化学计量学二阶校正法在荧光和色谱分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学计量学是一门新兴发展的交叉学科,它运用数学、统计学、计算机科学等方法设计优化化学量测过程,并通过解析化学量测数据最大限度地获取化学及相关信息。
     化学计量学二阶校正方法由于其具有“二阶优势”(Second-order advantage),可以解决一些传统方法无法处理的问题。将化学计量学二阶校正法与现代分析仪器相结合,以“数学分离”增强甚至代替“化学分离”时,可实现未知干扰共存下对一个乃至多个组分进行直接同时快速的定量测定。
     本文作者通过利用三维荧光光谱及HPLC-DAD等现代分析仪器量测手段,结合化学计量学二阶校正法,在复杂多组分体系的定量分析方面进行了探索性应用基础研究。主要涉及以下几个方面:
     在论文的第2章,利用激发-发射矩阵荧光光谱与化学计量学二阶校正方法相结合,实现了快速测定人体血浆样和牛蒡子中的牛蒡苷含量。采用二阶校正法中的平行因子分析(PARAFAC)和交替归一加权残差(ANWE)两种算法进行解析,实现了对血浆样中牛蒡苷含量的直接快速定量测定。此外,采用上述方法对牛蒡子中的牛蒡苷含量进行了快速测定,所得结果与液相色谱方法所得结果进行比较,结果令人满意。
     大黄是一种传统中药材,其主要活性成分为蒽醌衍生物,其中包括有大黄素和大黄酚。本论文的第3章,尝试利用三维激发发射荧光光谱结合两种二阶校正方法,分别基于交替惩罚三线性分解(APTLD)算法和交替归一加权残差(ANWE)算法,对尿液样中背景干扰共存下的大黄素和大黄酚进行同时定量测定。尽管大黄素和大黄酚的荧光光谱重叠十分严重,且尿液样品中基体干扰目标物的分析,但采用这两种二阶校正方法解析这些三维荧光数据,仍能得到良好的分辨结果。遗憾的是由于尿液基质同大黄素之间可能发生了化学反应,引起大黄素荧光的淬灭,从而影响了大黄素的定量结果,因此,本章利用化学计量学二阶校正法与三维荧光相结合只能对尿液中大黄酚的含量进行准确定量测定。
     美托洛尔和阿替洛尔均为第二代β1受体阻滞剂,临床上用于治疗高血压、冠心病、心律失常、甲亢等各种疾病。论文的第4章提出了采用反相高效液相色谱与化学计量学二阶校正方法相结合,对血浆和尿液中的美托洛尔和阿替洛尔进行同时测定。尽管美托洛尔和阿替洛尔的色谱和光谱峰均重叠严重,且样品中的基质干扰目标物的分析,但本章采用交替三线性分解(ATLD)算法解析色谱数据,利用“数学分离”增强“化学分离”,实现了未知干扰组分存在下,感兴趣组分美托洛尔和阿替洛尔的同时定量分析。
     磺胺类(SAs)药物在奶牛业中的应用非常普遍。由于SAs在体内作用和代谢的时间较长,在动物源性食品中容易残留,危及人体健康。在论文的第5章,采用HPLC-DAD检测与交替惩罚三线性分解(APTLD)算法相结合对牛奶中的磺胺类兽药残留量进行了分析测定。尽管样品中组分分离不完全,并且存在大量干扰组分,但利用化学计量学二阶校正方法的“二阶优势”,仍能对该体系中感兴趣的磺胺组分给出准确的定量分析结果。
Chemometrics is a developing composite discipline of chemistry. The main focus of chemometrics is on applying the methods of mathematics, statistics and computer sciences to extracting chemical information, to designing the optimal scheme for chemical measurements and to elucidating the data collected from chemical measurements.
     The second-order calibration methodologies can deal with some traditional difficult problems because of the second-order advantage. The chemometric methodologies coupled with higher-order analytical instruments can improve or replace the“chemical separation”with“mathematical separation”, enable accurate and reliable determination of the analyte concentrations even in the presence of uncalibrated interferents.
