高通量筛选环境雌激素类化合物的方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境内分泌干扰物是指由于人类的生产和生活活动释放到环境中的、对人体内和动物体内内源性的正常激素功能施加影响,从而影响机体内分泌系统化学物质作用的物质,这类物质通称为“外源性干扰内分泌的化学物质”。环境雌激素是环境内分泌干扰物中最大的一类,也是研究最多,最受重视的一类。目前,检测环境雌激素的方法主要有化学法和生物法。化学法检测环境雌激素灵敏度高、特异度好,定性和定量准确。但是用仪器检测环境雌激素,只能对已知的环境雌激素进行检测,而且,在检测前一般还要对样品要进行提取、净化、浓缩等前期处理。由于这些化学方法使用的仪器昂贵、检测成本高、分析过程冗长、技术复杂、对检测人员专业化程度要求高,不适合大量样本的环境雌激素常规检测。建立在生物学基础上检测环境雌激素的方法大多需要进行细胞培养,对实验室条件要求较高、费时费力,不同的实验室使用的细胞不同,不便于结果的相互比较,培养细胞所用的血清也要经过活性炭和葡聚糖处理,去除血清中内源性的雌激素后才能使用,否则会出现假阳性的结果。有的环境雌激素还具有细胞毒性,这样有可能导致得出错误的结论。
     因此,根据大多数环境雌激素与机体作用都是干扰天然雌激素与雌激素受体结合,我们以雌激素受体竞争结合分析为基础,建立以下三种方法来高通量的筛选环境雌激素。
     第一部分基于ELISA的受体竞争结合法检测环境雌激素目的:环境雌激素是最主要的一类环境内分泌干扰物,它们进入生物体后,可通过干扰生物体自身激素的合成、分泌、转运、结合、活性反应、代谢、消解或产生类似生物体自身激素的作用,对生物有机体维护正常的动态平衡、繁殖、生长及行为产生不利的影响。本研究的目的旨在建立环境雌激素的体外快速筛选方法。方法:采用免疫测定介导受体竞争结合试验定量检测环境雌激素。将17β-雌二醇-BSA固定在微孔板上,环境雌激素与微孔板上的17β-雌二醇-BSA竞争性的与雌激素受体结合,与微孔板上17β-雌二醇-BSA结合的受体与雌激素受体的抗体、雌激素受体抗体的二抗形成一个三明治形式的复合物,通过显色剂显色,最后用比色法对试验结果进行定量。结果:整个反应中环境雌激素浓度越高,溶液的吸光度值的变化就越小,环境雌激素的浓度与吸光度值成负相关。定量研究可以得到环境雌激素剂量一效应关系曲线,在一定浓度范围内(10ng/L~100μg/L),溶液的吸光度值与环境雌激素的浓度直接呈现良好的线形关系(R~2=0.9583)。利用这种方法能检测到的标准品雌二醇的最低浓度为10ng/L。结论:本方法检测环境雌激素操作简便、无需复杂昂贵的仪器,具有广泛的应用前景。
     第二部分荧光标记17β-雌二醇检测环境雌激素目的:荧光标记这种非放射性标记技术已成为现代分析检测中不可或缺的重要方法之一,然而将此技术应用于环境雌激素的筛选并不广泛。本研究旨在探索荧光标记技术在环境雌激素定量检测中的应用。方法:首先将雌激素受体的抗体固定于微孔板中,将待测样本或17β-雌二醇、与定量的17β-雌二醇-FITC、雌激素受体混和后加入微孔板中,孵育后取上清(上清中含有因环境雌激素干扰而未能与雌激素受体结合的的17β-雌二醇-FITC),加入另一新的微孔板中,用酶标仪检测溶液中荧光信号的强度。结果:溶液的荧光强度与环境雌激素的浓度呈正相关,在一定浓度范围内(10ng/L~100μg/L),溶液的荧光强度与环境雌激素浓度之间呈现良好的线性关系(R~2=0.9793)。利用这种方法能够检测到的标准品17β-雌二醇的最低浓度为10 ng/L。结论:本研究方法检测环境雌激素灵敏度高,无需复杂昂贵的设备,试验操作非常简单,可在微孔板和芯片上进行,是一种高通量快速筛选环境雌激素的方法。
     第三部分纳米金颗粒修饰雌激素受体反应原件检测痕量
     环境雌激素的方法学研究目的:雌激素受体竞争结合分析试验是重要的环境雌激素的筛选试验,是美国EDSTAC首选的第一级环境内分泌干扰物筛选试验之一。本研究根据环境雌激素在机体内发挥作用的基本机理,即环境雌激素进入机体,结合并激活雌激素受体,进而使受雌激素受体控制的基因表达。本研究是利用纳米金标记检测技术介导雌激素受体竞争结合分析建立的一种环境雌激素高通量快速筛选方法。方法:首先将17β-雌二醇-BSA固定于微孔板中,将待测样本与定量的雌激素受体混和后加入微孔板中,孵育后取上清(上清中含有因环境雌激素干扰而未能与微孔板上的17β-雌二醇结合的雌激素受体),将上清加入另一包被有雌激素受体抗体的的微孔板中,使雌激素受体与抗体结合,然后加入标记有纳米金的雌激素反应元件探针,孵育一段时间,用银染增强显色检测光密度。结果:在一定的反应时间内,溶液的吸光度值与环境雌激素的量呈正相关,定量研究可以得到在一定反应时间点(银染增强时间100~140秒)和一定浓度范围内(100pg/L~1μg/L),溶液的吸光度值与17β-雌二醇之间呈现良好的线性关系(R~2=0.9764)。利用这种方法能够检测到的标准品17β-雌二醇的最低浓度为100 pg/L。结论:本研究方法检测环境雌激素灵敏度高,无需复杂昂贵的设备,操作简单,可在微孔板和芯片上进行,是一种高通量环雌激素快速筛选方法,与以往的方法相比,灵敏度可提高2~3个数量级。
Endocrine disrupting compounds(EDCs)are a defined category ofenvironmental contaminants,which interfere with endocrine system functionand persistent in the environment.A large part of EDCs have been identified thatinduce estrogen-like responses and are classified as estrogenic EDCs.Currentdetection methods for estrogenic EDCs include chemical analytical methods andbiologically based assays.The chemical analytical methods provide excellentsensitivity and precision for monitoring environmental estrogen.However,thesetechniques only measure specific estrogenic EDCs individually,so the targetcompound must have already been identified as have estrogenic