, localised therapeutic approaches.Thromb Haemost,2009,102(1):3-4
    12. Modarai B, Humphries J, Burnand KG,et al. Adenovirus-mediated VEGF gene therapy enhances venous thrombus recanalization and resolution.Arterioscler Thromb Vasc Biol,2008,28(10):1753-1759
    13. ChenYK, Jiang XM, Gong JP. Recombinant human granulocyte colony-stimulating factor enhanced the resolution of venous thrombi. J Vasc Surg, 2008,47(5):1058-1065
    14.李家增,贺石林,王鸿利主编.血栓病学.北京:科学出版社,1998,68-80
    15. Winn SR, Hu Yunhua, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Advanced Drug Delivery Review,2000,42:121-138
    16. Bonadio J, Goldstein SA, Levy RJ. Gene therapy for tissue repair and regeneration. Advanced Drug Delivery Review,1998,33(1):53-69
    17. Wagner E. Application of membrane-active peptides for nonviral gene delivery. Advanced Drug Delivery Review,1999,38(3):279-289
    18. Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet, 2005,54:3-20
    19. Maruyama K, Suzuki R, Takizawa T, et al. Drug and gene delivery by "bubble liposomes" and ultrasound. Yakugaku Zasshi,2007,127:781-787
    20. Maruyama M, Kobayashi N, Okitsu T, et al. Successful lentivirus-based delivery of NLS-LACZ gene into porcine hepatocytes. Transplant Proc, 2003,35:435-6
    21. Dishart KL, Denby L, George SJ, et al. Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. J Mol Cell Cardiol, 2003,35:739-48
    22. Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther,2007,7:189-204
    23. Adriaansen J, Vervoordeldonk MJ, Tak PP. Gene therapy as a therapeutic approach for the treatment of rheumatoid arthritis: innovative vectors and therapeutic genes. Rheumatology(Oxford), 2006,45:656-68
    24. Sharif F, Hynes SO, McMahon J, et al. Gene-eluting stents: comparison of adenoviral and adeno- associated viral gene delivery to the blood vessel wall in vivo. Hum GeneTher, 2006,17:741-50
    25. Breyer B, Jiang W, Cheng H, et al. Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther,2001,1(2):149-162
    26. Hartman ZC, Appledom DM, Amalfitano A. Adenovirus vector induced innateimmune responses:Impact upon efficacy and toxicity in gene therapy and vaccine applications.Virus Res, 2008,132(1-2):1-14
    27. Jager L, Ehrhardt A. Emerging adenoviral vectors for stable correction of genetic disorders. Curr Gene Ther, 2007,7(4):272-283
    28. Douglas JT. Adenoviral vectors for gene therapy.Mol Biotechnol,2007,36(1):71-80
    29. Madea A, Nakamura S, Isono M, et a1. Induction of efficient apoptosis and cell-cycle arrest in tumor cells by adenovirus-mediated p53 A4 mutant.Pathology International, 2006,56:126-13
    30.陈寒,唐州平,唐莱华. Neprilysin基因在大鼠体外培养骨髓基质细胞中的表达.中国现代医学杂志, 2006, 16(21):6-9
    31. Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther, 2010 ,18(1):87-92
    32. Thomas AC, Wyatt MJ, Newby AC. Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer. Thromb Haemost, 2009,102(1):145-152
    33. Modarai B, Humphries J, Burnand KG, et al. Adenovirus-mediated VEGF gene therapy enhances venous thrombus recanalization and resolution. Arterioscler Thromb Vasc Biol, 2008,28(10):1753-1759
    34. Gong YS, Zhang KL, Jiang XG, et al. Retroviral gene transfer of tissue-type plasminogen activator targets thrombolysis in vitro and in vivo. Gene Ther,2007,14(21):1537-1542
    35. He TC, Zhou SB, Da Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA,1998,95:2509-2514
    36.谷志远,赵亚力.现代医学分子生物学.北京:人民军医出版社,2000,254
    37. Han JJ, Mhatre AN, Wareing M, et al.Transgene expression in the guinea pig cochleamediated by a lentivirus-derived gene transfer vector.Hum Gene Ther. 1999,10(11):1867-1873
    38. Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the aequrea Victoria green-fluorescent protein. Gene, 1992,111:229-233.