     In this paper, the authors utilized the analytical instruments such as EEMs and HPLC-DAD, coupled with second-order calibration methodologies, and did some work in the research of complex multi-component systems. Studies presented in the thesis primarily deals with the following aspects:
     In Chapter 2, it proposed a new approach for direct determination of arctiin content in plasma samples as well as a Chinese medicine (Arctium lappa L.) by the combination of excitation-emission matrix fluorescence and second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating normalization-weighted error (ANWE) algorithms. The estimated content of arctiin in arctium lappa L. obtained by fluorescence determination was also satisfactory compared with that of the HPLC method. It can be seen that the suggested methods can be employed to directly determine arctiin, even in the presence of unknown and un-calibrated interferences, only with a simple pretreatment procedure.
     The rhubarb is one of the most popular traditional Chinese herbal medicines. The main active constituents of rhubarb have been reported to be anthraquinones, such as emodin and chrysophanol. In Chapter 3, it was tried to use three-way excitation-emission matrix fluorescence combining chemometrics second-order calibration algorithms, including the alternating penalty trilinear decomposition (APTLD) algorithm and the alternating normalizationweigh (ANWE) algorithm, to determined emodin and chrysophanol even in presence of urine background interferents. Though the peaks of the analytes were heavily overlapped and urine background interferents coeluted with the compounds studied, good resolved results could be obtained. But it is a pity that the estimated content of the emodin is not acceptable, it maybe owe to the reaction of the emodin with the urin background interferents and then the fluorescence of emodin had been decreased. Thus, it only can obtained satisfactory estimated results of the chrysophanol in the urine by using the method mentioned.
     In Chapter 4, HPLC-DAD coupled with chemometric second-order calibration method based on ATLD algorithm was applied toβ-adrenergic receptor-blocking agent in body fluids. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of the analytes could be obtained.
     Sulfonamides constitute a group of drugs which are widely used in veterinary. Their metabolism process are slow in animal body, thus, residues of these drugs may remain in food of animal origin. In Chapter 5, a new method based on the use of HPLC-DAD coupled with the alternating penalty trilinear decomposition (APTLD) algorithm was applied to the rapid determination of sulfonamides in milk samples. Though the chromatographic and spectral peaks of the components were highly overlapped, good quantitative results could be obtained owing to the second order advantage. The application of second-order calibration methodologies provides a new technique to food analysis.
引文
[1]俞汝勤.化学计量学导论.长沙:湖南教育出版社, 1991
    [2]梁逸曾.俞汝勤化学计量学.北京:高等教育出版社, 2003
    [3]高鸿.分析化学前沿.北京:科学出版社, 1991
    [4]梁逸曾.白灰黑复杂多组份分析体系及其化学计量学算法.长沙:湖南科学技术出版社, 1996
    [5]梁逸曾,俞汝勤.分析化学手册(第十分册):化学计量学.北京:化工出版社, 2000
    [6]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社, 2004
    [7]许禄.化学计量学:一些重要方法的原理及应用.北京:科学出版社, 2004
    [8]陆晓华.化学计量学.武汉:华中理工大学出版社, 1997
    [9]倪永年.化学计量学在分析化学中的应用.北京:科学出版社, 2004
    [10] Yu R Q. Chemometrics in China. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 23-39
    [11] Fraga C G, Prazen B J, Synovec R E. Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Analytical Chemistry, 2001, 73(24): 5833-5840
    [12] Mohimen A, Dobo A, Hoerner J K, et al. A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Analytical Chemistry, 2003, 75(16): 4139-4147
    [13] Lopez-Diez E C, Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry, 2004, 76(3): 585-591
    [14] Vogt F, Mizaikoff B. Introduction and application of secured principal component regression for analysis of uncalibrated spectral features in optical spectroscopy and chemical sensing. Analytical Chemistry, 2003, 75(13): 3050-3058
    [15] Chaudry U A, Popelier P L A. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. Journal of Organic Chemistry, 2004, 69(2): 233-241
    [16] Rodríguez Rodríguez E M, Sanz Alejos M, Díaz Romero C. Chemometricstudies of several minerals in milks. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1520-1524
    [17] Einax J. Chemometrics in environmental chemistry statistical methods. Berlin Germany: Springer-Verlag, 1995
