果实特异性2A12启动子克隆与桃ACO基因反义表达载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃(Prunus persica)属蔷薇科多年生落叶果树,是典型的呼吸跃变型果实,达到生理成熟的果实采后很快出现呼吸高峰,迅速变软,严重影响其销售与储运。乙烯是跃变型成熟果实的催熟激素,跃变型果实自我催化乙烯合成反应启始后,合成大量乙烯,ACC氧化酶(ACO又称乙烯形成酶EFE)是乙烯形成过程中的最后一个酶,起着关键的作用。而利用果实特异型启动子可以启动外源基因在受体植物果实中高效表达的特点,研究并克隆番茄果实特异性启动子和ACO基因,并结合反义RNA基因技术抑制ACO基因的表达,就能够抑制桃果实的乙烯合成,从根本上改变桃果实成熟后迅速软化的特性,对于大幅度延长桃储藏时间和增加经济效益,培育桃抗软化新品种,将具有重要理论和实践意义。
     本研究以成熟的白粉桃果实为材料,运用基因克隆技术,克隆番茄2A12果实特异型启动子和桃ACO基因,构建由2A12启动子调控的桃ACO反义基因植物表达载体,为下一步建立桃高效遗传转化体系奠定实验基础。本实验的主要研究结果如下:
     1.利用植物总RNA提取试剂盒成功提取了高质量的白粉桃果实总RNA,反转录成cDNA第一链,根据GenBank中已发布的桃ACO基因序列(登录号:AF319166)设计一对特异性引物进行RT-PCR扩增后,获得目的片段,经测序分析ACO基因为1246bp序列,比对后发现核苷酸和氨基酸的同源性分别为99%和98%,表明正确的克隆了桃ACO基因,并将克隆载体命名为pMD-ACO。
     2.用CTAB法提取番茄基因组DNA,根据GeneBank(No: M87659.1)已登录的2A11启动子序列设计一对特异性引物进行PCR扩增,获得了869bp的2A12片段大小,该序列与已发表的2A11启动子(No: M87659.1)的核苷酸序列比对其同源性高达100%,初步表明成功的克隆了2A12启动子,并将克隆载体命名为pMD-2A。
     3.分别用限制性内切酶SacⅠ和BamHⅠ双酶切pMD-ACO克隆载体和pBI121表达载体。将pBI121载体的GUS A片段切下来,ACO基因片段反向插入到了pBI121载体中,构建成中间表达载体pBI-anti-ACO。用限制性内切酶HindⅢ和BamHⅠ分别双酶切pMD-2A克隆载体和pBI121表达载体。将pBI121载体的CaMV 35S片段切下来,2A12启动子片段正向插入到了pBI121载体中,构建成植物表达载体pBI-2A。用SacⅠ和BamHⅠ双酶切中间表达载体pBI-anti-ACO和植物表达载体pBI-2A,将切下来的反向ACO片段插入到pBI-2A中,构建成pBI-2A-ACO植物表达载体。并进行了PCR和双酶切鉴定
Peach belongs to Rosaceae, perennial deciduous fruit tree, which is a typically climacteric fruit, When the fruit is physiologically mature, a climacteric peak appears soon after the post harvest period, which leads to softening rapidly and seriously impacts on their sales and logistics. Ethylene is a ripening hormone of mature climacteric fruits. A large amount of ethylene is produced after climacteric fruits starting the self-catalytic ethylene synthesis. ACC oxidase (ACO also called ethylene-forming enzyme EFE) which is the last enzyme in the formation of ethylene plays a key role. Fruit-specific promoters can activate the high-level expression of foreign gene in the fruit of receptors plants. Then, researching and cloning tomato fruit-specific promoter and ACC oxidase gene, combining with antisense RNA gene technology inhibits the expression of ACC oxidase gene in order to reduce the ethylene biosynthesis of peach. In the end, the purpose of delaying fruit softening can be achieved. It is hopeful to fundamentally change the Characteristic of peach fruit ripening rapidly, and nurture new types of anti-softening, which substantially increase the storage time and the economic benefit of peache. It is very important for theoretical and practical significance to promote the faster industry development of peach in our country.