properties.Thechemical analytical methods are costly and time-consuming,since they needcomplicated steps for sample preparation,expensive equipments and highlyskilled technicians,which will not be adapt for large numbers of samples toscreened.Biologically based assays always based on Cell culture.Serum used incell culture must be treated by charcoal and dextran T70 to remove the sexsteroids.Different laboratories using different cell lines and the result can not becompared.Cellular assays are also confronted with the problem of cytotoxicsubstances,which may be present in environmental samples and could lead to erroneous results unless proper controls are included.
     Ligand binding to the estrogen receptor is the initial step for mostenvironmental estrogen entered the body.According to this mechanism,weestablished three method to screen the environmental estrogen.
     PartⅠCompetitive Recombinant Estrogen Receptor-based ELISAfor Detection of Estrogen in Environment
     Objective Environmental estrogen is a type of EDCs which can interfere withthe synthesis,secretion,transport,binding,action,or elimination of naturalhormones in vivo.This study aimed at developing a rapid and sensitive bioassayfor the detection of environmental estrogens.Methods Here we present asimple method for quantitative assessment of environmental estrogens based oncompetitive estrogen receptor(ER)mediated immunoassay in microplates,inwhich estrogen,ER,anti-ER antibody and secondary antibody labeledhorseradish peroxidase(HPR)can form a sandwich complex.Results Theassay result showed that as little as 10ng/L of 17β-estradiol could be detectedand have a linear range from 10ng/L to 100μg/L(R~2=0.9583).ConclusionThis method provides a simple way to quantification environmental estrogens insamples.
     PartⅡApplication of fluorescent labeling 17β-estradiolin the detection of environmental estrogen
     Objictive:The fluorescent labeling is one of the most important methods inmodem analysis field as a non-radioactive labeling technique.However,it hasnot been widely applied in environmental estrogen screening.This study aimedat exploring the application of fluorescent labeling technology in the field of environmental estrogens.Method:Anti-ER is immobilized on the blackmicroplates.In the second step(competition step)the environmental sample isincubated together with a limited amount of 17β-estradiol-FITC conjugate andER.After the receptor binding reaction,the supernatant,which contains17β-estradiol-FITC which did not bind with the ER is shifted into another blackmicroplate.Finally the signals are detected with a microplate reader.ResultsThe assay result showed that as little as 10ng/L of 17β-estradiol could bedetected and have a linear range from 10ng/L to 100μg/L(R~2=0.9793).Conclusion The fluorescent labeling technology is a rapid and cost-effectivemethod to screen environmental estrogen.
