用户名: 密码: 验证码:
中间偃麦草抗病相关基因TiERF1与TiDPK1的分离与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由腐生型真菌禾谷丝核菌(Rhizoctonia cerealis)引起的小麦纹枯病,已成为我国最严重的真菌病害之一。小麦纹枯病抗性遗传基础研究薄弱,易于育种利用的抗纹枯病小麦种质资源匮乏,迫切需要揭示抗纹枯病作用机制、发掘抗纹枯病有效基因。大量的研究已表明ERF转录因子在植物防御反应中起着重要的调控作用。本课题组在前期工作中,从抗多种病害的小麦近缘野生种中间偃麦草(Thinopyrum intermedium)中,分离到一个受纹枯病菌诱导的乙烯反应因子(ERF)基因TiERF1,并将其转入小麦品种扬麦12号中。本研究对TiERF1转录因子的特性与功能进行了更深入的研究。Southern杂交分析表明TiERF1基因在中间偃麦草基因组中至少含有两个拷贝。酵母单杂交试验结果表明,其编码的TiERF1蛋白能够在酵母体内与GCC-box顺式作用元件结合,并激活下游报告基因的表达,当预测的转录激活域缺失后,TiERF1的转录激活活性基本丧失。对转TiERF1基因小麦进行的PCR扩增和Southern杂交分析表明:TiERF1基因已成功整合入转基因小麦基因组中,并能够稳定遗传。定量RT-PCR分析结果表明,TiERF1基因能够在稳定遗传的转基因小麦株系中过量表达,并且一些乙烯/茉莉酸抗病信号途径上的病程相关基因几丁质酶和β-1,3-葡聚糖酶基因等的表达水平也显著提高。纹枯病抗性鉴定结果表明,与未转基因的小麦受体扬麦12号和TiERF1基因表达沉默的小麦株系相比,TiERF1基因的过量表达使转基因小麦对纹枯病的抗性得到提高。可以初步推测:TiERF1基因的转录调控机理是通过结合一些ET/JA信号转导途径中防御相关基因启动子上GCC-box顺式作用元件,激活这些基因的转录表达,从而介导寄主对纹枯病菌的防御反应。本研究对于揭示小麦抗纹枯病作用机制、改良小麦品种的纹枯病抗性非常重要。
     小麦黄矮病是由蚜虫介导的大麦黄矮病毒(BYDV)侵染引起的小麦主要病毒病害之一。至今,小麦属内尚未发现有效的抗黄矮病基因。小麦的近缘野生种中间偃麦草7X(7Ai#1)染色体长臂上的抗黄矮病基因Bdv2,高抗BYDV多个株系。本课题组已将携带Bdv2的中间偃麦草7Ai#1染色体长臂片段导入普通小麦基因组,选育出抗黄矮病的小麦-中间偃麦草易位系YW642等。由于该易位的外源染色体片段可能携带不利性状,因此分离7Ai#1L染色体上的抗黄矮病重要基因,对于深入研究抗黄矮病作用分子机制,开展抗黄矮病小麦基因工程育种十分重要。本课题组在前期研究中利用比较作图等策略,筛选出一些定位于含Bdv2的中间偃麦草染色体7Ai#1L区的基因表达序列EST-PCR标记。其中一条特异序列与蛋白激酶具有较高的同源性。本研究以上述含Bdv2的7Ai#1L区特异的蛋白激酶基因序列做为起始序列,开展了以下研究,取得良好进展。(1)首先利用瞬时的病毒诱导的基因沉默技术使抗黄矮病的小麦易位系YW642中该蛋白激酶基因表达沉默,结果此材料对黄矮病表现感病,表明该蛋白激酶基因是中间偃麦草染色体7Ai#1L区上的抗黄矮病重要基因。(2)利用RT-PCR和RACE方法,从接种饲BYDV蚜虫的中间偃麦草中,分离到该基因的全长序列。序列分析得知,该基因编码一个催化丝氨酸/苏氨酸和酪氨酸磷酸化的双底物特异性蛋白激酶,因此,命名该基因为TiDPK1 (Thinopyrum intermedium Dual-specificity Protein Kinase 1)。TiDPK1基因的编码产物具有类受体蛋白激酶(RLK)的结构特征,即含有一个胞外结构域、一个跨膜结构域及一个位于细胞质的蛋白激酶催化结构域。(3)通过自磷酸化试验证实TiDPK1蛋白的激酶催化结构域具有较强的自磷酸化活性。(4)通过基因枪转化洋葱表皮细胞瞬时表达试验表明TiDPK1-GFP融合蛋白集中分布于细胞膜。(5)Southern杂交分析表明TiDPK1基因定位于含Bdv2的中间偃麦草染色体7Ai#1L区,但在小麦与中间偃麦草基因组中都有同源拷贝,说明该基因是基因家族的一个成员。(6)对TiDPK1基因的表达特性分析结果表明:该基因仅在含Bdv2的抗黄矮病材料中表达,受BYDV诱导而上调表达,并且在接种BYDV的12h达到表达高峰;TiDPK1基因的表达在未接种BYDV的YW642幼苗期的各组织中无明显差异,但在接种BYDV约40天的YW642成株期的组织中具有表达优势,其中以叶片表达量最高,这似乎与抗黄矮病的功能相关,成株期时小麦黄矮病主要在叶部发病,TiDPK1基因的转录本优势地出现在叶片中,而小麦茎秆韧皮部可能是BYDV传输的主要部位,因此茎秆中TiDPK1基因表达量也较根和幼穗中高。此外,外源激素油菜素内酯和水杨酸处理可以明显提高TiDPK1基因的表达量。(7)利用酵母双杂交系统验证了TiDPK1蛋白激酶的胞外结构域与BYDV外壳蛋白的相互作用。(8)利用转基因技术从功能获得方面(使TiDPK1基因在感黄矮病小麦中表达)和功能缺失方面(利用双链RNA干扰技术敲减TiDPK1基因在抗黄矮病小麦中的转录本)开展该基因的功能互补研究。结果表明,受体小麦中8601对黄矮病高度敏感,TiDPK1基因表达的转基因小麦获得了对黄矮病的抗性,与携带Bdv2的抗黄矮病对照小麦易位系YW642对黄矮病的抗性程度相当;另一方面,以携带Bdv2的抗黄矮病小麦易位系YW642做受体,获得的TiDPK1基因沉默的转基因小麦对黄矮病表现高度敏感,与感黄矮病对照中8601相当,充分说明TiDPK1是中间偃麦草7Ai#1L染色体上的抗黄矮病重要基因。
In recent years, the production of wheat in China has been seriously affected by wheat sharp eyespot caused by a soilborne fungus Rhizoctonia cerealis. Because the genetics of wheat resistance to sharp eyespot is not fully understood, and progress of the corresponding traditional breeding is slowly, it is urgent to unravel the wheat defense mechanisms against R. cerealis. Some ethylene response factor (ERF) transcription factors in plants have been evidenced to play important roles in regulating defense response to various pathogens. In this study, an ERF gene from a wheat relative Thinopyrum intermedium, TiERF1, was characterized further, transgenic wheat lines expressing TiERF1 were developed, and the resistance of the transgenic wheat lines against R. cerealis was investigated. Southern blotting analysis indicated that at least two copies of the TiERF1 gene exist in the Th. intermedium genome. Yeast one-hybrid assay indicated that the activation domain of TiERFl is essential for activating the transcript of the reporter gene with the GCC-box cis-element. The TiERF1 gene was introduced into a Chinese wheat cultivar, Yangmail2, by biolistic bombardment. Results of PCR and Southern blotting analyses indicated that TiERF1 was successfully integrated into the genome of the transgenic wheat, where it can be passed down. Quantitative reverse transcriptional-PCR analysis demonstrated that TiERF1 could be overexpressed in the stable transgenic plants, in which the transcript levels of wheat pathogenesis-related (PR) genes primarily in the ethylene-/jasmonic acid-dependent signal pathway, such as a chitinase gene and aβ-1,3-glucanase gene, were increased dramatically. Disease tests indicated that the overexpression of TiERF1 conferred enhanced resistance to sharp eyespot in the transgenic wheat lines compared with the wild-type and silenced TiERF1 plants. These results suggested that the overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat lines by activating PR genes primarily in the ET/JA-dependent pathway.