     The study, with mature Baifen peach as the materials, took advantage of Cloning technology to get the fruit specific promoter 2A12 in tomato and ACO gene in peach, and then constructed the antisense ACO gene expression vector regulated by promoter 2A12, laying the foundation for establishing an efficient system of genetic transformation of peach. The results of this study were as follows:
     1. High-quality RNA was extracted successfully by useing plant total RNA extraction kit, reverse transcripted into the first strand cDNA, according to ACO gene sequence of peach (accession number: AF319166) published in GenBank, a pair of specific primers were designed for RT-PCR amplification to get the fragment. Sequence analysis showed that ACO gene is a 1246bp full-length sequence. Compared with GenBank landed ACO gene (AF319166) nucleotide sequence and amino acid sequence, the homology were separately 99% and 98%, indicating that ACO gene of peach was successfully cloned, named as pMD-ACO.
     2.Tomato genomic DNA was extracted by the method of CTAB. According to 2A11 promoter (accession number: AF319166) published in GenBank, a pair of specific primers were designed for PCR amplification, and 869bp of 2A12 fragment was obtained. Sequence analysis showed that the compared with the published sequence of the 2A11 promoter (No:M87659.1), the corresponding nucleotide sequence homology was up to 100%, which indicated 2A12 promoter successfully was cloned, and named as pMD-2A.
     3. pMD-ACO cloning vector and the pBI121 expression vector were digestioned respectively by SacⅠand BamHⅠrestriction endonucleases. GUS A fragment of the pBI121 vector was cut down, and then ACO gene fragment was reversely inserted into pBI121 vector to construct intermediate expression vector pBI-anti-ACO. pMD-2A cloning vector and the pBI121 expression vector were digestioned respectively by HindⅢand BamHⅠrestriction endonucleases. When CaMV 35S fragment was cut down from pBI121 vector, 2A11 promoter fragment was inserted into the pBI121 vector, and constructed the plant expression vector pBI-2A. With SacⅠa nd BamHⅠdigesting intermediate vector pBI-anti-ACO and the plant expression vector pBI-2A, ACO fragment cut down was reversely inserted into pBI-2A, and constructed the plant expression vector pBI-2A-ACO after PCR and digestion identification, which proved the vectors were constructed successfully, and the vectors can be used to transfer into the plant of peach.
引文
[1]LewinsohnE,SteeleCL,CroteauR.SimpleisolationoffunctionalRNAfromwoodystemsofgymnosperms[R].PlantMolBiolReptr.1994,12(1):20~25.
    [2]AlexandexL,GriersonD.Ethylenebiosnythesesandactionintomato:anodelfordimactericfruitriping[J].JournalofExperimentalBotany.2002,53(377):2039~2055.
    [3]LiebermanM.Biosynthesisandactionofethylene[J].Ann.Rev.PlantPhysiol.1979,30:533~591.
    [4]KleeHJ.Ripeningphysiologyoffruitfromtransgenictomato(Lycopersiconesculenturn)plantswithreducedethylenesynthesis[J].PlantPhysiol.1993,102(3):911~916.
    [5]HoldsworthMJ,BirdCR,RayJ,etal.Structureandexpressionofanethylene-relatedmRNAfromtomato[J].Nucl.AcidsRes.1987,15(2):731~739.
    [6]李正国.果实成熟的基因调控[J].生物工程进展.2000,20(3):30~34.
    [7]LasserreE,BouquinT,HernandezJA,etal.StructureandexpressionofthreegenesencodingACCoxidasehomologsfrommelon(CucumismeloL.)[J].MolGenGenet.1996,251(1):81~90.
    [8]尹涛,张上隆,刘敬梅,等.果实特异性启动子研究现状及其应用[J].农业生物技术学报.2009,17(2):355~360.