     PartⅢDensitometry Determination of Estrogenic EDCs Using
     Gold Nanoparticle-Modified Estrogen Response Element ProbesObjective Estrogen receptor binding assay is an important approach to screenenvironmental estrogens.It is preferred as Tier 1 Screening method forendocrine disruptors by EDSTAC.In order to rapid screen environmentalestrogens,we develop a new high-throughout screening method based onnanoparticle technology.Since estrogen receptor(ER)is a ligand-independentreceptor,we design a simple competitive binding assay in which environmentalestrogens in the ample compete with natural estrogen(17β-estradiol)for bindingto ER.Methods 17β-estradiol-BSA conjugate is immobilized on themicroplates.In the second(competition)step the environmental sample isincubated together with a limited amount of ER.After the receptor bindingreaction,the supernatant,which contains environmental estrogen-ER complex,is incubated in another microplate coated with anti-ER antibody.Because ERhomodimerization can bind to specific sites on DNA- estrogen response elements(EREs),Nanoparticle -modified ERE probes are added and incubated.Finally the signals are amplified by silver enhancement and recorded withabsorbance.The intensity of signal is proportional to the quantity ofenvironmental estrogen in the sample.Results The assay result showed that aslittle as 100pg/L of 17β-estradiol could be detected and have a linear range from100pg/L to 1μg/L(R~2=0.9764).Conclusion The gold nanoparticle -modifiedERE assay is a screening method for the detection of environmental estrogenswith reliable,low cost,rapid,high-throughout and could be performed onmicroplates or chips.Compared with the existing methods,the detection limitcan be improved 2-3 orders of magnitude in this assay.
引文
[1]T.E.Wiese,Kelce,W.R.An introduction to envirnmental oestrogens.Chemistry and industry,1997,24 648-653.
    [2]U.S.E.P.A.(USEPA),Special report on environmental endocrine disruption:an effects assessment and analysis,in:D.o.o.R.a.D.Washington(Ed.),vol.EPA/630/R-96/012,1997.
    [3]R.J.Kavlock,G.P.Daston,C.DeRosa,et al.Research needs for the risk assessment of health and environmental effects of endocrine disruptors:a report of the U.S.EPA-sponsored workshop.Environmental health perspectives,1996,104 Suppl 4 715-740.
    [4]S.F.Arnold,M.K.Robinson,A.C.Notides,et al.A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens.Environmental health perspectives,1996,104(5):544-548.
    [5]K.Ramamoorthy,F.Wang,I.C.Chen,et al.Potency of combined estrogenic pesticides. Science (New York, N.Y, 1997, 275 (5298): 405-406.
    [6] T. Hayes, K. Haston, M. Tsui, et al. Herbicides: feminization of male frogs in the wild.Nature, 2002, 419 (6910): 895-896.
    [7] L.C. Folmar, M.J. Hemmer, N.D. Denslow, et al. A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquatic toxicology (Amsterdam, Netherlands),2002,60(1-2): 101-110.
    [8] J. Legler, L.M. Zeinstra, F. Schuitemaker, et al. Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environmental science & technology, 2002, 36 (20): 4410-4415.
    [9] G.G. Ying, B. Williams, R. Kookana. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environment international, 2002, 28 (3): 215-226.
    [10] L.C. Folmar, M. Hemmer, R. Hemmer, et al. Comparative estrogenicity of estradiol,ethynyl estradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. Aquatic toxicology (Amsterdam,Netherlands), 2000, 49 (1-2): 77-88.
    [11] H. Stopper, E. Schmitt, K. Kobras. Genotoxicity of phytoestrogens. Mutation research,2005,574(1-2): 139-155.
    [12] K.L. Howdeshell, A.K. Hotchkiss, K.A. Thayer, et al. Exposure to bisphenol A advances puberty. Nature, 1999, 401 (6755): 763-764.
    [13] M. Petrovic, D. Barcelo. Determination of anionic and nonionic surfactants, their degradation products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Analytical chemistry, 2000, 72 (19):4560-4567.