    [18] Mannhold R, Hrogsgaard P, Larscn H, et al. Methods and principles in medicinal chemistry. Weinheim Germany: Wiley-VHC, 1995
    [19] Hansch C, Fujita T. Classic and three-dimensional QSAR in agrochemistry. In ACS Symposium Series 606 American Chemical Society Washington DC, 1995
    [20] Lakshminarayanan S, Mhatre P, Gudi R. Identification of bilinear models for chemical processes using canonical variate analysis. Industrial and Engineering Chemistry Research, 2001, 40(20): 4415-4427
    [21] Shen M, Wagner M S, Castner D G, et al. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 2003, 19(5): 1692-1699
    [22] Rios P, Stuart J A, Grant E. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. Environmental Science and Technology, 2003, 37(23): 5463-5470
    [23] Liang Y Z, Kvaleiam O M, Manne R. White, grey and black multicomponent systems-A classification of mixture problems and methods for their quantitative analysis. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 235-250
    [24] H?skuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2(4): 211-228
    [25] Manne R. Analysis of two partial least squares algorithms for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 1987,1 :187-197
    [26] Kisner H J, Brown C W,Kavarnos G J. Mutltiple analytical frequencies and standards for the least-squares spectrometric analysis of serum-lipids. Analytical Chemistry, 1983, 55(11): 1703-1707
    [27] Dief A S. Advanced matrix theory for scientists and engineers. Abacus Press, Tunbridge Wells & London, 1982: 93
    [28] Thijssen P C, Kateman G. Optimal designs with information theory in least-suqares problems. Analytica Chimica Acta, 1984, 157: 99-115
    [29] Vandeginste B G M, Massart D L, Buydens L C M, et al. Handbook of chemometrics and qualimetrics: Part B. Amsterdam: Elsevier, 2003, 349-379
    [30] Gemperline P J. A prior estimates of the elution profiles of the pure componentsin overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Science, 1984, 24(4): 206-212
    [31] Vandeginste B G M,Derks W,Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta, 1985, 173: 253-264
    [32] Rutan S C, Brown S D. Adaptive kalman filtering used to compensate for model errors in multicomponent methods. Analytica Chimica Acta,1984, 160: 99-119
    [33] RutanS C, Brown S D. Estimation of first-order kinefc parameters using the extended kalman filter. Analytica Chimica Acta, 1985, 167: 23-37
    [34] Karstang T V, Kvalheim O. Multivariate prediction and background correction using local modeling and derivative spectroscopy. Analytical Chemistry, 1991, 63(8): 767-772
    [35] Ho C -N, Christian G D, Davidson E R. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video florometer. Analytical Chemistry, 1978, 50: 1108-1113
    [36] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Analytical Chemistry, 1986, 58(2): 496-499
    [37] ?hman J, Geladi P, Wold S. Residual bilinearization Part l: Theory and algorithms. Journal of Chemometrics, 1990, 4: 79-90
    [38] ?hman J, Geladi P, Wold S. Residual Bilinearization Part 2: Application to HPLC-diode array data and comparison with rank annihilation factor analysis. Journal of Chemometrics, 1990, 4: 135-146
    [39] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 175-184
    [40] Lawton W H, Sylvestre E A. Self-modeling curve resolution [J]. Technometrics, 1971, 13(3): 617-633
    [41] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical Chemistry, 1987, 59(3): 527-530
    [42] Maeder M, Zuberbühler A D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Analytica Chimica Acta, 1986, 181(2): 287-291
    [43] Malinowski E R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. Journal of Chemometrics, 1992, 6(1): 29-40
    [44] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections: Resolving two-way multicomponent data 1: selectivity, latent-projective graph, data scope,local rank, and unique resolution. Analytical Chemistry, 1992, 64(8): 936-946
    [45] Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic evolving latent projections: Resolving two-way multicomponent data 2, detection and resolution of minor constituents. Analytical Chemistry, 1992, 64(8): 946-953
    [46] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 335-338
    [47] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 171-176
    [48] Sanchez E, Kowalski B R.Tensorial carlibration: II Second-order carlibration. Journal of Chemometrics, 1988, 2(4): 265-280