    [9]YakobyN,GarveyA,RaskinI.TobaccoribosomalDNAspacerelementelevatesBowman–Birkinhibitorexpressionintomatoplants[R].PlantCellReports.2006,25(6):573~581.
    [10]PearJR,RidgeN,RasmussenR,etal.Isolationandcharacterizationofafruit-specificcDNAandthecorrespondinggenomicclonefromtomato[J].PlantMolecularBiology.1989,13(6):639~651.
    [11]BirdCR,SmithCJS,RayJA,etal.Thetomatopolygalacturonasegeneandripening-specificexpressionintransgenicplants[J].PlantMolecularBiology.1988,11(6):651~662.
    [12]MolnarA,LovasA,BanfalviZ,etal.Tissue-specificsignal(s)activatethepromoterofametallocarboxypeptidaseinhibitorgenefamilyinpotatotuberandberry[J].PlantMolecularBiology.2001,46(3):301~31.
    [13]DeryabinAN,TrunovaTI,DubininaIM,etal.Chillingtoleranceofpotatoplantstransformedwithayeast-derivedinvertasegeneunderthecontroloftheB33patatinpromoter[J].RussianJournalofPlantPhysiology.2003,50(4):449~454.
    [14]MoonH,CallahanAM.DevelopmentalregulationofpeachACCoxidasepromoter-GUSfusionsintransgenictomatofruits[J].JournalofExperimentalBotany.2004,55(402):1519~1528.
    [15]RurfS,HermannM,BergerIJ,etal.Stablegenetictransformationoftomatoplastidsandexpressionofaforeignproteininfruit[J].NatureBiotechnology.2001,19(9):870~875.
    [16]毛自朝,于秋菊,甄伟,等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报.2002,47(6):444~448.
    [17]GrayJ,PictionS,ShabberJ,etal.Molecularbiologyoffruitripeninganditsmanipulationwithantisensegenes[J].PlantMolBiol.1992,19(1):69~87.
    [18]薛炳烨,束怀瑞.应用基因工程改良果实成熟特性研究进展[J].山东农业科学.2002,21(4):49~52.
    [19]王海宏,周慧娟,乔勇进,等.桃贮藏保鲜技术研究现状与发展趋势[J].保鲜与加工.2009,6(2):10~14.
    [20]张晓宇,王春生,赵桂芳,等.桃果实采后生理研究及贮藏保鲜技术应用进展[J].中国农学通报.2008,24(5):117~120.
    [21]孙芳娟,韩明玉,赵彩平,等.采收成熟度对油桃贮藏品质的影响[J].西北植物学报.2007,27(1):183~87.
    [22]ValeroD,MartinezmadridMC,RiquelmeF,etal.Polyamines,ethylene,andphysicochemicalchangesinlow-temperature-storedpeach[J].JournalofAgriculturalandFoodChemistry.1997,45(9):3406~3410.
    [23]薛文通,李里特,赵凤敏.桃的”冰温”贮藏研究[J].农业工程学报.1997,13(4):216~220.
    [24]常军.桃减压、1-MCP和高CO2贮藏效应的研究[D].天津:天津科技大学.2004.2.
    [25]陆定志,傅家瑞,宋松泉.植物衰老及其调节[M].北京:中国农业出版社,1997.
    [26]MariusHuysamer,DaniellJW.CellWallMetabolisminRipeningFruit[J].PlantPhysiol.1997,114(4):1523~1531.
    [27]CrooksPR,GriersonD.Ulrtastrureoftomatofruitripeningandtheroleofpolygalacturonaseisoenzymesincellwalldegradation[J].PlantPhysiol.1983,72(4):1088~1093.
    [28]HadfieldKA,JocelynKCR,DebbieSY,etal.Polygalacturonasegeneexpressioninripemelonfruitsupportsaroleforpolygalacturonaseinripening-associatedpectindisassembly[J].PlantPhysiol.1998,117(2):363~373.
    [29]金勇丰,张上隆,陈昆松.果实成熟的分子生物学[J].植物生理通讯.1996,32(5):390~396.