    39. Zizzi A, Minardi D, Ciavattini A, et al. Green fluorescent protein as indicator of nonviral transient transfection efficiency in endometrial and testicular biopsies. Microsc Res Tech, 2010,73(3):229-233
    40. Umakoshi H, Suga K, Bui HT, et al. Charged liposome affects the translation and folding steps of in vitro expression of green fluorescent protein. J Biosci Bioeng, 2009,108(5):450-454
    41. Alon T, Zhou L, Pérez CA, et al. Transgenic mice expressing green fluorescent protein under the control of the corticotropin-releasing hormone promoter. Endocrinology, 2009,150(12):5626-5632
    42. Anco DJ, Kim S, Mitchell TK, et al. Transformation of Phomopsis viticola with the green fluorescent protein. Mycologia,2009,101(6):853-858
    43. Wang Q, Steigelman MB, Walker JA, et al.In vitro osteogenic differentiation of adipose stem cells after lentiviral transduction with green fluorescent protein. J Craniofac Surg, 2009,20(6):2193-9
    44. Suzuki H, Kawasaki M, Ohnishi H, et al. Exaggerated response of a vasopressin-enhanced green fluorescent protein transgene to nociceptive stimulation in the rat. J Neurosci, 2009 ,29(42):13182-13189
    45. Ruedas JB, Perrault J. Insertion of enhanced green fluorescent protein in a hinge region of vesicular stomatitis virus L polymerase protein creates a temperature-sensitive virus that displays no virion-associated polymerase activity in vitro. J Virol, 2009,83(23):12241-12252
    46. Zheng YM, An ZX, Zhao XE, et al. Comparation of enhanced green fluorescent protein gene transfected and wild-type porcine neural stem cells.Res Vet Sci, 2010 ,88(1):88-93
    47. Bet AJ, Haddara W, Prevec L, et al. An eficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA, 1994,91:8802-8806
    48. Chartier C, Degryse E, Gantzer M, et al. Eficient generation of recombinant adenovirus vectors by homologous recombinant in Escherichia coli. J Hrol, 1996,70:4805-4810
    49. Mazzieri R, D'Alessio S, Kenmoe RK,et al. An unclearable u-PAR mutant allows dissection of signaling pathways in uPA - dependent cell migration.Mol Bil Cell ,2006,17(1):367-378
    50. Kenneth JL, Thomas DS. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method. METHODS, 2001, 25,402–408
    1 Nordstrom M, Lindbald B, Bergqvist DT. A prospective study of the incidence of deep vein thrombosis within a defined urban population. J Intern Med 1992,232(2):155
    2 Hansson PO, Welin L,Tibblin G. Deep vein thrombosis and pulmonary embolism in the general population.The study of Men Born in 1913. Arch Intern Med 1997,157(15):1665
    3 Chapman NH, Brighton T, Harris MF, et al. Venous thromboembolism - management in general practice. Aust Fam Physician, 2009,38(1-2):36-40
    4 Spencer FA, Emery C, Lessard D, et al. The Worcester Venous Thromboembolism Study-a population based study of the clinical epidemiology of venous thromboembolism. J Gen Intern Med, 2006,21:722–727
    5 Goldhaber SZ. Pulmonary embolism. Lancet, 2004,363:1295–1305
    6 Douketis JD, Kearon C, Bates S, Duku EK, Ginsberg JS. Risk of fatal pulmonary embolism in patients with treated venous thromboembolism. J Am Med Assoc,1998,279:458–462
    7 Prandoni P, Lensing AWA, Cogo A, et al. The long-term clinical course of acute deep venous thrombosis. Ann Intern Med, 1996,125:1–7
    8 Pengo V, Lensing AW, Prins MH, et al. Thromboembolic Pulmonary hypertension study group. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med, 2004,350:2257–2264
    9 Salzman EW, Hirsh J. The epidemiology,pathogenesis,and natural history of venous thrombosis.In:Colman RW,Hirsh J,Marder VJ,Salzman EW,eds.Hemostasis and thrombosis:basic principles and clinical practice.Philadelphia:J B Lippincott 1993:1275-1298