    [49] Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry, 1994, 66(15): 782A-791A
    [50] Olivieri A C, Arancibia J A, de la Pena A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission kinetic data processed by parallel factor analysis and trilinear least-squares determination of methotrexate and leucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [51] Sanchez E, Kowalski B R. Generalized Rank Annihilation Factor Analysis. Analytical Chemistry, 1986, 48(2): 496-499
    [52] Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics, 1989, 3(3): 493-498
    [53] Li S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry, 1992, 64(6): 599-607
    [54] Faber K, Lorber A, Kowalski B R. Generalized rank annihilation method: Standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated. Journal of Chemometrics, 1997, 11(2): 95-109
    [55] Sanchez E, Kowalski B R. Tensorial resolution: a direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29-45
    [56] Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. Journal of Chemometrics, 1993, 7(1): 77-88
    [57] Lin Z, Booksh K S, Burgess L W, et al. A second-order fiber optic heavy metal sensor employing second-order tensorial calibration. Analytical Chemistry,1994, 66(15): 2552-2560
    [58] Booksh K S, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994, 66(15): 2561-2569
    [59] Henshow J M, Burgess L W, Booksh K S, et al. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor 1 multivariate calibration of fujiwara reaction products. Analytical Chemistry, 1994, 66(20): 3328-3336
    [60] Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Analytical Chemistry, 1995, 67(18): 3293-3299
    [61] Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry, 2004, 76(10): 2798-2806
    [62] Linder M, Sundberg R. Precision of prediction in second-order calibration with fous on bilinear regression method. Journal of Chemometrics, 2002, 16(1): 12-27
    [63] Linder M, Sundberg R. Second-order bilinear calibration: the effects of vectorising the data matrices of the calibration set. Chemometrics and Intelligent Laboratory Systems, 2002, 63(2): 107-116
    [64] Harshman R A. Foundations of the PARAFAC procedure: models and conditions for an‘explanatory’multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970, 16(1): 1-84
    [65] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35(3): 283-319
    [66] Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry, 1997, 69(13): 2329-2336
    [67] Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems, 1998, 40(1): 19-32
    [68] Bro R. Multiway calibration multilinear PLS. Journal of Chemometrics, 1996,10(1): 47-61
    [69] Smilde A K. Comments on multilinear PLS. Journal of Chemometrics, 1997, 11(5): 367-377
    [70] de Jong S. Regression coefficients in multilinear PLS. Journal of Chemometrics, 1998, 12(1): 77-81
    [71] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285–299
    [72] Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 163-180
    [73] Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. Journal of Chemometrics, 1998, 12(1): 1-26
    [74] Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry, 1999, 71(19): 4254-4262
    [75] Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics, 1999, 13(6): 557-578
    [76] Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics, 2000, 14(1): 15-36
    [77] Li Y, Jiang J H, Wu H L, et al. Alternation coupled matrics resolution method for three-way array analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 33-43
    [78] Chen Z P, Wu H L, Jiang J H, et al. A novel trilinear decomposition algorithm for second-order linear Calibration. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 75–86
    [79] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm the property of being insensitive to excess factors used in calculation. Journal of Chemometrics, 2001, 15(5): 439-453
    [80] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics, 2001, 15(3): 149-167
    [81] Chen Z P, Wu H L, Li Y, et al. Novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta, 2000, 423(1): 187-196
    [82] Xie H P, Chu X, Jiang J H, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A, 2003, 59(4): 743-749
    [83] Cao Y Z, Chen Z P, Mo C Y, et al. A PARAFAC algorithm using penalty diugonalization error (PDE) for three-way data array resolution. The Analyst, 2000, 125(12): 2303-2310