    [30]陆定志,傅家瑞,宋松泉.植物衰老及其调节[M].北京:中国农业出版社.1997.
    [31]张永庆.生命科学研究与应用[M].杭州:浙江大学出版社.1996.
    [32]梅眉.甜瓜多聚半乳糖醛酸酶(PG)基因克隆及其反义序列植物表达载体构建[D].甘肃:甘肃农业大学.2006.06.
    [33]BaldwinB.Exopolygalacturonaseelicitsethyleneproductionintomato[J].HortScience.1990,15(7):779~780.
    [34]WhieheadMP,ShiehMT,ClevelandTE,etal.IsolationandCharacterizatlionofPGfromAspergillusflavus[J].AppliedandEnvironmentalMicrobiology.1995,33(9):3316~3322.
    [35]HobsonGE.Polygalacturonageinnormalandabnormaltomatofruit[J].Biochemistry.1964,92:324~332.
    [36]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社.1998:610~620.
    [37]林河通,席芳,陈绍军.黄花梨果实采后软化生理基础[J].中国农业科学.2003,36(3):349~352.
    [38]仓晶,王学东,王军虹,等.狗枣猕猴桃果实软化过程阶段性专一酶的研究[J].果树学报.2001,18(5):284~287.
    [39]MccollumTG,HuberDJ,CantliffeDJ.Modificationofpolyuronidesandhemicellulosesduringmuskmelonfruitsoftening[J].PhysiologiaPlantarum.1989,76(3):303~308.
    [40]KangIK,ChangKH,ByunJK.Changesinactivitiesofcellwallhydrolasesduringripeningandsofteninginpersimmonfruits[J].JournaloftheKoreanSocietyforHorticulturalScience.1998,39:55~59.
    [41]GioyannonijJ,DellapennaD,BennettaB,etal.Expressionofachimericpolygalacturonasegeneintransgenicrin(ripeninginhibitor)tomatofruitresultsinpolyuronidedegradationbutnotfruitsoftening[J].PlantCell.1989,1(1):53~63.
    [42]HuberDJ.Theroleofcellwallhydrolasesinfruitsoftening[J].HorticulturalReviews.1983,5:169~219.
    [43]TonuttiP,BonghiC,RaminaA.Ethylenebiosynthesisduringpeachfruitdevelopment[J].JournaloftheAmericanSocietyforHorticulturalScience.1991,116(2):274-279.
    [44]余叔文,汤章城主编.植物生理与分子生物学(第二版)[M].北京:科学出版社.1998:93~112.
    [45]AbelesFB,TakedaT.Cellulaseactivityandethyleneinripeningstrawberryandapplefruits[J].ScientiaHorticulturae.1990,42(4):269~275.
    [46]王贵禧,韩雅珊,于梁.猕猴桃软化过程中阶段性专一酶活性变化的研究[J].植物学报.1995,37(3):198~203.
    [47]DahodwalaS,HumphreyA,WeibelM.Pecticenzymes:individualandconcertedkineticbehaviorofpectinesteraseandpectinase[J].J.FoodSci.1974,39:920~926.
    [48]StrandLL,RechtorisC,MussellH.Polygalacturonasereleasecell-wall-boundproteins[J].PlantPhysiol.1976,58(6):722~725.
    [49]CooperRM,WoodRKS.Cellwalldegradingenzymesofvascularwiltfungi.Ⅲ.Plssibleinvovementofendo-pectinlyaseinVerticilliumwiltoftomato[J].PhysiologicalPlantPatholohy.1980,16(2):291~300.
    [50]CastillejoC,delaFuenteJI,IannettaP,etal.Pectinesterasegenefamilyinstrawberryfruit:studyofFaPE1,aripening-specificisoform[J].JournalofExperimentalBotany.2004,55(398):909~918.
    [51]BrummellDA,HarpsterMH.Cellwallmetabolisminfruitsofteningandqualityanditsmanipulationintransgenicplants[J].PlantMolecularBiology.2001,47(1-2):311~340.