    [14] C.H. Huang, D.L. Sedlak. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental toxicology and chemistry /SETAC, 2001, 20(1): 133-139.
    [15] M. Petrovic, E. Eljarrat, M.J. Lopez de Alda, et al. Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. Journal of chromatography, 2002, 974 (1-2): 23-51.
    [16] A. Allen, and Doisy, E. A. . An ovarian hormone. Preliminary report on its location,extraction and partial purification and action in test animals. J. Am. Med. Assoc. ,1923,81 819-821.
    [17] A.M. Soto, C. Sonnenschein, K.L. Chung, et al. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environmental health perspectives, 1995, 103 Suppl 7 113-122.
    [18] W. Korner, V. Hanf, W. Schuller, et al. Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents. The Science of the total environment, 1999, 225 (1-2): 33-48.
    [19] B. Jimenez. Environmental effects of endocrine disruptors and current methodologies for assessing wildlife health effects. Trends.Anal. Chem., 1997, 16 596-606.
    [20] E.J.S. Routledge, J.P. . Estrogenic Activity of Surfactants and Some of their Degradation Products Using a Recombinant Yeast Screen. Environ. Toxicol. Chem,1996,15 241-248.
    [21] N.G. Coldham, M. Dave, S. Sivapathasundaram, et al. Evaluation of a recombinant yeast cell estrogen screening assay. Environmental health perspectives, 1997, 105 (7):734-742.
    [22] J. Sanseverino, R.K. Gupta, A.C. Layton, et al. Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Applied and environmental microbiology, 2005, 71 (8):4455-4460.
    [23] A.M. Soto, C. Sonnenschein. The role of estrogens on the proliferation of human breast tumor cells (MCF-7). Journal of steroid biochemistry, 1985, 23 (1): 87-94.
    [24] A.B. Ropero, P. Alonso-Magdalena, C. Ripoll, et al. Rapid endocrine disruption:environmental estrogen actions triggered outside the nucleus. The Journal of steroid biochemistry and molecular biology, 2006, 102 (1-5): 163-169.
    [25] E. Speir, Z.X. Yu, K. Takeda, et al. Competition for p300 regulates transcription by estrogen receptors and nuclear factor-kappaB in human coronary smooth muscle cells.Circulation research, 2000, 87 (11): 1006-1011.
    [26] S.O. Mueller. Xenoestrogens: mechanisms of action and detection methods. Anal Bioanal Chem, 2004, 378 (3): 582-587.
    [27] L.S. Birnbaum. Developmental effects of dioxins. Environmental health perspectives,1995, 103 Suppl 7 89-94.
    [28] M. Seifert, S. Haindl, B. Hock. Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens. Analytica Chimica Acta, 1999, 386 191-199.
    [1]T.Colborn,F.S.vom Saal,A.M.Soto.Developmental effects of endocrine-disrupting chemicals in wildlife and humans.Environmental health perspectives,1993,101(5):378-384.
    [2]J.P.Sumpter,S.Jobling.Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment.Environmental health perspectives,1995,103 Suppl 7 173-178.
    [3]R.White,S.Jobling,S.A.Hoare,et al.Environmentally persistent alkylphenolic compounds are estrogenic.Endocrinology,1994,135(1):175-182.
    [4]D.Crews,J.M.Bergeron,J.A.McLachlan.The role of estrogen in turtle sex determination and the effect of PCBs.Environmental health perspectives,1995,103 Suppl 7 73-77.
    [5]E.Carlsen,A.Giwercman,N.Keiding,et al.Declining semen quality and increasing incidence of testicular cancer:is there a common cause? Environmental health perspectives,1995,103 Suppl 7 137-139.
    [6]M.Seifert,S.Haindl,B.Hock.Development of an enzyme linked receptor assay(ELRA)for estrogens and xenoestrogens.Analytica Chimica Acta,1999,386 191-199.
    [7]A.M.Soto,C.Sonnenschein,K.L.Chung,et al.The E-SCREEN assay as a tool to identify estrogens:an update on estrogenic environmental pollutants.Environmental health perspectives, 1995, 103 Suppl 7 113-122.
    [8] T.A. Pham, Y.P. Hwung, D.P. McDonnell, et al. Transactivation functions facilitate the disruption of chromatin structure by estrogen receptor derivatives in vivo. The Journal of biological chemistry, 1991, 266 (27): 18179-18187.
