Hox基因介导维生素A缺乏导致大鼠胚胎先天畸形的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.目的
     通过建立维生素A缺乏(vitamin A deficiency,VAD)及边缘性维生素A缺乏(marginally vitamin A deficiency,MVAD)雌性大鼠模型,观察不同程度维生素A缺乏对胚胎生长发育及先天畸形发生的影响,并通过孕早期补充适量维生素A观察干预效果;检测器官形成期胚胎组织5个Hox基因mRNA水平的表达;检测3种视黄酸受体(retinoic acid receptors,RARs)mRNA及蛋白水平的表达;俭测Hoxa5基因启动子上游DNA甲基化的程度及位点分布,阐明Hox基因介导维生素A缺乏导致大鼠胚胎发育毒性的分子机制,为维生素A缺乏引起先天畸形的防治提供理论依据。
     2.方法
     2.1动物模型建立及分组:通过饮食诱导建立维生素A缺乏及边缘性维生素A缺乏的雌性大鼠模型。将初断乳SD雌性大鼠按体重随机分为正常对照组(AN)、维生素A缺乏组(VAD)、边缘性维生素A缺乏组(MVAD),分别喂饲维生素A含量为0 IU/g、0.4 IU/g、4 IU/g的饲料。亲代鼠喂养10w后采集尾血,用高效液相色谱法(High Performance Liquid Chromatography,HPLC)检测血浆视黄醇浓度。将雌雄大鼠2:1合笼交配,次日晨查到阴栓者记为妊娠第0.5d(E0.5d)。将维生素A缺乏、边缘性维生素A缺乏两组交配成功的雌鼠在各组内按体重随机分为维生素A缺乏组(AD组)、维生素A缺乏妊娠0.5d(E0.5d)补充组(DS组)、边缘性维生素A缺乏组(AM组)、边缘性维生素A缺乏妊娠0.5d(E0.5d)补充组(MS组)。AD、AM组饲料同前,DS、MS组于E0.5d起喂饲维生素A含量为10 IU/g的饲料。
     2.2亲代大鼠及其E12.5d、E19.5d胚胎生长发育情况:记录各组大鼠体重、身长、尾长、每日进食量、受孕率、流产率、胚胎存活情况(活胎数、吸收胎数、死胎数);观察E12.5d胚胎的外部形态;观察E19.5d胚胎的外部形态、内脏和骨骼畸形情况。
     2.3 RT-PCR检测各组E12.5d胚胎组织中Hoxa1、Hoxa2、Hoxa5、Hoxa9、Hoxa10基因mRNA水平的表达。
     2.4应用RT-PCR及western blot检测各组E12.5d胚胎组织3种视黄酸受体(RARα、RARβ、RARγ)mRNA及蛋白水平的表达。
     2.5应用重亚硫酸盐测序方法(Bisufite Sequence PCR,BSP)检测各组E12.5d胚胎组织Hoxa5基因启动子上游DNA甲基化的分布及程度;应用RT-PCR及western blot分别检测E12.5d胚胎组织中Hoxa5 mRNA及蛋白水平表达的变化。
     3.结果
     3.1 AD组雌鼠在喂养10w后出现明显的维生素A缺乏症状,如生长缓慢、少食少动、反应淡漠、胡须脱落、后肢麻痹、双眼畏光,严重者眼周出现血性分泌物甚至失明。AM组未出现明显的维生素A缺乏症状。至交配时(10w末),AD组及AM组雌鼠血浆视黄醇浓度低于AN组,差异具有统计学意义(P<0.05,P<0.01),且AD组及AM组雌鼠血浆视黄醇浓度均分别低于0.07μmol/L、0.7μmol/L,表明维生素A缺乏及边缘性维生素A缺乏雌性大鼠模型已经建立成功。
     3.2至交配时,AD组亲代大鼠的体重、身长、食物利用率及受孕率均低于正常对照组,差异具有统计学意义(P<0.01,P<0.05);AM组雌鼠的上述各指标与正常对照组相比无无统计学差异。
     与AN组相比,AD组E12.5d和E19.5d胚胎存活率降低,死胎率及吸收胎率增加,差异具有统计学意义(P<0.01,P<0.05),而DS组的上述各指标与AN组相比,差异无统计学意义。与AN组相比,AM组的死胎率增加,活胎率降低,差异有统计学意义(P<0.01,P<0.05),吸收胎率的差异无统计学意义,而MS组的上述各指标的差异与AN组相比差异无统计学意义。
     E12.5d时,AD组胚胎形态较小、发育不良,至E19.5d时全为吸收胎。AM组大鼠胚胎的各生长发育指标(t重、身长和尾长)显著性低于AN组(P<0.01,P<0.05),死胎率及畸胎率均高于AN组,差异有统计学意义(P<0.01,P<0.05),主要畸形包括脑水肿、突眼、小眼、皮下出血、内脏出血、骨骼发育不良(骨化迟缓)、脊柱侧弯、中轴骨骼向前同源转化等。DS组MS组胚胎各指标与AN组均无统计学差异。
     3.3 AD组E12.5d胚胎组织中Hoxa1、Hoxa2、Hoxa5、Hoxa9、Hoxa10基因mRNA水平的表达低于AN组(P<0.01,P<0.05);AM组E12.5d胚胎组织中Hoxa1、Hoxa2、Hoxa5基因mRNA水平的表达低于AN组(P<0.01,P<0.05),而Hoxa9、Hoxa10基因mRNA水平表达与AN组比较无统计学差异。
     3.4 AD组E12.5d胚胎组织中3种视黄酸受体(RARα、RARβ、RARγ)基因mRNA及蛋白水平的表达均低于AN组(P<0.01,P<0.05);AM组E12.5d胚胎组织中RARβ、RARγ基因mRNA及蛋白水平的表达低于AN组(P<0.01,P<0.05),而RARαmRNA及蛋白水平的表达与AN组比较无统计学差异。
     3.5 AD组及AM组E12.5d胚胎组织中Hoxa5基因启动子上游500 bp 34个甲基化位点的甲基化程度明显高于AN组与补充组(DS组和MS组),异常的甲基化位点多集中于9~(th)-10~(th)、12~(th)-16~(th)、20~(th)-21~(st)三个区域。
     4.结论
     维生素A对胚胎的正常发育至关重要。维生素A缺乏对胚胎具有显著的发育毒性,不能维持胚胎完整的发育过程,在妊娠中后期就可导致胚胎死亡;边缘性维生素A缺乏对胚胎具有较强的发育毒性,可导致胚胎生长发育迟缓和先天畸形,但亲代大鼠未见明显的缺乏症状,具有一定的隐蔽性;孕早期补充适量维生素A可有效改善维生素A缺乏及边缘性维生素A缺乏导致的胚胎发育毒性;维生素A缺乏及边缘性维生素A缺乏可能通过干扰视黄酸受体的正常表达,从而抑制Hox基因启动子上游区域在胚胎发育过程中的去甲基化作用,致使Hox基因在转录水平和翻译水平下调表达从而产生对胚胎的发育毒性。
     5.创新点