    [84] Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decomposition for second-order calibration with an application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics, 2005,19(2): 65-76
    [85] Hu L Q, Wu H L, Ding Y J, et al. Alternating asymmetric trilinear decomposition for three-way data arrays analysis. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 145-153
    [86] Xia A L, Wu H L , Zhu S H , et al. Determination of psoralen in human plasma using excitation-emission matrix fluorescence coupled to second-order calibration. Analytical Sciences, 2008, 24(9): 1171-1176
    [87] Nikolajsen R P H, Booksh K S, Hansen A M, et al. Quantifying catecholamines using muti-way kinetic modeling. Analytica Chimica Acta, 2003, 475(1-2): 137-150
    [88] Goicoechea H C, Yu S J, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis: Determination of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved shpol’skii spectroscopy. Analytical Chemistry, 2005, 77(8): 2608-2616
    [89] Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007,21(3-4): 133-144
    [90] Bro R, Workman J J, Kowalski P R. Review of chemometrics applied to spectroscopy: 1985–1995, Part III multi-way analysis. Applied Spectroscopy reviews, 1997, 32(3): 237-261
    [91] Baunsgaard D, Andersson C A, Arndal A, et al. Multi-way chemometrics for mathematical separation of fluorescent colorants and colour precursors from spectrouorimetry of beet sugar and beet sugar thick juice as validated by HPLC analysis. Food Chemistry, 2000, 70(1): 113-121
    [92] Piccirilli G N,Escandar G M. Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides: a solution of the problems of inner-filter effects and matrix interferents. Analyst, 2006, 131(9): 1012-1020
    [93] Nahorniak M L, Booksh K S. Optimizing the implementation of the PARAFAC method for near-real time calibration of excitation-emission fluorescence analysis. Journal of Chemometrics, 2003, 7(11): 608-617
    [94] Wu H L, Long N, Fang Y F, et al. Simultaneous determination of salicylic acid and gentisic acid by excitation-emission fluorescence based on alternating trilinear decomposition. Analytical Laboratory, 2002, 21(2): 44-47
    [95] Haimovich A, Orselli R, Escandar G M, et al. Spectroscopic bilinear least-squares methods exploiting the second-order advantage: theoretical and experimental study concerning accuracy, sensitivity and prediction error. Chemometrics and Intelligent Laboratory Systems, 2006, 80(1): 99-108
    [96] Valverde R S, García M D G, M Galera M, et al. Highly collinear three-way photoinduced spectrofluorimetric data arrays modelled with bilinear least-squares: Determination of tetracyclines in surface water samples.Talanta, 2006, 70(4): 774-783
    [97] Christensen J, Becker E M, Frederiksen C S. Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 201-208
    [98] Lozano V A, Iba?ez G A, Olivieri A C. Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data: Analysis of benzoic acid in beverage samples. Analytica Chimica Acta, 2008, 610(2): 186-195
    [99] Díez R, Sarabia L, Ortiz M C. Rapid determination of sulfonamides in milk samples using fluorescence spectroscopy and class modeling with n-way partial least squares. Analytica Chimica Acta, 2007, 585(2): 350-360
    [100] Riu J, Bro R. Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 35-49
    [101] Zhang F, Zhang Q Q, Wang W G, et al. Synthesis and DNA binding studies by spectroscopic and PARAFAC methods of a ternary copper(II) complex. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(3): 241-249
    [102] Mansilla A E, de la Pen?a A M, Goicoechea H C, et al. Two multivariatestrategies applied to three-way kinetic spectrophotometric data for the determination of mixtures of the pesticides carbaryl and chlorpyrifos. Applied Spectroscopy, 2004, 58(1): 83-90
    [103] García R A, Damiani P C, Olivieri A C. Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic–spectrophotometric data. Talanta, 2007, 71(2): 806-815
    [104] Escandar G M, Faber N M, Goicoechea H C, et al. Second- and third-order multivariate calibration: data, algorithms and applications. Trends in Analytical Chemistry, 2007, 26(7): 752-765
    [105] Zissis K D, Brereton R G, Dunkerley S, et al. Two-way, unfolded three-way and three-mode partial least squares calibration of diode array HPLC chromatograms for the quantitation of low-level pharmaceutical impurities. Analytica Chimica Acta, 1999, 384(1): 71-81