    10 Meissner MH, Strandness DE.Pathophysiology and natural history of acute deep venous thrombosis.In: Rutherford HB: Vascular Surgery(5thed). Philadelphia: Saunders Company, 2000,1929-1930
    11 Danis KW, Menawatt S, von Thron J, et al. Efficacy of deep vein thrombosis prophylaxis in trauma patients and identification of high-risk groups. J Trauma,1993,35(1):132
    12 Sue LP, Davis JW, Parks SN. Ilieofemoral venous injuries: An indication for prophylactic caval filter placement. J Trauma,1994,39(4):803
    13 Stamatakis JD, Kakkar VV, Sagar S, et al. Femoral vein thrombosis and total hip replacement. Br J Med,1994,2(6081):223
    14 Thamas D. Venous thrombogenesis. Br Med Bull, 1994,50(4):803
    15 Nachman RL, Silverstein R.Hypercoabulable states. Ann Intern Med, 1993,119(8):819
    16董国祥.实用血管外科学及护理学.北京:中国医药科技出版社,1995,201
    17 White RH.The epidemiology of venous thromboembolism.Circulation.2003,107:4-8
    18 Ismail K, Aoun E, Sleiman Zade Asfahani W,et a1.Abstracts from XIX intemational ISTH.Congress Journal of Thrombosis and Haemostasis,2003,suppl l:12-18
    19 Stein PD,Kayali F,Olson RE,et a1.Pulmonary thromboembolism in American Indians and Alaskan natives.Arch Intern Med,2004,164:1804-1806
    20 Horlander KT, Leeper KV, Goidhaber SZ, et a1. Deep venous thrombosis:a comparison of ethnic groups from the DVT free registry. Chest,2003,124:236
    21 Agnelli G. Prevention of venous thmmboembolism in surgical patients. Circulation, 2004,110:4-12
    22 Geerts WH. Prevention of venous thromboembolism in high risk patients. Hematology,2006,14:462-466
    23 Meissner MH, Chandler WL, Elliott JS. Venous thromboembolism in trauma: a local manifestation of systemic hypercoagulability. J Trauma,2003,54:224-231
    24 Heit JA, O’Fallon WM, Petterson TM, et a1. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism:a population-based study. Arch Intem Med,2002,162:1245-1248
    25 Leizorovicz A, Mismetti P. Preventing venous thromboembolism in medical patients. Circulation,2004,110:13-19
    26 Perez-Rodriguez E, Jimtnez D, Dlaz G, et a1. Incidence of Air travel-related pulmonary embolism at the madrid-harajus airport.Arch Intern Med, 2003,163:2766-2770
    27 Arya R, Barnes JA, Hossain U, et a1. Long-haul flights and deep vein thrombosis:a significant risk only when additional factors are also present.British Journal of Haematology. 2002,116:653-654
    28 Heit JA, Kobbervig CE, James AH, et a1. Trends in the incidence of venous thromboembolism during pregnancy or postpartum:a 30-year population-based study. Ann Intern Med, 2005,143:697-706
    29 Lidegaard O, Edstmm B, Kreiner S.Oral contraceptives and venous thromboembolism: a five-year national case-control study. Contraception, 2002,65:187-196
    30 Doukefis JD, Julian JA, Kearon C, et a1. Does the type of hormone replacement therapy influence the risk of deep vein thrombosis? a prospective case-control study. Thromb Haemost, 2005, 3:943-948.
    31 Spencer FA, Emery C, Lessard D, et a1. The Worcester venous thromboembolism study a population-based study of the clinical epidemiology of venous thromboembolism. Gen Intern Med, 2006, 2l:722-727
    32 Bmuwer JL, Bijl M, Veeger NJ, et a1. The contribution of inherited and acquired thrombophilic defects, alone or combined with antiphospholipid antibodies to venous and arterial thromboembolism in patients with systemic lupus erythematosus. Blood, 2004,104:143-148
    33 Buller HR, Sohne M, Middeldorp S. Treatment of venous thromboembolism.J Thromb Haemost, 2005,3:1554-1560
    34 Ost D, Tepper J, Mihara H, Lander O, Heinzer R, Fein A. Duration of anticoagulation following venous thromboembolism: a meta-analysis. JAMA, 2005,294:706-715
    35 Hyers TM, Agnelli G, Hull RD, et al. Antithrombotic therapy for venous thromboembolic disease. Chest, 2001,119(sup 1):1765-1935