     Barley yellow dwarf virus, which was spreaded by aphids, can cause one of the most serious virus diseases of small-grain cereals, i.e. wheat, worldwide. Up to now, there is no effective resistance gene in Triticum. Thinopyrum intermedium, a wheat relative, shows a high level of resistance to BYDV. It possesses Bdv2 resistance gene which locates on the long arm of 7X(7Ai#1) chromosome of Th. intermedium and has high resistance to several isolates of BYDV. Through biotechnology and distant crossing methods, the 7Ai#1 long arm fragment of Th. intermedium that possesses Bdv2 has been introduced into wheat, and developed some wheat-Th. intermedium translocation lines with BYDV resistance, for example YW642. However, the alien translocation chromosome may possess disadvantageous characteristics. It is necessary to isolate BYDV resistance gene in 7Ai#1L for unraveling BYDV resistance mechanism and carrying out engineering breeding for disease resistance. In our previous study, we isolated 14 novel genetic expression sequences specific to the Bdv2 region in wheat-Th. intermedium T7DS.7DL-7Ai#1L translocation lines YW642 based on comparing genomics and chromosome mapping. Out of the expression sequences, one has homology with a rice protein kinase. This study was carried out with the gene sequence of that protein kinase as the initiation sequence, and obtained the following results:(1) Knocking down the transcript of the protein kinase gene in BYDV-resistant wheat-Th. intermedium translocation line YW642 by virus-induced gene silencing compromised the Bdv2-mediated resistance to BYDV. This result revealed that the protein kinase gene was an important BYDV-resistant gene in the 7Ai#1L region. (2) The full-length cDNA containing complete ORF, which encodes a dual-specificity phosphatase potentially capable of acting on substrate Ser/Thr and Tyr residues, was isolated from Th. intermedium leave cDNA by RACE and RT-PCR, and temporarily named as TiDPK1 (Thinopyrum intermedium Dual-specificity Protein Kinase 1). TiDPK1 contains three distinctive domains of receptor-like kinase (RLK):(a) an extracellular domain; (b) a membrane-spanning domain; and (c) a protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. (3) The protein kinase domain of recombinant TiDPK1 showed strong autophosphorylation. (4)The fusion protein of TiDPK1-green fluorescent protein was targeted to cytomembrane, suggesting that TiDPK1 may contribute to signal transduction. (5) Southern hybridization analysis revealed that TiDPK1 was located in the region of 7Ai#1L that possesses the BYDV resistance gene Bdv2. Additionally, homologous copies were both present in the genomes of wheat and Th. intermedium. This result revealed that TiDPK1 was a member of a small multigene family. (6) Q-RT-PCR analysis showed that TiDPK1 was expressed predominantly in Bdv2-harboring materials and upregulated by BYDV infection in a time-dependent manner. The activation of TiDPK1 mRNA expression is obvious at 12 to 24h post BYDV infection. At the young seedling untreated, the expression of TiDPK1 did not show tissue-specific. At 40 days post BYDV infection, at the adult stage, TiDPK1 transcript was tissue-specific, the transcript level was high in leaves (the disease mainly occurred tissues), moderate in stems (BYDV transmitted tissues), and low in immature spikes and roots, implying that TiDPK1 expression may correspond to its resistant function. Additionally, the transcript level of TiDPK1 in the seedlings was significantly induced by treatment for 12 h with exogenous BR and SA hormones. (7) The yeast two-hybrid system was used to investigate the interaction of TiDPK1 with the coat protein or RdRp of BYDV. The results showed that TiDPK1 could interact with BYDV coat protein but not with RdRp. (8) The function of TiDPK1 gene was studied through functional complementary experiments by means of loss-of-function and gain-of-function. Comparing to the transgenic receptor of susceptible wheat Zhong8601, transgenic wheat lines expressing TiDPK1 exhibited good resistance to BYDV, in which the resistance was similar to the gene donor YW642. However, transgenic wheat plants silencing TiDPK1 expression by RNA interfering broke Bdv2 mediated-resistance in the recipient-wheat YW642. Based on these findings, TiDPK1 should be an important gene during the host resistance to BYDV, and may facilitate the wheat breeding with BYDV resistance.
引文
1. 曹亚萍,张明义,乔合心等.(2000).冬小麦黄矮病抗性的遗传分析.麦类作物学报,28(5),738-742.
    2. 陈俊,王宗阳.植物MYB类转录因子研究进展.(2002).植物生理与分子生物学学报,28(2),81-88.
    3. 陈世云,薛青同,沈谢刚.(1992,).小麦纹枯病的流行特点及防治.中国农学通报,8(1),37-38.