    [106] Ferrer R, Guiteras J, Beltrán J L. Development of fast-scanning fluorescence spectra as a detection system for high-performance liquid chromatography Determination of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography, 1997, 779(1-2): 123-130
    [107]孙剑奇,吴海龙,莫翠云等.交替三线性分解算法与反相高效液相色谱-二极管阵列检测方法相结合同时测定苯二酚的位置异构体.色谱, 2002, 20(5): 385-389
    [108] Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods. Journal of Chromatography A, 2007, 1148(2): 200–210
    [109] Faber N M, Bro R, Hopke P K. Recent developments in CANDECOMP/ PARAFAC algorithms: A critical review. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 119-137
    [110] Fraga C G, Corley C A. The chemometric resolution and quantification of overlapped peaks form comprehensive two-dimensional liquid chromatography. Journal of Chromatography A, 2005, 1096(1-2): 40-49
    [111] Sinha A E, Hope J L, Prazen B J, et al. Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography–time-of-flight mass spectrometry data. Journal of Chromatography A, 2004, 1027(1-2): 269-277
    [112]于,康廷国,王冰等.不同产地牛蒡子中所含成分牛蒡苷含量测定.辽宁中医药大学学报, 2008, 10(4): 148-149
    [113]米靖宇,汪志超,宋纯清.高效液相色谱法测定不同采购地牛蒡子中牛蒡子苷和苷元的含量.时珍国医国药, 2004, 15(11): 737-738
    [114]王潞,赵烽,刘珂.牛蒡子苷及牛蒡子苷元的药理作用研究进展.中草药, 2008, 39(3): 467-470
    [115]鞠玫君,窦德强,康廷国.牛蒡子提取物中牛蒡苷和牛蒡苷元的含量测定研究.中国现代中药, 2008, 10(2): 14-16
    [116]张涛.牛蒡子不同炮制品中牛蒡苷含量的HPLC测定.中草药, 2004, 35(4): 406-407
    [117] Yuan X D, Koh H L, Chui W K. A high performance liquid chromatography method for simultaneous determination of arctiin, chlorogenic acid and glycyrrhizin in a Chinese proprietary medicine. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(3-4): 697-704
    [118] Wang X, Li F W, Sun Q L, etal. Application of preparative high-speed counter-current chromatography for separation and purification of arctiin from fructus arctii. Journal of Chromatography A, 2005, 1063(1-2): 247-251
    [119] LüW J, Chen Y L, Zhang Y X. Microemulsion electrokinetic chromatography for the separation of arctiin and arctigenin in fructus arctii and its herbal preparations. Journal of Chromatography B, 2007, 860(1): 127-133
    [120] Bro R. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149-171
    [121] Kruskal J B, Harshman R A, Lundy M E. Rank, decomposition, and uniqueness for 3-way and N-way arrays in R Coppi&S Bolasco(Eds), multiway Data Analysis. Amsterdam: Elsevier, 1989, 7-18
    [122] Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics, 2003, 17(5): 274-286
    [123] Faber N M. The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). Journal of Chemometrics, 2001, 15(9): 743-748
    [124] Olivieri A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. Analytical Chemistry, 2005, 77(15): 4936-4946
    [125] Olivieri A C, Juan A A, Pe?a A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares: determination of methotrexate andleucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [126] Arancibia J A, Escandar GM. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60(6): 1113-1121
    [127] González A G, Herrador M A, Asuero A G. Intra-laboratory testing of method accuracy from recovery assays. Talanta, 1999, 48(3): 729-736
    [128]王冬梅,尚丽彤,翟路等.大黄的研究进展.现代商贸工业, 2008, 20(2): 286-287
    [129]周嘉裕,汤佳,廖海.大黄、何首乌中大黄素和大黄酚的提取与含量测定.时珍国医国药, 2008, 19(5): 1056-1057
    [130] Junko Koyama, Izumi Morita, Norihiro Kobayashi. Simultaneous determination of anthraquinones in rhubarb by high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A, 2007, 1145(1-2): 183-189
    [131] Iizuka A, Iijima O T, Kondo K, et al. Evaluation of rhubarb using antioxidative activity as an index of pharmacological usefulness. Journal of Ethnopharmacol, 2004, 91(1): 89-94
    [132] Sun S W, Yeh P C. Analysis of rhubarb anthraquinones and bianthrones by microemulsion electrokinetic chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2005, 36(5): 995-1001
    [133] Danielsen K, Francis G W. An alternative solvent system for the separation of anthraquinone aglycones from rhubarb on silica thin layers. Chromatographia, 1994, 38(7-8): 520
    [134] Hang Wang, Fang Feng. Identification of components in Zhi-Zi-Da-Huang decoction by HPLC coupled with electrospray ionization tandem mass spectrometry, photodiode array and fluorescence detectors. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49(5): 1157–1165
    [135] Bristow M R.β-Adrenergic Receptor Blockade in Chronic Heart Failure. Circulation, 2000, 101(8): 558-569
    [136] Reiter M J, Reiffel J A. Importance of beta blockade in the therapy of serious ventricular arrhythmia. The American Journal of Cardiology, 1998,82(4A): 9I-19I