    36 Nazario R, Delorenzo LJ, Maguire AG. Treatment of venous thromboembolism. Cardiol Rev,2002,10(4):249-259
    37 Dolovich LR, Ginsberg JS, Douketis JD, et a1. A meta-analysis comparing low molecular weight heparins with unfractioned heparin in the treatment of venous thromboembolism. Arch Intern Med,2000,160(2):181-188
    38 Gómez-Outes A, Lecumberri R, Pozo C, et al. New anticoagulants: focus on venous thromboembolism. Curr Vasc Pharmacol,2009,7(3):309-329
    39 Bounameaux H. The novel anticoagulants: entering a new era. Swiss Med Wkly,2009,139(5-6):60-64
    40 Howard PA. Daheparin: A low molecular weight heparin. Ann Pharmacother, 1997,31(2):192-203
    41 Merli G, Spyropoulos AC, Caprini JA.Use of emerging oral anticoagulants in clinical practice: translating results from clinical trials to orthopedic and general surgical patient populations. Ann Surg,2009,250(2):219-228
    42 Skoutakis VA. Danaparoid in the prevention of thromboembolic complications. AnnPharmacother,1997,31(7):876-887
    43 Johann M,Andreas W,Matthias B.Update in the prevention and treatment of deep vein thrombosis and pulmonary embolism . Current Opinion in Anaesthesiology ,2006,19(1):52-58
    44 Eriksson BI,Agnelli G,Cohen AT,et a1. Direct thrombin inhibitor melagatran followed by oral ximelagatran in comparison with enoxaprin for prevention of venous thromboembolism after total hip or knee replacement. Thromb Haemost,2003,89(2): 288-296
    45 Kashyap VS, Quinones-Baldrich WJ. Principles of thrombolytic therapy.Vascular Surgery 5 th ed.In Rutherford:Philadelphia WB.Saunders 2000,465
    46 Anderson HV, Willerson JT. Thrombolysis in acute myocardial infarction. New Engl Med,1993,329(10):703-709
    47李忠诚.尿激酶和凯时联合溶解深静脉血栓的临床研究.中国综合临床, 2002,18(1):68-69
    48 Sako T. Immediate entrance to the export pathway after synthesis as a requirement for export of the sak gene product in Escherichia coli. Bacteriol,1986,167(3): 850-854
    49 Verstraete M,Lijhen HR,Collen D. Thrombolytic agents in development.Drugs,1995,50(1):29
    50 Jiao JW,Yu MM,Ru BG. Construction and characterization of a recombinant chimeric plasminogen activator consisting of a fibrin peptide and a low molecular mass single-chain urokinase. Bioehimie,2001,83(11-12):1049-1055
    51 Von ZWB,Pretorius GH,Lamprecht S. PLATSAK,a potent antithrombotic and fibrinolytic protein, inhibits arterial and venous thrombosis in a baboon model.Thrombosis Research,2000,98(5):435-443
    52肖蓉,赵静,李庆伟.嵌合体纤溶酶的研究进展.生物物理学报,2005,21(2):90-94
    53 Plate G, Eklof B, Norgren L, et al. Venous thrombectomy for iliofemoral vein thrombosis-10-year results of a prospective randomised study. Eur J Vasc Endovasc Surg, 1997,14(5):367-374
    54 Juhan CM, Alim YS, Barthelemy PJ, et al. Late results of iliofemoral venous thrombectomy. J Vasc Surg, 1997,25(3):417-422
    55 Meissner AJ, Huszcza,S. Surgical strategy of management of deep venous thrombosis of the lower extremities. World J Surg 1996,20(9):1149-1155
    56董国祥.下肢深静脉血栓形成的手术取栓术.中国实用外科杂志2001,21(5):312-313
    57 Hurst DR, Forauer AR, Bloom JR, et al. Diagnosis and endovascular treatment of iliocaval compression syndrome. J Vasc Surg 2001,34(1):106-113
    58陈翠菊,杨墉,周兴立,等.下肢深静脉血栓形成治疗新认识.中华外科杂志,2005,43(7):420-422
    59 Coleman CC, Krenzel C, Dietz CA, et al. Mechanical thrombectomy:results of early experience. Radiology 1993,189(3):803-805
    60 Uflacker R. Mechanical thrombectomy in acute and subacute thrombosis with use of the Amplatz device:arterial and venous applications. J Vasc Interv Radiol 1997,8(6):923-932
    61 Gu X, Sharafuddin MJ, Titus JL, et al. Acute and delayed outcomes of mechanical thrombetomy with use of the steerable Amplatz thrombectomy device in a model of subacute inferior vena cava thrombosis. J Vasc Interv Radiol 1997,8(6):947-956
    62周为民,李晓强,余朝文,等.血栓消融,溶栓和取栓对犬股静脉壁形态学影响的研究.中华普通外科杂志,2003,18(4):214-216