    4. 刁文一,蒋建雄,熊兴华,张炎,彭昕琴,张志刚.(2006).RNAi在植物功能基因组中的应用.现代生物医学进展,6(2),81-83.
    5. 董娜.(2008).病原诱导的小麦ERF、MYB转录因子基因TaPIEP1和TaPIMP1的分离、特性及功能分析.中国农业科学院研究生院,博士学位论文.
    6. 高东尧,夏兰琴,马有志等.(2009).小麦Vp-1基因RNA干扰表达载体的构建及遗传转化.植物遗传资源学报,1.
    7. 鞠国钢,胡荣利.(1998).小麦纹枯病田间消长及综合防治技术.植保技术与推广,18(1),13-14.
    8. 李华荣,林桂芸,吴帮承等.(1993).小麦纹枯病病情消长与气象因子研究.西南农业大学学报,15(3),247-251.
    9. 李斯深,王洪刚,李宪彬等.小麦种质抗纹枯病性的鉴定和遗传分析.(2001).西北植物学报,21(5),1001-1008.
    10.刘朝晖,张旭,李浩兵.(1999).小麦品质纹枯病抗性遗传的初步研究.南京农业大学学报,22(1),5-8.
    11.刘晓东,张增艳,辛志勇.(2005).在小麦上实施大麦病毒诱导的基因沉默,作物学报,31(11),1518-1520
    12.刘艳,钱幼亭,赵茂林等.(2002).多枝赖草及其转育后代对大麦黄矮病毒PAV和GAV株系的抗性研究.植物病理学报,32(3),247-251.
    13.潘以楼,吴汉章.(1993).江苏小麦纹枯病菌CAG1群菌株的特性和致病力分化.江苏农业群学,增刊,35-39.
    14.任丽娟,蔡士宾,汤頲等.(2004).小麦纹枯病抗性的SSR标记研究.扬州大学学报,25(4),16-19.
    15.史建荣,王裕中,沈素文等.(1997).江苏省小麦纹枯病菌致病力研究.江苏农业学报,13(3),188-190.
    16.孙爱根.(2002).栽培因子对小麦纹枯病的综合效应及高产控病技术研究.安徽农业大学学报,29(4),355-358.
    17.孙善澄.(1981).小偃麦新品种与中间类型的选育途径、程序和方法.作物学报,7,51-58.
    18.汤頲,任丽娟,蔡士宾等.(2004).小麦ARz抗纹枯病的QTL定位研究.麦类作物学报,24(4),11-16.
    19.王凯.(2007).小麦抗黄矮病早期反应基因的分离及功能分析.中国农业科学院研究生院,博士学位论文.
    20.王生荣,朱克恭.(2002).植物系统获得抗病性研究进展.中国生态农业学报,10(2),32-35.
    21.王玉正,原永兰,赵百灵等.(1997).山东省小麦纹枯病为害损失及防治指标的研究.植物保护学报,24(1),44-48.
    22.王裕中,吴志凤,史建荣等.(1994).江苏省小麦纹枯病发生规律与病害消长因素分析.植物保护学报,21(2),109-114.
    23.温孚江.(1993).大麦黄矮病研究进展.山东农业科学,1,4-10.
    24.吴帮承,颜思齐.(1993).四川小麦纹枯病病原物系研究.西南农业大学学报,5(2),125-129.
    25.吴纪中,颜伟,蔡士宾等.(2005).小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报,21(1),6-11.
    26.谢皓,陈孝,张增艳等.(2000).抗黄矮病小麦新品系YW243的选育和细胞分子生物学鉴定.作物学报,26(6),687-691.
    27.辛志勇,徐惠君,陈孝等.(1991).应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B),1,36-42.
    28.徐惠君,庞俊兰,叶兴国等.(2001).基因枪介导法向小麦导入黄花叶病复制酶基因研究.作物学报,27(6),14-20.
    29.杨欣明,李立会,李秀全等.(1999).向普通小麦导入纤毛鹅观草抗黄矮病基因的研究.遗传学报,26(4),370-376.
    30.杨迎伍,李正国,宋红丽,杨平.(2007).VIGS技术在植物基因功能研究中的应用.植物生理学通讯,43(2),379-383.
    31.姚乌兰,张增艳,陈亮等.(2007).病原诱导的中间偃麦草ERF转录因子基因的克隆及其表达特性.作物学报,9.
    32.岳红宾,王守正,袁红霞等.(1997).用非致病丝核菌株防治小麦纹枯病的初步研究.河南农业大学学报,31(1),35-38.
    33.曾晓珊,戴良英,刘雄伦,王国梁.(2007).dsRNA介导植物基因沉默及其应用.生命科学,19(2),132-138.
    34.张恭,刘讧峰,马峙英.(2007).RNA干扰及其植物抗病毒应用.中国农学通报,23(1),42-45.
    35.张会云,陈荣振,冯国华等.(2007).中国小麦纹枯病的研究现状与展望.麦类作物学报,27(6).
    36.张淑香,周广和.(1987).一种由麦二叉蚜、禾缢管蚜非专化性传毒的小麦黄矮病毒株系鉴定.植物病理学报,17(2),102-105.
    37.张穗,刘庆元,郑文明等.(1994).河南小麦纹枯病发生规律及综合防治关键技术.河南农业科学,3,13-15.
    38.张穗,刘卫群,陈汝梅等.(1994).不同小麦品种对纹枯病的抗性机理的初步研究.中国农学通报,10(6),9-12.
    39.张小村,李斯深,赵新华.(2005).小麦纹枯病抗性的QTL分析和抗病基因的分子标记.植物遗传资源学报,6(3),276-279.
    40.张增艳,马有志,辛志勇等.(1998).应用基因组原位杂交技术鉴定抗黄矮病小麦新种质.中国农业科学,31(3),1-4.
    41.张增艳,辛志勇,陈孝等.(2000).抗黄矮病小麦新品系YW443的分子细胞遗传学鉴定.遗传
    学报,27(7),614-620.
    42.张增艳,辛志勇,马有志等.(1999).用分子标记定位源于中间偃麦草的小麦抗黄矮病基因.中国科学(C辑),29(4),413-417.
    43.张增艳,辛志勇.(2005).抗黄矮病小麦生物技术育种研究进展.作物杂志,5,4-7.
    44.张增艳,许景升,刘耀光等.(2004).利用中间偃麦草抗性基因同源序列分离黄矮病抗性候选基因克隆.作物杂志,30(3),189-195.