    [52]罗云波,生吉萍,陈昆松.园艺产品采后生物技术[M].∥罗云波,蔡同一.园艺产品贮藏加工学(贮藏篇).北京:中国农业大学出版社.2001:42~50.
    [53]陈昆松,李方,张上隆.猕猴桃果实成熟进程中木葡聚糖内糖基转移酶mRNA水平的变化[J].植物学报.1999,41(11):1231~1234.
    [54]王中凤.细胞壁分解酶与果实软化的关系研究进展[J].中国农学通报.2009,25(18):126~130.
    [55]阚娟,金昌海,汪志君,等.β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响[J].扬州大学学报:农业与生命科学版.2006,27(3):76~80.
    [56]PortaH,Rocha-SosaM.Lipoxygenaseinbacteria:ahorizontaltransferevent[J].Microbiology.2001,147:3199~3200.
    [57]GriffithsA,BarryC,etal.Ethyleneanddevelopmentalsignalsregulateexpressionoflipoxygenasegenesduringtomatofruitripening[J].JournalofExperimentalBotany.1999,50(335):793~798.
    [58]LinglbSE,DunlapJR.Sucrosemetabolisminnettedmuskmelonfruitduringdevelopment[J].PlantPhysio1ogy.1987,84(2):386~389.
    [59]张立平,文江祁,杨成德,等.白兰瓜子叶衰老过程中蔗糖同工酶的分离及其活性变[J].植物生理学报.1993,19(1):17~20.
    [60]徐昌杰,陈昆松,张上隆.蔗塘酶对外切纤维紊酶和外切多聚半乳糖醛酸酶活性测定的干扰及排除[J].植物生理学通讯.1997,33(1):43~46.
    [61]WangF,SmithAG,BrennerML.IsolationandsequencingoftomatofruitsucrosesynthasecDNA[J].PlantPhysiology.1993,103(4):1463~1464.
    [62]彭丽桃,饶景萍,杨书珍,等.果实软化的胞壁物质和水解酶变化[J].热带亚热带植物学报.2002,10(3):271~280.
    [63]ArpaiaML,LabavitchJM,GreveC,etal.Changeinthecellwallcomponentsofkiwifruitduringstorageinaircontrolledatmosphere[J].JournalofAmericanSocietyforHorticulturalScience.1987,35(4):221~225.
    [64]BonghiC.Peachripening:theinvolvementofcellulaneandpolygalacturonase[A].ProceedingsoftheThirdCongressofEuropeanSocietyforAgronomy[C].Italy:Lucca,1994.580~581.
    [65]彭丽桃.油桃后熟软化机理及GA3处理效应研究[D].杨凌:西北农林科技大学.2000,06.
    [66]YangSF,HoffmanNE.Ethylenebiosynthesisanditsregulationinhigherplants[J].AnnualReviewofPlantPhysiol.1984,35(l):155~189.
    [67]张华峰,张宾,陈人华,等.乙烯生物合成基因工程在果蔬保鲜中的应用[J].生物技术.2005,15(6):80~82.
    [68]SatoT,TheologisA.CloningthemRNAeneodingl-aminoeyelopropane-1-carboxylatesynthase.Thekeyenzymeforethylenebiosynthesisinplants[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.1989,86(17):6621~6625.
    [69]DongJG,KimWT,YipWK.CloningofacDNAencoding1-aminocyclopropane-1-carboxylatesynthaseandexpressionofitsmRNAinripeningapplefruit[J].PlantCellPhysiol.1991,1(185):38~45.
    [70]张华峰,张宾,陈人华,等.乙烯生物合成基因工程在果蔬保鲜中的应用[J].生物技术.2005,15(6):80~82.
    [71]王俊英.桃和樱桃的ACC氧化酶、合成酶基因克隆[D].内蒙:内蒙古农业大学.2001.05.