    [9] S.F. Arnold, M.K. Robinson, A.C. Notides, et al. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental health perspectives, 1996, 104 (5): 544-548.
    [10] E.J.S. Routledge, J.P. . Estrogenic Activity of Surfactants and Some of their Degradation Products Using a Recombinant Yeast Screen. Environ. Toxicol. Chem,1996, 15 241-248.
    [11] L.E. Gray, Jr., W.R. Kelce, T. Wiese, et al. Endocrine Screening Methods Workshop report: detection of estrogenic and androgenic hormonal and antihormonal activity for chemicals that act via receptor or steroidogenic enzyme mechanisms. Reproductive toxicology (Elmsford, N.Y, 1997, 11 (5): 719-750.
    [12] J.R. Reel, I.J. Lamb, B.H. Neal. Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam Appl Toxicol, 1996, 34 (2):288-305.
    [13] M.D. Shelby, R.R. Newbold, D.B. Tully, et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environmental health perspectives, 1996, 104(12): 1296-1300.
    [14] Z.Z. Lv, M. Xu, Y.Y. Zhang. [Synthesis of BODIPY-FL-labeled phenylephrine and the determination of its biological activity.]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University, 2004, 36 (6): 623-625.
    [15]陈中举,张燕玲,黄金瑛.荧光标记生物大分子及其应用.国外医学生物医学工程分册,2004,27(6):348-352.
    [16]J.A.McLachlan,K.S.Korach.Symposium on estrogens in the environment,Ⅲ.Environmental health perspectives,1995,103 Suppl 7 3-4.
    [17]T.Toyo'oka,N.Tomoi,T.Oe,et al.Separation of 17 DL-amino acids and chiral sequential analysis of peptides by reversed-phase liquid chromatography after labeling with R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole.Analytical biochemistry,1999,276(1):48-58.
    [1] A. Aranda, A. Pascual. Nuclear hormone receptors and gene expression. Physiological reviews, 2001, 81 (3): 1269-1304.
    [2] D. Moras, H. Gronemeyer. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol, 1998, 10 (3): 384-391.
    [3] V. Giguere, A. Tremblay, G.B. Tremblay. Estrogen receptor beta: re-evaluation of estrogen and antiestrogen signaling. Steroids, 1998, 63 (5-6): 335-339.
    [4] E. Speir, Z.X. Yu, K. Takeda, et al. Competition for p300 regulates transcription by estrogen receptors and nuclear factor-kappaB in human coronary smooth muscle cells.Circulation research, 2000, 87 (11): 1006-1011.
    [5] Mclnerney EM, Weis KE, Sun J, et al. Transcription activation by the human estrogen recptor subtype β (ERP) studied with ERP and ERa receptor chimeras. Endocrinology,1998,139 4513-4522.
    [6] K. Paech, P. Webb, G.G. Kuiper, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science (New York, N.Y, 1997, 277(5331): 1508-1510.
    [7] S.M. Cowley, M.G. Parker. A comparison of transcriptional activation by ER alpha and ER beta. The Journal of steroid biochemistry and molecular biology, 1999, 69 (1-6): 165-175.
    [8] A.C. Notides, N. Lerner, D.E. Hamilton. Positive cooperativity of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78 (8): 4926-4930.
    [9] V. Kumar, P. Chambon. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell, 1988, 55 (1): 145-156.
    [10] M.E. Ankley G., Stahl R., Ankley G., Mihaich E., Stahl R., Tillitt D., Colborn T.,McMaster S. . Overview of a workshop on screening methods for detecting potential (anti-)estrogenic/androgenic chem icals in wildlife Environ Toxicol Chem,1998, 17 68-87.
    [11] C.M. Niemeyer, B. Ceyhan. DNA-Directed Functionalization of Colloidal Gold with Proteins This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. We thank Prof. D. Blohm for helpful discussions and generous support. Angewandte Chemie (International ed, 2001, 40 (19): 3685-3688.
    [12] N.L. Rosi, C.A. Mirkin. Nanostructures in biodiagnostics. Chemical reviews, 2005,105 (4): 1547-1562.
    [13] S.I. Stoeva, J.S. Lee, J.E. Smith, et al. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. Journal of the American Chemical Society, 2006, 128 (26): 8378-8379.