    45.张增艳.(1998).抗黄矮病小麦新种质的鉴定和抗性基因定位.中国农业科学院研究生院,博士学位论文.
    46.赵洪义,郭凤芝.(1998).小麦纹枯病发生规律和防治技术.河南农业科学,1,12-14.
    47.周广和,张淑香,钱幼亭.(1987).小麦黄矮病毒4种株系鉴定与应用.中国农业群学,20(4),7-12.
    48. Adie B.A., Perez-Perez J.,& Perez-Perez M.M., et al. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. PLANT CELL,19,1665-1681.
    49. Ali N., Halfter U.,& Chua N.H. (1994). Cloning and Biochemical Characterization of a Plant Protein Kinase That Phosphorylates Serine, Threonine, and Tyrosine. J BIOL CHEM,269 (50), 31626-31629.
    50. Anand A., Zhou T., Trick H.N., Gill B.S., Bockus W.W.,& Muthukrishnan S. (2003). Greenhouse and field testing of trans-genic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J EXP BOT,54,1101-1111.
    51. Asselbergh B., Vleesschauwer D.D.& Hofte M. (2008). Global switches and finetuning-ABA modulates plant pathogen defense. MOL.PLANT MICROBE INTERACT,21,709-719.
    52. Axtell M.J., Chisholm S.T., Dahlbeck D.,& Staskawicz B.J. (2003). Genetic and molecular evidence that the Pseudomonas syringae type Ⅲ effector protein protein AvrRpt2 is a cysteine protease. MOL MICROBIOL,49,1537-1546.
    53. Ayala L., Bariana H., Singh R., Gibson J.M., Mechanicos A.A.,& Larkin P.J. (2007). Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. THEOR APPL GENET,116,63-75.
    54. Ayala L., Ginkle M.,& Khairallah M. (2001). Expression of Thinopyrum intermedium-derived barley yellow dwarf virus resistance in elite bread wheat background. PHYTOPATHOLOGY,91, 55-62.
    55. Baker B., Zambryski P., Staskawicz B.,& Dinesh-Kumar S.P. (1997). Signaling in Plant-Microbe Interactions. SCIENCE,276,726-733.
    56. Banks P.M., Larkin P.J., Bariana H.S., Lagudah E.S., Appels R., Waterhouse P.M., Brettell R.I.S., Chen X., Xu H.J., Xin Z.Y., Qian Y.T., Zhou X.M., Cheng Z.M.,& Zhou G.H. (1995). The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. GENOME,38,395-405.
    57. Beckers G.J.,& Spoel S.H. (2006). Fine-Tuning Plant Defence Signalling:Salicylate versus
    Jasmonate. PLANT BIOLOGY,8,1-10.
    58. Bent A.F., Kunkel B.N., Dahlbeck D., Brown K.L., Schmidt R., Giraudat J., Leung J.,& Staskawicz B.J. (1994). RPS2 of Arabidopsis thaliana leucine-rich repeat class of plant disease resistance genes. SCIENCE,265,1856-1859.
    59. Berrocal-Lobo M.,& Molina A. (2004). ETHYLENE RESPONSE FACTOR 1 mediates Arabidopsis resistance to soilborne fungus Fusarium oxysporum. MOL PLANT MICROBE IN,17, 763-770.
    60. Berrocal-Lobo M., Molina A.,& Solano R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR 1 in Arabidopsis confers resistance to several necrotrophic fungi. PLANT J, 29,23-32.
    61. Bostock R.M. (2005). Signal crosstalk and induced resistance:straddling the line between cost and benefit. ANNU REV PHYTOPATHOL,43,545-580.
    62. Brettell R.I.S., Banks P.M., Cauderon Y., Chen X., Cheng Z.M., Larkin P.J.,& Waterhouse P.M. (1988). A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. ANN APPL BIOL,113,599-603.
    63. Cao Y.F., Wu Y.F., Zheng Z.,& Song F.M. (2006). Overexpression of rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol. MOL PLANT PATHOL,67,202-211.
    64. Cauderon Y, Saigne B.,& Dauge M. (1973). The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In:Proceedings of 4th International Wheat Genetics Symposium. University of Missouri, Columbia, USA,401-407.
    65. Chakravarthy S., Touri R.P., D'Ascenzo M.D., Fobert P.R., Despres C.,& Martin G.B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis-elements. PLANT CELL,15,3033-3050.
    66. Chinchilla D., Zipfel C.,& Rohatzek S., et al. (2007). flagellin-induced complex of the receptor FLS2 and BAK1 inititates plant defence. NATURE,448,497-500.
    67. Colbach N. (1997). Influence of cropping system on wheat sharp eye-spot. CROP PROT,16(5), 415-422.
    68. Comeau A., St-Pierre C.A.,& Collin J. (1993). Intergenetic hybrids of wheat as sources of resistance to barley yellow dwarf virus. In:Damania A B ed. BIODIVERSITY AND WHEAT IMPROVEMENT. A Witey-Sayce Publ.,83-94.
    69. Conti M.D., Arcy C.J.,& Jealinski H. (1987). The " yellow plague" of cereals, barley yellow dwarf virus. Burnett P A (eds) WORLD PERSPECTIVES ON BARLEY YELLOW DWARF. Mexico: CIMMYT Mexico, D F, Mexico,1-6.
    70. Crasta O.R., Francki M.G., Bucholtz D.B., Sharma H.C., Zhang J., Wang R.C, Ohm H.W.,& Anderson J.M. (2000). Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance. GENOME,43,698-706.
    71. D'Arcy C.J., Domier L.L.,& Mayo M.A. (2000). Family:Luteoviridae. In:van Regenmortel M.H.V., Fauquest C.M., Bishop D.H.L., et al. eds. Virus Taxonomy:Seventh Report of the International Committee on Taxonomy of Viruses. New York:Academic Press,775-790.
    72. Dangl, J.L.& Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. NATURE,411,826-833.
    73. Dievart A.,& Clark S.E. (2003). Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. CURR OPIN PLANT BIOL,6,507-516.
    74. Dievart A.,& Clark S.E. (2004). LRR-containing receptors regulating plant development and defense. DEVELOPMENT,131,251-261.
    75. Ellis J., Dodds P.,& Pryor T. (2000). Structure, function, and evolution of plant disease resistance genes. CURR OPIN PLANT BIOL,3,278-284.