    [72]ZhengQL,NakatsukaA,TairaS,etal.Enzymaticactivitiesandgeneexpressionofl-amino-cylopropane-l-carboxlicacid(ACC)synthaseandACCoxidaseinpersimmonfruit[J].PostharvestBiologyandTechnology.2005,37:286~290.
    [73]OlsonDC,WhiteJA,EdelmanL,etal.Differentialexpressionoftwogenesl-aminocyclopropane-1-earboxylatesynthaseintomatofruits[J].ProcNatlAcadSciUSA.1991,88:5310.
    [74]KendeH.Ethylenebiosynthesis[J].PlantMolBiol.1993,44:283~307.
    [75]OellerPW,Min-WongL,TaylorLP,etal.Reversibleinhibitionoftomatofruitsensecencebyantisensel-aminocyclopropane-1-carboxylate[J].Science.1991,254:437~439.
    [76]罗云波,郝四平,生吉平.反义ACS转基因乙烯缺陷型番茄的生理特性[J].中国农业大学报.2000,5(3):13~17.
    [77]SlaterA,MaundersMJ,EdwardsK,etal.IsolationandcharacterizationofcDNAclonesfortomatopolygalacruronaseandotherripeningrelatedpyoteins[J].PlantMolBiol.1985,5:137~147.
    [78]HamiltonAJ,LycettGW,GriersonD.Antisensegenethatinhibitssynthesisofthehormoneethyleneintransgenicplants[J].Nature.1990,334:284~287.
    [79]HoldsworthMJ,BirdCR,RayJ,etal.Structureandexpressionofanethylene-relatedmRNAfromtomato[J].1987,15(2):731~739.
    [80]CallahanAM,MorgensPH,WrightP,etal.Comparisonofpch313(pTOM13homolog)RNAaccumulationduringfruitsofteningandwoundingoftwophenotypicallydifferentpeachcultivars[J].PlantPhysiol.1992,100(1):482~488.
    [81]饶景萍,杨书珍,中野隆平,等.柿果ACC氧化酶cDNA的克隆及其序列分析[J].中国农业科学.2002,35(6):695~699.
    [82]陈银华.几种蔬菜ACC氧化酶基因的克隆与鉴定[D].武汉:华中农业大学.2005,01.
    [83]姚泉洪,黄晓敏,刘宗镇.植物乙烯生物合成与抗衰老基因工程[J].上海农业学报.1994,10(2):89~96.
    [84]LasserreE,BouquinT.EnthyleneproductionofantisenseACCoxidasetransgenetomato[J].MolGenGenet.1996,251:81~90.
    [85]金勇丰,张耀洲,陈大明,等.桃ACC氧化酶基因的克隆和植物表达载体的构建[J].园艺学报.1998,25(1):37~43.
    [86]张树珍,汤火龙,杨本鹏,等.康乃馨ACC氧化酶反义基因遗传转化康乃馨的研究[J].园艺学报.2003,30(6):699~702.
    [87]余义勋,包满珠,孙振元.香石竹ACC氧化酶重复基因植物表达载体的构建及转基因植株的获得[J].林业科学研究.2004,17(1):1~5.
    [88]KleeHJ,HayfordMB,KretzmerK,etal.Controlofethylenesynthesisbyexpressionofabacterialenzymeintransgenictomatoplants[J].PlantCell.1991,3:1187~1193.
    [89]WeisingK,KahlG.Towardanunderstandingofplantgeneregulation:theactionofnuclearfactors[J].ZeitschriftfirNarurforschung.C[J].1991,46(l-2):l~11.
    [90]McelroyD,BlowersAD,JenesB,WuR.Constructionofexpressionvectorsbasedonthericeactin1(Act1)5’regionforuseinmonocottransformation[J].Molecular&generalgenetics.1991,231(1):150~160.
    [91]SuzukiH,FowlerTJ,TierneyML.DeletionanalysisandlocalizationofSbPRP1,asoybeancellwallproteingene,inrootsoftransgenictobaccoandcowpea[J].PlantMolecularBiology.1993,21(1):109~119.