    [14] W.P. Faulk, G.M. Taylor. An immunocolloid method for the electron microscope.Immunochemistry, 1971, 8 (11): 1081-1083.
    [15] E.L. Romano, C. Stolinski, N.C. Hughes-Jones. An antiglobulin reagent labelled with colloidal gold for use in electron microscopy. Immunochemistry, 1974, 11 (8):521-522.
    [16] W.D. Geoghegan, G.A. Ackerman. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem, 1977,25(11): 1187-1200.
    [17] G. Danscher. Light and electron microscopic localization of silver in biological tissue.Histochemistry, 1981,71 (2): 177-186.
    [18] F. Spielberg, C.M. Kabeya, R.W. Ryder, et al. Field testing and comparative evaluation of rapid, visually read screening assays for antibody to human immunodeficiency virus. Lancet, 1989, 1 (8638): 580-584.
    [19] T.A. Taton, C.A. Mirkin, R.L. Letsinger. Scanometric DNA array detection with nanoparticle probes. Science (New York, N.Y, 2000, 289 (5485): 1757-1760.
    [20] R. Elghanian, J.J. Storhoff, R.C. Mucic, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science (New York, N.Y, 1997, 277 (5329): 1078-1081.
    [21] S.J. Park, T.A. Taton, C.A. Mirkin. Array-based electrical detection of DNA withv nanoparticle probes. Science (New York, N.Y, 2002, 295 (5559): 1503-1506.
    [22] C.A. Mirkin, R.L. Letsinger, R.C. Mucic, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382 (6592):607-609.
    [23] Z.L. Zhang, D.W. Pang, H. Yuan, et al. Electrochemical DNA sensing based on gold nanoparticle amplification. Analytical and bioanalytical chemistry, 2005, 381 (4):833-838.
    [24] L. Nie, J. Tang, H. Guo, et al. Colorimetric detection of polynucleotides on polypropylene slices. Anal Sci, 2004, 20 (3): 461-463.
    [25] J.J. Lah, D.M. Hayes, R.W. Burry. A neutral pH silver development method for the visualization of 1-nanometer gold particles in pre-embedding electron microscopic immunocytochemistry. J Histochem Cytochem, 1990, 38 (4): 503-508.
    [26] I. Fukuda, S. Nishiumi, Y. Yabushita, et al. A new southwestern chemistry-based ELISA for detection of aryl hydrocarbon receptor transformation: application to the screening of its receptor agonists and antagonists. Journal of immunological methods,2004,287(1-2): 187-201.
    [27] A.M. Soto, C. Sonnenschein, K.L. Chung, et al. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environmental health perspectives, 1995, 103 Suppl 7 113-122.
    [28] http://www.epa.gov/endo/pubs/edspoverview/edstac.htm.
    [29] J. Haggblad, B. Carlsson, P. Kivela, et al. Scintillating microtitration plates as platform for determination of [3H]estradiol binding constants for hER-HBD.BioTechniques, 1995, 18(1): 146-151.
    [30] M. Seifert, S. Haindl, B. Hock. Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens. Analytica Chimica Acta, 1999, 386 191-199.
    [31] S.D. Garrett, H.A. Lee, M.R. Morgan. A nonisotopic estrogen receptor-based assay to detect estrogenic compounds. Nature biotechnology, 1999, 17(12): 1219-1222.
    [32] M. Seifert. Luminescent enzyme-linked receptor assay for estrogenic compounds.Analytical and bioanalytical chemistry, 2004, 378 (3): 684-687.
    [33] E. Michelini, M. Mirasoli, M. Karp, et al. Development of a bioluminescence resonance energy-transfer assay for estrogen-like compound in vivo monitoring.Analytical chemistry, 2004, 76 (23): 7069-7076.
    [34] G. Ribas, E. Carbonell, A. Creus, et al. Genotoxicity of humic acid in cultured human lymphocytes and its interaction with the herbicides alachlor and maleic hydrazide.Environmental and molecular mutagenesis, 1997, 29 (3): 272-276.
    [35] B. Hauser, G. Schrader, M. Bahadir. Comparison of acute toxicity and genotoxic concentrations of single compounds and waste elutriates using the Microtox/Mutatox test system. Ecotoxicology and environmental safety, 1997, 38 (3): 227-231.
    [36] J. Roth. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochemistry and cell biology, 1996,106(1): 1-8.