    76. Fan J., Hill L.,& Crooks C., et al. (2009). Abscisic acid has a key role in modulating diverse plant-pathogen interactions. PLANT PHYSIOL,150,1750-1761.
    77. Farkas I., Dombradi V, Miskei M., Szabados L.,& Koncz C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. TRENDS PLANT SCI,12(4),169-176.
    78. Fedak G., Chen Q., Conner R., Laroche A., Comeau A.,& St-Pierre C. (2001). Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. EUPHYTICA, 120,373-378.
    79. Felix G., Grosskopf D., Gregenass M.,& Boller T. (1991). Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. P NATL ACAD SCI USA,88(19),8831-8834.
    80. Feng X.H., Zhao Y., Bottino P.J.,& Kung S.D. (1993). Cloning and characterization of a novel member of protein kinase family from soybean. BIOCHEM BIOPHYS ACTA,1172,200-204.
    81. Feuillet C., Schachermayr G.,& Keller B. (1997). Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. PLANT J,11(1),45-52.
    82. Fujimoto S.Y., Ohta M., Usui A., Shinshi H.,& Ohme-Takagi M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. PLANT CELL,12,393-404.
    83. Gao L.Y., Ma Q., Liu Y., Xin Z.Y.,& Zhang Z.Y. (2009). Molecular characterization of the genomic region harboring the BYDV-resistance gene Bdv2 in wheat. J APPL GENET,50(2), 89-98.
    84. Gildow T.G.(1987). Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids. CURR TOPICS VECTOR RES,4,93-120.
    85. Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNU REV PHYTOPATHOL,43,205-227.
    86. Gomez-Escobar N., Chou C.F., Lin W.W., Hsieh S.L.,& Campbell R.D. (1998). The G11 Gene Located in the Major Histocompatibility Complex Encodes a Novel Nuclear Serine/Threonine Protein Kinase. J BIOL CHEM,273(47),30954-30960.
    87. Gomez-Gomez L.,& Boller T. (2000). FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. MOL CELL,5,1003-1011.
    88. Gu Y.Q., Wildermuth M.C., Chakravarthy S., Loh Y.T., Yang C., He X., Han Y.,& Martin GB. (2002). Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. PLANT CELL,14,817-831.
    89. Gu Y.Q., Yang C., Thara V.K., Zhou J.,& Martin G.B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. PLANT CELL,12,771-786.
    90. Gu Z.M., Wang J.F., Huang J.,& Zhang H.S. (2005). Cloning and characterization of a novel rice gene family encoding putative dual-specificity protein kinases, involved in plant responses to abiotic and biotic stresses. PLANT SCI,169,470-477.
    91. Guo H.W.,& Ecker J.R. (2004). The ethylene signaling pathway:new insights. CURR OPIN PLANT BIOL,7,40-49.
    92. Guo Z.J., Chen X.J., Wu X.L., Ling J.Q.,& Xu P. (2004). Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. PLANT MOL BIOL,55,607-618.
    93. Gutterson N.,& Reuber T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. CURR OPIN PLANT BIOL,7,465-471.
    94. Hammond-Kosack K.,& Jones J.D.G. (2000). Response to plant pathogens. In Buchanan B, Gruissem D, Jones R. eds. Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists. Rockville,1102-1156.
    95. Hammond-Kosack K.E.,& Parker J.E. (2003). Deciphering plant-pathogen communication:fresh perspectives for molecular resistance breeding. CURR OPIN PLANT BIOL,14,177-193.
    96. Hanks H.K., Ouinn A.M.,& Hunter T. (1988). The protein kinase family:conserved feature and deduced phylogeny of the catalytic domains. SCIENCE,241(4861),42-52.
    97. He P., Warren R.F., Zhao T., Shan L., Zhu L., Tang X.,& Zhou J.M. (2001). Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. MOL PLANT MICROBE INTERACT,14,1453-1457.
    98. He Z., Wang Z.Y., Li J., Zhu Q., Lamb C., Ronald P.,& Chory J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. SCIENCE,288, 2360-2363.
    99. He Z.H. (2001). Signal Network of Plant Disease Resistance. ACTA PHYTOTAXON SIN,27(4), 281-290.
    100. Heese A., Hann D.R.,& Gimenez-lbanez S., et al. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. PROC NATL ACAD SCI USA,104, 12217-12222.
    101.Hein I., Barciszewska-Pacak M., Hrubikova K., Williamson S., Dinesen M., Soenderby I.E., Sundar S., Jarmolowski A., Shirasu K.,& Lacomme C. (2005). Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. PLANT PHYSIOL,138,2155-2164.
    102. Holub E.B. (2001) The arms race is ancient history in Arabidopsis, the wildflower. NAT REV GENET,2,516-527.
    103. Holzberg S., Brosio P., Gross C.,& Pogue G.P. (2002). Barley stripe mosaic virus-induced gene silencing in a monocot plant. PLANT J,30,315-327.
    104. Huang Z.J., Huang R.F.,& Huang D.F. (2004). ERF transcription factors and their roles in plant defense responses. ACTA PHYTOPATHOL SIN,34(3),193-198.(in Chinese)
    105. Hulten M., Pelser M., van Loon L.C., Pieterse Corne M.J.,& Ton J. (2006). Costs and benefits of priming for defense in Arabidopsis. P NATL ACAD SCI USA,103,5602-5607.
    106. Jinn T.L., Stone J.M.,& Walker J.C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. GENE DEV,14 (1),108-117.
    107. Jones D.A.,& Jones J.D. (1997). The role of leucine-rich repeat proteins in plant defences. ADV BOT RES,24,90-167.
    108. Jones, J.D. (2001). Putting knowledge of plant disease resistance genes to work. CURR OPIN PLANT BIOL,4,281-287.
    109. Junga E.H., Junga H.W., Lee S.C., Han S.W., Heu S.,& Hwang B.K. (2004). Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. BIOCHIM BIOPHYS ACTA,1676(3),211-222.
    110. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K.,& Shinozaki K. (1999). Improving plant drought, salt and freezing tolerance by genetransfer of a single stress-inducible transcription factor. NAT BIOTECHNOL,17,287-291.
    111. Keen N.T. (1990). Gene-for-gene complementarity in plant-pathogen interactions. ANNU REV GENET,24,447-463.
    112. Kemmerling B., Schwedt A.,& Rodrignez P., et al. (2007). The BRI1-associated kinase 1.BAK1.has a brassinolideindependent role in plant cell-death control. CURR BIOL,17, 1116-1122.