    63 Li M, Wang D, Zhang J,et al. Percutaneous mechanical thrombectomy combined with cathether-directed thrombolysis for lower-extremity deep venous thrombosis. Thromb Res,2010,125(4):273-275
    64 Henry M, Amor M, Henry I, et al. The hydrolyser thrombectomy catheter a single-center experience. J Endovasc Surg 1998,5(1):24-31
    65 Reekers JA, Blank LE. Iliocaval thrombosis: percutaneous treatment with hydrodynamic thrombectomy. Eur Radiol 2000,10(2):326-328
    66 Rocek M,Peregrin JH,Lasovickova J,et a1.Mechanical thrombolysis of thrombosedhemodialysis native fistulas with use of the Arrow-Trerotola percutaneous thrombolytic device : our preliminary experience. J Vasc Interv Radiol, 2000,1l(9):1153-1158
    67 Wildberger JE, Haage P, Bovelander J, et a1. Percutaneous venous thrombectomy using the Arrow-Trerotola percutaneous thrombolytic device (PTD) with temporary caval filtration:in vitro investigations.Cardiovasc lntervent Radiol,2005,28(2):221-227
    68 Zana K,Otal P,Fomet B,et a1.In vitro evaluation of a new rotational thrombectomy device: the Straub Rotarex catheter. Cardiovasc Intenvent Radiol,200l,24(5):319-323
    69李麟荪,施海彬,姜志良,等.一种新的血栓旋切器-Straub Rotarex System及其临床应用介绍.介入放射学杂志,2004,13(6):502-505
    70 Hilleman DE, Razavi MK.Clinical and economic evaluation of the Trellis-8 infusion catheter for deep vein thrombosis.J Vasc Interv Radiol,2008,19(3):377-383
    71 Arko FR, Davis CM, Murphy EH, et a1.Aggressive percutaneous mechanical thrombectomy of deep venous thrombosis: early clinical results. Arch Surg,2007,142(6):513-518
    72 Mewissen MW, Seabrook GR, Meissner MH, et al. Catheter-directed thrombolysis for lower extremity deep venous thrombosis: report of a national multicenter registry. Radiology 1999,211(1):39-49
    73 Jeon YS, Yoon YH, Cho JY,et al. Catheter-directed thrombolysis with conventional aspiration thrombectomy for lower extremity deep vein thrombosis. Yonsei Med J, 2010 ,51(2):197-201
    74 Onat L, Ganiyusufoglu AK, Mutlu A, et al. OptEase and TrapEase vena cava filters: a single-center experience in 258 patients. Cardiovasc Intervent Radiol, 2009,32(5):992-9977
    75 Mewissen MW, Seabrook GR, Meissner MH, et al. Catheter-directed thrombolysis for lower extremity deep venous thrombosis:report of a national multicenter registry. Radiology 1999,211(1):39-49
    76 Lou WS, Gu JP, He X, et al. Endovascular treatment for iliac vein compression syndrome: a comparison between the presence and absence of secondary thrombosis. Korean J Radiol,2009 ,10(2):135-143
    1. Vincenza Carriero M, Franco P, Vocca I, et al. Structure, function and antagonists of urokinase-type plasminogen activator. Front Biosci,2009,14:3782-3794
    2. Sandra D, Radha M, Harishkumar M,et al. Downregulation of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 by grape seed proanthocyanidin extract. Phytomedicine,2010,17(1):42-46
    3. Tkachuk VA, Plekhanova OS, Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol,2009,87(4):231-251
    4. Gossage JA, Humphries J, Modarai B, et al. Adenoviral urokinase-type plasminogen activator (uPA) gene transfer enhances venous thrombus resolution. J Vasc Surg, 2006,44:1085–1090
    5. Humphries J, Gossage JA, Modarai B, et al. Monocyte urokinase-type plasminogen activator up-regulation reduces thrombus size in a model of venous thrombosis.J Vasc Surg, 2009,50(5):1127-1134
    6. Minoo P, Baker K, Baumhoer D,et al. Urokinase-type plasminogen activator is a marker of aggressive phenotype and an independent prognostic factor in mismatch repair-proficient colorectal cancer. Hum Pathol,2010,41(1):70-78
    7. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to enhanceurokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene,2009,28(44):3937-3948