    [1]T.M.Crisp,E.D.Clegg,R.L.Cooper,et al.Environmental endocrine disruption:an effects assessment and analysis.Environmental health perspectives,1998,106 Suppl 1 11-56.
    [2]R.J.Kavlock,G.P.Daston,C.DeRosa,et al.Research needs for the risk assessment of health and environmental effects of endocrine disruptors:a report of the U.S.EPA-sponsored workshop.Environmental health perspectives,1996,104 Suppl 4 715-740.
    [3]孙胜龙,环境激素与人类未来,化学工业出版社,北京,2004.12.
    [4]N.Olea,P.Pazos,J.Exposito.Inadvertent exposure to xenoestrogens.Eur J Cancer Prev,1998,7 Suppl 1 S17-23.
    [5]T.T.Song,S.Hendrich,P.A.Murphy.Estrogenic activity of glycitein,a soy isoflavone.Journal of agricultural and food chemistry,1999,47(4):1607-1610.
    [6]C.A.Adebamowo,E.Cho,L.Sampson,et al.Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer.International journal of cancer,2005,114(4):628-633.
    [7] A. Stoica, B.S. Katzenellenbogen, M.B. Martin. Activation of estrogen receptor-alpha by the heavy metal cadmium. Molecular endocrinology (Baltimore, Md, 2000, 14 (4):545-553.
    [8] H. Dechaud, C. Ravard, F. Claustrat, et al. Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids, 1999, 64 (5): 328-334.
    [9] T. Colborn, F.S. vom Saal, A.M. Soto. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental health perspectives, 1993, 101 (5):378-384.
    [10] S.H. Safe. Environmental and dietary estrogens and human health: is there a problem?Environmental health perspectives, 1995, 103 (4): 346-351.
    [11] X. Gao, B.K. Petroff, K.K. Rozman, et al. Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat. Toxicology, 2000, 147 (1): 15-22.
    [12] S. Katsuda, M. Yoshida, G. Watanabe, et al. Irreversible effects of neonatal exposure to p-tert-octylphenol on the reproductive tract in female rats. Toxicology and applied pharmacology, 2000, 165 (3): 217-226.
    [13] R. Bigsby, R.E. Chapin, G.P. Daston, et al. Evaluating the effects of endocrine disruptors on endocrine function during development. Environmental health perspectives, 1999, 107 Suppl 4 613-618.
    [14] R.R. Newbold, R.B. Hanson, W.N. Jefferson, et al. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis, 2000, 21 (7): 1355-1363.
    [15] R. Li, F.D. Gilliland, K. Baumgartner, et al. Hormone replacement therapy and breast carcinoma risk in Hispanic and non-Hispanic women. Cancer, 2002, 95 (5): 960-968.
    [16] J. Auger, J.M. Kunstmann, F. Czyglik, et al. Decline in semen quality among fertile men in Paris during the past 20 years. The New England journal of medicine, 1995,332 (5): 281-285.
    [17] R. White, S. Jobling, S.A. Hoare, et al. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994, 135 (1): 175-182.
    [18] S.F. Arnold, M.K. Robinson, A.C. Notides, et al. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental health perspectives, 1996, 104(5): 544-548.
    [19] M. Cutolo, R.L. Wilder. Different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases. Rheumatic diseases clinics of North America, 2000, 26 (4): 825-839.
    [20] S.A. Ahmed, B.D. Hissong, D. Verthelyi, et al. Gender and risk of autoimmune diseases: possible role of estrogenic compounds. Environmental health perspectives,1999, 107 Suppl 5 681-686.
    [21] N. Weisglas-Kuperus, T.C. Sas, C. Koopman-Esseboom, et al. Immunologic effects of background prenatal and postnatal exposure to dioxins and polychlorinated biphenyls in Dutch infants. Pediatric research, 1995, 38 (3): 404-410.
    [22] H. Stridh, M. Kimland, D.P. Jones, et al. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS letters, 1998, 429 (3):351-355.
    [23]M.M.Whalen,S.Ghazi,B.G.Loganathan,et al.Expression of CD 16,CD 18 and CD56 in tributyltin-exposed human natural killer cells.Chemico-biological interactions,2002,139(2):159-176.