    113. King B., Paltridge N.,& Collins N. (2002). A map-based approach towards cloning the Yd2 resistance gene in barley. Barley Yellow Dwarf Disease:Recent Advances and Future Strategies, Henry M& McNab Aeds. CIMMYT, Texcoco, Mexico,75-77.
    114. Kobe B.,& Deisenhofer J. (1994). The Leucine-rich repeat:a versatile binding motif. TIBS,19, 415-421.
    115. Kobe B.,& Deisenhofer J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. NATURE,374(6518),183-186.
    116. Lacomme C., Hrubikova K.,& Hein I. (2003). Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. PLANT J,34,543-553.
    117. Larkin P., Kleven S.,& Banks P. (2002). Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. In:Henry M, Mcnab A, eds. Barley yellow dwarf disease:Recent advances and future strategies. CIMMYT, Mexico, D.F. Mexico,60-63.
    118. Larkin P.J., Banks P.M., Lagudah E.S., Appels R., Chen X., Xin Z.Y, Ohm H.W.,& McIntosh R.A. (1995). Disomic Thinopyrum intermedium addition lines in wheat with bareley yellow dwarf virus resistance and rust resistances. GENOME,38,385-394.
    119. Li J.,& Chory J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. CELL,90,929-938
    120. Li J., Wen J., Lease K.A., Doke J.T., Tax F.E.,& Walker J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. CELL, 110,213-222.
    121. Liang H.X., Lu Y., Liu H.X., Wang F.D., Xin Z.Y.,& Zhang Z.Y. (2008). A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J EXP BOT,58, 3111-3120.
    122. Lindberg R.A., Quinn A.M.,& Hunter T. (1992). Dual-specificity protein kinases, will any hydroxyl do? TRENDS BIOCHEM SCI,17,114-119.
    123. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K.,& Shinozaki K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. PLANT CELL,10,1391-1406.
    124. Lo'pez M.A., Bannenberg G.,& Castresana C. (2008). Controling hormone signaling is a plant and pathogen challenge for growth and survival. CURR.OPIN.PLANT BIOL,11,420-427.
    125. Lorenzo O., Piqueras R., Sanchez-Serrano J.J.,& Solano R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. PLANT CELL,15,165-178.
    126. Makkouk K.M., Kumari S.G., Kadirova Z.,& Zueva A. (2001). First record of barley yellow striate mosaic virus and cereal yellow dwarf virus. RPV infecting wheat in Uzbekistan. PLANT DIS, 85(10),11-22.
    127. Mauch-Mani B.,& Mauch F. (2005). The role of abscisic acid in plant-pathogen interactions. CURR.OPIN.PLANT BIOL,8,409-414.
    128. Mayrose M., Bonshtien A.,& Sessa G. (2004). LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J BIOL CHEM,279, 14819-14827.
    129.Mazarei M., Elling A.A., Maier T.R., Puthoff D.P.,& Baum TJ. (2007). GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis. MOL PLANT MICROBE IN,20,107-119.
    130. McDowell J.M.,& Woffenden B.J. (2003). Plant disease resistance genes:recent insights and potential applications. TRENDS BIOTECHNOL,4(21),178-183.
    131.McGrath K.C., Dombrecht B., Manners J.M., Schenk P.M., Edgar C.I., Maclean D.J., Scheible W.R., Udvardi M.K.,& Kazan K. (2005). Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. PLANT PHYSIOL,139,949-959.
    132. McKirdy S.J.,& Jones R.A.C. (2002). Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. PLANT DIS,86(7),769-773.
    133. Meister G,& Tuschl T. (2004). Mechanisms of gene silencing by double-stranded RNA. NATURE, 431,343-349.
    134. Miller W.A., Beckett R.,& Liu S. (2004). Structure, function, and variation of the BYDV and CYDV genomes. BYDV Recent Advances and Future Strategies,1-8.
    135. Morris E.R.,& Walker J.C. (2003). Receptor-like protein kinases:The keys to response. CURR OPIN PLANT BIOL,6,339-342.
    136. Mtraux J.P., Singer H., Ryals J.A., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W.,& Inverardi B. (1990). Increase in salicylic acid at the onset of systemic acquried resistance in cucumber. SCIENCE,250,1004-1006.
    137. Mur L.A., Kenton P., Atzorn R., Miersch O.,& Wasternack C. (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. PLANT PHYSIOL,140,249-262.
    138. Nakano T., Suzuki K., Fujimura T.,& Shinshi H. (2006). Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. PLANT PHYSIOL,140,411-432.
    139. Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka Shozo., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I.,& Yoshida S. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. PLANT J,33,887-898.
    140. Nam K.H.,& Li J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. CELL,110,203-212.
    141. Nickstadt A., Thomma B.P,& Feussuer I., et al. (2004). The jasmonate-insensitive mutant jinl shows increased resistance to biotrophic as well as necrotrophic pathogens. MOL.PLANT PATHOL, 5,425-434.
    142. Niu J.S., Yu L., Ma Z.Q., Chen P.D.,& Liu D.J. (2002). Molecular cloning and characterization of a Serine/Threonine protein kinase gene from Triticum aestivum. ACTA BOT SINICA,44,325-328.
    143. Noguchi T., Fujioka S., Choe S.,& Takatsuto S. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. PLANT PHYSIOL,121,743-752.
    144. Nurnberger T.,& Kemmerling B. (2006). Receptor protein kinases-pattern recognition receptors in plant immunity. TRENDS PLANT SCI,11,519-522.
    145. Ohme-Takagi M.,& Shinshi H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. PLANT CELL,14,2565-2575.
    146. Onate-Sanchez L.,& Singh K.B. (2002). Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. PLANT PHYSIOL,128, 1313-1322.
    147. Orden F., Haberuss A., Kastirr U., Rabenstein F.,& Kuhne T. (2009). Virus resistance in cereals: sources of resistance, genetics and breeding. J PHYTOPATHOL,157,535-545.
    148. Park A.R., Cho S.K., Yun U.J., Jin M.Y., Lee S.H., Sachetto-Martins G.,& Park O.K. (2001). Interaction of the Arabidopsis receptor protein kinase Wakl with a glycine-rich protein, AtGRP-3. J BIOL CHEM,276,26688-26693.
    149. Park C.J., Peng Y., Chen X.W., Dardick C., Ruan D., Bart R., Canlas P.E.,& Ronald P.C. (2008). Rice XB 15, a Protein Phosphatase 2C, Negatively Regulates Cell Death and Xa21-Mediated Innate Immunity. PLOS BIOL,6(9),1910-1926.