    8. No JH, Jo H, Kim SH,et al. Expression of MMP-2, MMP-9, and urokinase-type plasminogen activator in cervical intraepithelial neoplasia. Ann N Y Acad Sci,2009,1171:100-104
    9.俞炜源,张正光,肖成祖,等.尿激酶原的性质、结构、功能及其药代动力学和临床应用效果.生物技术通讯, 1998,9:35-41
    10. Behrendt N. The urokinase receptor(u-PAR)and the u-PAR-associated protein (u-PARAP/Endol80):membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem, 2004,385:103-136
    11. Barnathan ES, Kuo A, Kariko K, et al. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA. Blood ,1990,76:1795-1806
    12. Behrendt N, Ronne E, Dano K. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains.Biol Chem ,1996, 271:22885-22894
    13. Plesner T, Behrendt N, Ploug M. Structure,function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor,u-PAR. Stem Cells 1997,15:398-408
    14. Biasi F, Carmeliet P. u-PAR: a versatile signalling orchestrator.Nat Rev Mol Cell Biol, 2002,3:932-943
    15. Ossowski L, Clunie G, Masucci M, et al. In vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion.Cell Biol,1991,115:1107-1112
    16. Olson D, Pollanen J, Hoyer-Hansen G, et al. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. Biol Chem, 1992,267:9129-9133
    17. Mazzieri R, D'Alessio S, Kenmoe RK,et al. An unclearable u-PAR mutant allows dissection of signaling pathways in uPA - dependent cell migration.Mol BilCell ,2006,17(1):367-378
    18. Wu W ,Narasaki R,Maeda F,et a1. Glucosyldiacylglycerol enhances reciprocal activation of prourokinase and plasminogen.Biosci Biotechnol Biochem, 2004,68(7):1549-1556
    19. Bell WR. Present-day thrombolytic therapy:therapeutic agents-pharmacokinetics and pharmacodynamics. Rev Cadiovasc Med,2002,3(Suppl 2):s34-s44
    20.宁荣霞,王瑞,崔晓迎.新型溶栓药物重组人尿激酶原.中国新药杂志,2008,17(5):430-432
    21. Braat EA , Collen A , Jie AF, et al. The inactivation of single-chain urokinase-type plasminogen activator by thrombin on cultured human endothelial cells.Biochim Biophys Acta, 2000, 1497 (3) :351-358
    22. Braat EA , Los P, Rijken DC. The inactivation of single-chain urokinase-type plasminogen activator by thrombin in a plasmamilieu: effect of thrombomodulin. Blood Coagul Fibrinolysis, 1998, 9 (5):419-427
    23. Bajzar L, Morser J, Nesheim M. TAFI, or plasmaprocarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem, 1996, 271 (28):16603-16608
    24. Higazi AA,Ajawi F,Akkawi S,et al.Regulation of the single-chain urokinase receptor complex activity by plaminogen and fibrin: novel mechanism of fibrin: specificity. Blood,2005,105(3): 1021-1028
    25. Mutch NJ, More NR, Wang E, et al. Thrombus lysis by uPA, scu-PA and tPA is regulated by plasmaTAFI. J Thromb Haemost,2003,1 (9):2000-2007
    26. Shetty S. Protein synthesis and urokinase mRNA metabolism. Mol Cell Biochem, 2005,271(1-2):13-22
    27. Pacouret G, Barnes S, Hokins G, et a1. Rapid haemodynamic improvement following saruplase in recent massive pulmonary embolism. Thromb Haemost,1998,79:264-267
    28. Sors H. Hemodynamic effects of bolus versus 2h infusion of aheplase in acute massive pulmonary embolism.A randomized controlled multicenter tria1. Chest, 1994, 106:712-717
    29. Hamel E, Krishna K, Debra S,et a1. Thrombilysis or heparin therapy in massive pulmonary embolism with right ventricular dilation results from a 128-patient monocenter registry.Chest,2001,120:120-125
    30. Moia M, Pacouret G, Vincentelli D,et a1. A pilot study of pro-urokinase in the treatment of deep vein thrombosis.Thromb Haemost,1994,72;430-433
    31.刘毅,王辰,杨媛华,等.尿激酶型纤溶酶原激活剂与静脉血栓栓塞.心脏杂志,2007,19(2):237-245
    32. Singh I, Bumand KG, Collins M, et al. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation,2003,107 (6) :869-875
    33.欧阳松云,王辰,庞宝森,等.重组尿激酶型纤溶酶原激活物治疗实验性肺血栓栓塞症.中华结核和呼吸杂志,2007,30(1):59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700