    [24]H.Sakazaki,H.Ueno,K.Nakamuro.Estrogen receptor alpha in mouse splenic lymphocytes:possible involvement in immunity.Toxicology letters,2002,133(2-3):221-229.
    [25]P.J.Bushnell,D.C.Rice.Behavioral assessments of learning and attention in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl(PCB 126).Neurotoxicology and teratology,1999,21(4):381-392.
    [26]M.Petrovic,D.Barcelo.Determination of anionic and nonionic surfactants,their
    degradation products,and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry.Analytical chemistry,2000,72(19):4560-4567.
    [27]C.H.Huang,D.L.Sedlak.Analysis of estrogenic hormones in municipal wastewater
    effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry.Environmental toxicology and chemistry/SETAC,2001,20(1):133-139.
    [28]M.Petrovic,E.Eljarrat,M.J.Lopez de Alda,et al.Recent advances in the mass
    spectrometric analysis related to endocrine disrupting compounds in aquatic
    environmental samples.Journal of chromatography,2002,974(1-2):23-51.
    [29]董亮,封跃鹏,彭鸿俊.环境样品中PCBs的测定.中国环境监测,2002,18(1):352-358.
    [30]王正萍,周雯,环境有机污染物监测分析,化学工业出版社,北京,2002.
    [31]H.M.Kuch,K.Ballschmiter.Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range.Environmental science & technology,2001,35(15):3201-3206.
    [32]张立将,尹立红,浦跃朴.环境内分泌干扰物检测方法研究进展.环境与职业医学,2005,22 156-159.
    [33]张蕴晖,陈秉衡,郑力行.人体生物样品中邻苯二甲酸脂类的含量.中华预防医学杂志,2003,37(6):429-434.
    [34]米建萍,黎源倩、曾红燕,张继英.高效液相色谱法测定食品中大豆异黄酮.四川大学学报(医学版),2003,34(1):151-154.
    [35]Y.Wen,B.S.Zhou,Y.Xu,et al.Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography.Journal of chromatography,2006,1133(1-2):21-28.
    [36]S.Reddy,B.J.Brownawell.Analysis of estrogens in sediment from a sewage-impacted urban estuary using high-performance liquid chromatography/time-of-flight mass spectrometry.Environ Toxicol Chem,2005,24(5):1041-1047.
    [37]F.Regan,A.Moran,B.Fogarty,et al.Development of comparative methods using gas chromatography-mass spectrometry and capillary electrophoresis for determination of endocrine disrupting chemicals in bio-solids.J Chromatogr B Analyt Technol Biomed Life Sci,2002,770(1-2):243-253.
    [38]M.D.Shelby,R.R.Newbold,D.B.Tully,et al.Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays.Environmental health perspectives,1996,104(12):1296-1300.
    [39]A.M.Soto,C.Sonnenschein,K.L.Chung,et al.The E-SCREEN assay as a tool to identify estrogens:an update on estrogenic environmental pollutants.Environmental health perspectives,1995,103 Suppl 7 113-122.
    [40]王涛,高志贤.环境内分泌干扰物的检测.中国卫生检验杂志,2004,14(4):390-392.
    [41]郑丽舒,金一和,张颖花.二氧化钛纳米粒和雌二醇对小鼠子宫脏器系数和过氧化物酶活性的影响.中国工业医学杂志,2002,15(2):83-84.
    [42]E.J.Routledge,J.P.Sumpter.Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen.Environmental Toxicology and Chemistry,1996,15(3):241-248.
    [43]H.Hollert,M.Durr,R.Holtey-Weber,et al.Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout.Environ Sci Pollut Res Int,2005,12(6):347-360.
    [44]R.Bolger,T.E.Wiese,K.Ervin,et al.Rapid screening of environmental chemicals for estrogen receptor binding capacity.Environmental health perspectives,1998,106(9):551-557.
    [45]G.J.Parker,T.L.Law,F.J.Lenoch,et al.Development of high throughput screening assays using fluorescence polarization:nuclear receptor-ligand-binding and kinase/phosphatase assays.J Biomol Screen,2000,5(2):77-88.
    [46]N.Moncaut,F.L.Nostro,M.C.Maggese.Vitellogenin detection in surface mucus of the South American cichlid fish Cichlasoma dimerus (Heckel, 1840) induced by estradiol-17beta. Effects on liver and gonads. Aquatic toxicology (Amsterdam,Netherlands), 2003, 63 (2): 127-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700