    150. Park J.M., Park C.J., Lee S.B., Ham B.K., Shin R.,& Paek K.H. (2001) Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. PLANT CELL,13,1035-1046.
    151. Parker J.E., Coleman M.J., Szabo V., Frost L.N., Schmidt R., van der Biezen E.A., Moores T., Dean C., Daniels M.J.,& Jones J.D. (1997). The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. PLANT CELL,9,879-894.
    152. Pogue G.P., Lindbo J.A., Dawson W.O.,& Turpen T.H. (1998). Tobamovirus transient expression vectors:tools for plant biology and high-level expression of foreign proteins in plants. In:Gelvin SB, Schilperoot RA, eds. PLANT MOLECULAR BIOLOGY MANUAL. Dordrecht:Kluwer Academic Publishers,1-27.
    153. Pryor T.,& Ellis J. (1993). The genetic complexity of fungal resistance genes in plants. ADV PLANT PATHOL,10,281-305
    154. Qi L., Echalier B.,& Chao S., et al. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploidy wheat. GENETICS,168, 701-712.
    155. Ragiba M., Juliane S.E., Melissa A.S., Harold N.T.,& Jyoti S. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. MOL PLANT MICROBE IN,19,123-129.
    156. Ratcliff F, MacFarlane S,& Baulcombe D.C. (1999). Gene silencing without DNA:RNA-mediated cross protection between viruses. PLANT CELL,11,1207-1215.
    157. Ratcliff F, Martin-Hernandez A M,& Baulcombe D C. (2001). Tobacco rattle virus as a vector for analysis gene function by silencing. PLANT J,25(2),237-245.
    158. Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O., Ratcliffe O.J.,& Samaha R.R., et al. (2000). Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. SCIENCE,290,2105-2110.
    159. Robert-Seilaniantz A., Navarro L., Bari R.,& Jones J.D. (2007). Pathological hormone imbalances. CURR OPIN PLANT BIOL,10,372-379.
    160. Rudrabhatla P.,& Rajasekharan R. (2002). Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses. PLANT PHYSIOL,130,380-390.
    161. Russinova E., Borst J.W.,& Kwaaitaal M., et al. (2004). Heterodim-erization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). PLANT CELL,16,3216-3229
    162. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K.,& Yamaguchi-Shinozaka K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. BIOCHEM BIOPH RES CO,290, 998-1009.
    163. Schoeny A., Jeuffroy M.H.,& Lucas P. (2001). Influence of take-all epidemics on winter wheat yield formation and yield loss. PHYTOPATHOLOGY,91(7),694-701.
    164. Schweizer P., Christoffel A.,& Dudler R. (1999). Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. PLANT J,20, 541-552.
    165. Schweizer P., Pokorny J., Schulze-Lefert P.,& Dudler R. (2000). Double-stranded RNA interferes with gene function at the single-cell level in cereals. PLANT J,24,895-903.
    166. Scofield S.R., Huang L., Brandt A.S.,& Gill B.S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. PLANT PHYSIOL,138,2165-2173.
    167. Shah K., Vervoort J.,& de Vries S.C. (2001). Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J BIOL CHEM,276, 41263-41269.
    168. Sharma, H.C., Gill, B.S.,& Uyemoto, J.K. (1984). High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. PHYTOPATHOL Z,110,143-147.
    169. Shiu S.H.,& Bleecker A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. PLANT PHYSIOL,132(2),530-543.
    170. Shiu S.H., Karlowski W.M., Pan R., Tzeng Y.H., Mayer K.F.,& Li W.H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. PLANT CELL,16,1220-1234.
    171. Shiu, S.H.,& Bleecker, A.B. (2001). Plant receptor-like kinase gene family:diversity, function, and signaling. SCI STKE, re22.
    172. Singh R.P. (1993). Genetic association of gene Bdvl for tolerance to barley yellow dwarf virus with gene Lr34 and Yr18 for adult plant resistance to rusts in breadwheat. PLANT DIS,77(11), 1103-1106.
    173. Solano R., Stepanova A., Chao Q.,& Ecker J.R. (1998). Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE 3 and ETHYLENE RESPONSE FACTOR 1. GENE DEV,12,3703-3714.
    174. Song S., Zhao H.W., Cao J.R., Fang L., Wang Y., Zhu L.J., Zhang R.,& Wang N.N. (2002). Cloning and preliminary structural and functional analysis of two putative receptor like protein kinase genes from soybean. J PLANT PHYSIOL MOL BIOL,28,241-246. (in Chinese)
    175. Song W.Y, Wang G.L., Chen L.L., Kim H.S., Pi L.Y, Holsten T., Gardner J., Wang B., Zhai W.X., & Zhu L.H. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. SCIENCE,270(5243),1804-1806.
    176. Sorri V.A., Watanabe K.N.,& Valkonen J. (1999). Predicted kinase-3a motif of a resistance gene analogue as uniquemarker of virus resistance. THEOR APPL GENET,99,164-170.
    177. Staskawicz B.J., Ausubel F.M., Baker B.J., Ellis J.G.,& Jones J.D. (1995). Molecular genetics of plant disease resistance. SCIENCE,268,661-667.
    178. Stockinger E.J., Gilmour S.J.,& Thomashow M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcript ional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcript ion in response to low temperature and water deficit. P NATL ACAD SCI USA,94,1035-1040.
    179. Stone J.M.,& Walker J.C. (1995). Plant protein kinase families and signal transduction. PLANT PHYSIOL,108(2),451-457.
    180. Stout M.J., Fidantsef A.L.,& Duffey S.S., et al. (1999). Signal interactions in pathogen and insect attack:systemic plant mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. PHYSIOL MOL PLANT PATHOL,54,115-130.
    181. Stoutjesdijk P., Kammholz S., Kleven S., Matsay S., Banks P.M.,& Larkin P.J. (2001). PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. AUST JAGRIC RES,52,1383-1388.
    182. Sun X., Cao Y., Yang Z., Xu C., Li X., Wang S.,& Zhang Q. (2004). Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encoding a LRR receptor kinase-like protein. PLANT J,37(4),517-527.
    183. Thomma B.P.H.J., Eggermont K., Penninckx I.A.M.A., Mauch M.B., Vogelsang R., Cammue B.P.A.,& Broekaert W.F. (1998). Separate jasmonatedependent and salicylate-dependent defense pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. P NATL ACAD SCI USA,95,15107-15111.