    [92]RurfS,HermannM,BergerIJ,etal.Stablegenetictransformationoftomatoplastidsandexpressionofaforeignproteininfruit[J].NatureBiotechnology.2001,19(9):870~875.
    [93]DeikmanJ,KlineR,FisherRL.Organizationofripeningandethyleneregulatoryregionsinafruit-specificpromoterfromtomato[J].PlantPhysiol.1992,100(4):2013~2017.
    [94]PearJR,RidgeN,RasmussenR,etal.Isolationandcharacterizationofafruit-specificcDNAandthecorrespondinggenomicclonefromtomato[J].PlantMolecularBiology.1989,13(6):639~651.
    [95]VanHaarenMJandHouckCM.Strongnegativeandpositiveregulatoryelementscontributetothehigh-levelfruit-specificexpressionofthetomato2A11gene[J].PlantMolecularBiology.1991,17(4):615~623.
    [96]曹军.果实特异性表达载体构建与功能鉴定[D].山东:山东农业大学.2003,06.
    [97]张岚岚.番茄果实特异启动子在柑橘中的活性分析及柑橘果实差异表达基因的分离[D].浙江:浙江大学.2007.12.
    [98]涂红艳,刘元风.反义RNA的作用机理及其在植物基因工程领域的应用[J].生物磁学.2005,5(2):32~34.
    [99]陈银华,黄伟,王海.ACC氧化酶基因研究进展[J].海南大学学报自然科学版.2006,24(2):194~200.
    [100]CooperW,BouzayeNM,HamilitonA.UseoftransgenicplantstostudytheroleofethyleneandpolygalacturonaseduringinfectionoftomatofruitbyColletotrichumgloeosporioides[J].PlantPathology(Oxford).1998,47(3):308~316.
    [101]MaQH,SongYR.ExpressionoftomatoantisenseACCsynthasegeneintransgenictomatoanditsroleinshootformation[J].ActaBotanicaSinica.1997,39(11):1047~1052.
    [102]白描,杨国顺,陈石,等.植物RNAi的特点及其应用研究进展[J].生物技术通报.2009,(8):6~10.
    [103]唐霞,周志平,赵丛枝,等.富有柿果ACC合成酶基因RNA干扰植物表达载体的构建[J].华北农学报.2007,22(1):73~77.
    [104]傅达奇,朱本忠,赵晓丹,等.植物中病毒诱导基因沉默的研究进展[J].中国生物工程杂志.2005,25(4):62~66.
    [105]王宏芝,李瑞芬,王国英,等.病毒诱导的基因沉默及其在植物功能基因组学研究中的应用[J].自然科学进展.2005,15(1):8~14.
    [106]王廿,张红星,朱本忠,等.桃果实中ACC合酶基因克隆及基因沉默载体构建[J].中国农学通报.2009.25(12):34~37.
    [107]魏群.分子生物学实验指导[M].高等教育出版社.2007.
    [108]王关林,方宏绮主编.植物基因工程原理与技术[M].科学出版社.1998:598~599.
    [109]李瑞珍.香蕉1-氨基环丙烷-1-梭酸合成酶(ACS)反义基因植物表达载体的构建及转化香蕉的研究[D].华南热带农业大学.2001,06.
    [110]LogemannJ,SchellJ,WillmitzerL.ImprovedmethodfortheisolationofRNAfromplanttissues[J].AnalBiochem.1987,163:16~20.
    [111]张金文.马铃薯块茎抗低温糖化基因工程研究[D].华南热带农业大学博士学位论文.2001,06.
    [112]VanHaarenMJ,CatherineMH.Afuntionmapofthefruit-specificpromoterofthetomato2A11gene[J].PlantMolecularBiology.1993,21(4):625~640.
    [113]BreathnachR,ChambonP.Organizationandexpressionofeukaryoticsplitgenescodingforproteins[J].AnnualReviewofBiochemistry.1981,50:349~383.
    [114]吴乃虎.基因工程原理(第二版上册)[M].北京:科学出版社.1998:134~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700