    [137] Modamio P, Lastra CF, Mari?o EL. Error structure for the HPLC analysis for atenolol, metoprolol and propranolol: a useful weighting method in parameter estimation. Journal of Pharmaceutical and Biomedical Analysis,1998, 17(3):507-513
    [138] Basci N E, Temizer A, Bozkurt A, et al. Optimization of mobile phase in the separation ofβ-blockers by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 1998, 18(4-5): 745-750
    [139] Braza A J, Modamio P, Lastra C F, et al. Development, validation and analytical error function of two chromatographic methods with fluorimetric detection for the determination of bisoprolol and metoprolol in human plasma. Biomedical Chromatography, 2002,16(8): 517-522
    [140] Albers S, Elshoff J P, V?lker C, et al. HPLC quantification of metoprolol with solid-phase extraction for the drug monitoring of pediatric patients. Biomedical Chromatography, 2005, 19(3): 202-207
    [141] Gergov M, Robson J N, Duchoslav E, et al. Automated liquid chromatographic/tandem mass spectrometric method for screeningβ-blocking drugs in urine. Journal of Mass Spectrometry, 2000, 35(7): 912-918
    [142] Thevis M, Opfermann G, Sch?nzer W. High speed determination of beta-receptor blocking agents in human by liquid chromatography/tandem mass spectrometry. Biomedical Chromatography, 2001,15(6): 393-402
    [143] Kataoka H, Narimatsu S, Lord H L, et al. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination ofβ-blockers and metabolites in urine and serum samples. Analytical Chemistry, 1999, 71(19): 4237-4244
    [144] Naidong W, Shou W Z, Addison T, et al. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE. Rapid Communications in Mass Spectrometry, 2002, 16(20): 1965-1975
    [145] Crosby N T. Determination of veterinary residues in food. Ellis Horwood, Chichester, 1991: 97
    [146] Botsoglou N A, Fletouris D T. Drug Residues in Foods. New York: Marcel Dekker, 2001: 85
    [147]李俊锁,邱月明,王超.兽药残留分析.上海:上海科学技术出版社, 2002: 228-255
    [148]中华人民共和国农业部.农牧发[1997] 17号.关于发布《动物性食品中兽药残留限量》的通知[Z]
    [149] Babi? S, A?perger D, Mutavd?i? D, et al. Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. Talanta, 2006, 70(4):732-738
    [150] Preechaworapun A, Chuanuwatanakul S, Einaga Y, et al. Electroanalysis of sulfonamides by flow injection system/high-performance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode. Talanta, 2006, 68(5): 1726-1731
    [151] Kishida K, Furusawa N. Application of shielded column liquid chromatography for determination of sulfamonomethoxine, sulfadimethoxine, and their N4-acetyl metabolites in milk. Journal of Chromatography A, 2004, 1028(1): 175-177
    [152] Fuh M R S, Chan S A. Quantitative determination of sulfonamide in meat by liquid chromatography–electrospray-mass spectrometry. Talanta, 2001, 55(6): 1127-1139
    [153] Kishida K, Furusawa N. Simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites with gradient liquid chromatography in chicken plasma, tissues, and eggs. Talanta, 2005, 67(1): 54-58
    [154] Huang X J, Yuan D X, Huang B L. Simple and rapid determination of sulfonamides in milk using Ether-type column liquid chromatography. Talanta, 2007, 72(4): 1298–1301
    [155] Lu K H, Chen C Y, Lee M R. Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry. Talanta, 2007, 72(3): 1082–1087
    [156] Agarwal V K. High-performance liquid chromatographic methods for the determination of sulfonamides in tissue, milk and eggs. Journal of Chromatography A, 1992, 624(1-2): 411-423
    [157] Long A R, Short C R, Barker S A. Method for the isolation and liquid chromatographic determination of eight sulfonamides in milk. Journal of Chromatography A, 1990, 502: 87-94
    [158] Cannavan A, Hewitt S A, Blanchflower W J, et al. Gas chromatographic–mass spectrometric determination of sulfamethazine in animal tissues using a methyl/trimethylsilyl derivative. Analyst, 1996, 121(10): 1457-1462
    [159] Reevs V B. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography–positive chemical ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 723(1-2): 127-137
    [160] Fuh M R S, Chu S Y. Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis. Analytica Chimica Acta, 2003, 499(1-2): 215-221
    [161] Lamba S, Sanghi S K, Asthana A, et al. Rapid determination of sulfonamides in milk using micellar electrokinetic chromatography with fluorescence detection. Analytica Chimica Acta, 2005, 552(1-2): 110-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700