    184. Torii K.U. (2000). Receptor kinase activation and signal transduction in plants:An emerging picture. CURR OPIN PLANT BIOL,3,361-367.
    185. Torii K.U. (2004). Leucine-rich repeat receptor kinases in plants:Structure, function, and signal transduction pathways. INT REV CYTOL,234,1-46.
    186. Tregear J.W., Jouannic S., Schwebel-Dugue N.,& Kreis M. (1996). An unusual protein kinase displaying characteristic of both the serine/threonine kinase and tyrosine families is encoded by the Arabidopsis thaliana gene ATN1. PLANT SCI,117,107-119.
    187. Ullrich A.,& Schlessinger J. (1990). Signal transduction by receptors with tyrosine kinase activity. CELL,61(2),203-212.
    188. Van der Biezen EA,& Jones JDG. (1998). Plant disease resistance proteins and the gene for gene concept. TRENDS BIOCHEM SCI,23,454-456.
    189. Vernooij B., Friedrich L.,& Morse A. et al. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. PLANT CELL,6,959-965.
    190. Voinnet O., Pinto Y.M.,& Baulcombe D.C. (1999). Suppression of gene silencing:a general strategy used by diverse DNA and RNA viruses of plants. P NATL ACAD SCI USA,96, 14147-14152.
    191. Walker J.C. (1994). Structure and function of the receptor-like protein kinases of higher plants. PLANT MOL BIOL,26(5),1599-1609.
    192. Walker J.C.,& Zhang R. (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. NATURE,345(6277),743-746.
    193. Wang GL., Song W.Y., Ruan D.L., Sideris S.,& Ronald P.C. (1996). The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. MOL PLANT MICROBE IN,9,850-855.
    194. Wang G.L., Wu C., Zeng L., He C., Baraoidan M., de Assis Goes da Silva F., Williams C.E., Ronald P.C.,& Leung H. (2004). Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. oryzae. THEOR APPL GENET,108,379-384.
    195. Wang H., Huang Z., Chen Q., Zhang Z.J., Zhang H.B., Wu Y.M., Huang D.F.,& Huang R.F. (2004). Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. PLANT MOL BIOL,55,183-192.
    196. Wang Z.Y., Seto H., Fujioka S., Yoshida S.,& Chory J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. NATURE,410(6826),380-383.
    197. Wesley S.V., Helliwell C.A.,& Smith N.A., et al. (2001). Construct design for efficient, effective and high-throughout gene silencing in plants. PLANT J,27,581-590.
    198. Whitham S., Dinesh-Kumar S.P., Choi D., Hehl R., Corr C.,& Baker B. (1994). The product of the tobacco mosaic virus resistance gene N:similarity to Toll and the Interleukin-1 receptor. CELL,78, 1101-1115.
    199. Wu K., Tian L., Hollingworth J., Brown D.C.,& Miki B. (2002). Functional analysis of tomato pti4 in Arabidopsis. PLANT PHYSIOL,128,30-37.
    200. Xin Z, Zhang Z, Chen X, Lin Z.S., Ma Y.Z., Xu H.J., Banks P.M.,& Larkin P.J. (2001). Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. EUPHYTICA,119,161-165.
    201. Xin Z.Y., Brettell R.I.S., Cheng Z.M., Waterhouse P.M., Appels R., Banks P.M., Zhou GH., Chen X.,& Larkin, P.J. (1988). Characterization of a potential source of barley yellow dwarf virus resistance for wheat. GENOME,30,250-257.
    202. Xin Z.Y., Xu H.J., Chen X., Lin Z.S., Zhou GH., Qian Y.T., Chen Z.M., Larkin P.J., Banks P.M., Apples R., Clarke B.,& Brettell R.I.S. (1991). Development of common wheat germplasm resistant to barley yellow dwarf virus by biotechnology. SCI CHINA SER B,34,1055-1062.
    203. Xu Z.S., Xia L.Q., Chen M., Cheng X.G, Zhang R.Y., Li L.C., Zhao Y.X., Lu Y., Ni Z.Y., Liu L., Qiu Z.G.,& Ma Y.Z. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. PLANT MOL BIOL, 65,719-732.
    204. Yarden Y.,& Ullrich A. (1988). Growth factor receptor tyrosine kinases. ANNU REV BIOCHEM, 57,443-478.
    205. Yin Y., Wu D.,& Chory J. (2002). Plant receptor kinases:System inreceptor identified. P NATL ACAD SCI USA,99,9090-9092.
    206. Yu D.Q., Liu Y., Fan B., Klessig D.F.,& Chen Z. (1997). Is the high basal level of salicylic acid important for disease resistance in potato. PLANT PHYSIOL,110,343-349.
    207. Zhang H.B., Zhang D.B., Chan J., Yang Y.H., Huang Z.J., Huang D.F., Wang X.C.,& Huang R.F. (2004). Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. PLANT MOL BIOL,55, 825-834.
    208. Zhang Z.Y., Xin Z.Y., Chen X., Qian Y.T., Lin Z.S.,& Ma Y.Z. (2000). Molecular cytogenetic characterization of a new wheat line Yw243 with resistance to barley yellow dwarf virus. ACTA GENET SIN,27,614-620 (in Chinese with English abstract).
    209. Zhang Z.Y., Xin Z.Y., Ma Y.Z., Chen X., Xu Q.F.,& Lin Z.S. (1999). Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. SCI CHINA SER C,42,663-668.
    210. Zhang Z.Y., Xu J.S., Xu Q.J., Larkin P.,& Xin Z.Y. (2004). Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. THEOR APPL GENET,109(2),377-383.
    211. Zhang Z.Y., Yao W.L., Dong N., Liang H.X., Liu H.X.,& Huang R.F. (2007). A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. J EXP BOT,58,2993-3003.
    212. Zhou R, Xu W., Hong M., Pan Z., Sinko P.J., Ma J.,& You G. (2005). The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. MOL PHARMACOL,67,868-876.
    213. Zhou H.B., Li S.F., Deng Z.Y., Wang X.P., Chen T., Zhang J.S., Chen S.Y., Ling H.Q., Zhang A.M., Wang D.W.,& Zhang X.Q. (2007). Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. PLANT J,52,420-434.
    214. Zhou J., Tang X.,& Martin G.B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogensis-related genes. EMBO J, 16,3207-3218.
    215.Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D.G, Boller T.,& Felix G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated Transformation. CELL,4,749-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700