     5.1通过研究不同程度维生素A缺乏对大鼠胚胎视黄酸受体和多个Hox基因表达的影响,全面系统地探讨了维生素A缺乏特别是边缘性维生素A缺乏导致胚胎先天畸形的分子机理,完善了维生素A缺乏导致胚胎先天畸形的理论。
     5.2 DNA甲基化是胚胎发育过程中重要的一种表观遗传修饰。本次研究利用重亚硫酸盐测序法系统地检测了Hoxa5基因启动子上游区甲基化的程及度分布,首次揭示了维生素A缺乏可能干扰胚胎发育过程中去甲基化的作用,而导致胚胎多个系统的先天畸形;
Objectives:
     Through the establishment of different levels of vitamin A deficiency animalmodel, we observed the the teratogenicity of complete vitamin A deficiency andmarginal vitamin A deficiency and the preventive effects of vitamin A supplement inearly pregnancy on embryonoic growth and developmet. We detected the effects ofdifferent levels of vitamin A deficiency and supplement on the expreesion ofhomeobox genes (Hox genes) at mRNA levels; we also detected the expression ofretinoic acid receptors (RARs) at mRNA and protein levels; meanwhile, we examinedthe DNA methylation pattern in the regulatory region of Hoxa5 gene. This studyaimed to elucidate the the molecular mechanism of the mediation of Hox genes in theembryonic teratogenicity of vitamin A deficiency and offered theoretical foundationof the prevention of congential malformation induced by vitamin A deficiency.
     Materials and Methods:
     1. We developed vitamin A deficient and marginal vitamin A deficient female ratmodel and experiment assignment. Weanling female SD rats were assigned into 3groups and given experiment diet containing different doses of vitamin A. Thevitamin A concentrations were 0 IU/g diet, 0.4 IU/g diet and 4 IU/g diet, respectively.10 weeks later, serum retniol concentration of female rat was examined. Then the rat were mated (female: male=2: 1) and the morning of vaginal plug positive was takenas embryonic day 0.5 (E0.5). The pregnant rats were then subdivided into 5 groups:vitamin A normal group (AN), completely vitamin A-deficient group (AD), vitamin Adeficient-supplement at E0.5d group (DS), marginally vitamin A-deficient group(AM), and marginally vitamin A deficient-supplement at E0.5d group (MS). Pregnantrats in group DS and group MS were fed diet containing vitamin A 10 IU/g dietstarted from E0.5 day.
     2. We observed the growth and development of both female rats and embryos ofE12.5d and E19.5d, including the conception rate, abortion rate and embryonicdevelopment. At E19.5d, gross weight of placenta, average placenta weight, the bodyweight, body length and tail length of the fetuses were measured; the malformation ofexternal appearance, internal organs and skeleton of the fetuses were examined.Meanwhile, the survival and morphogenesis of E12.5d and E19.5d embryos wererecorded.
     3. In order to shed the light on the important mediation of Hox genes in theeffects of vitamin A deficiency on embryonic development, E12.5 embryos were usedfor the analysis of Hox genes mRNA expression by real time RT-PCR.
     4. We use the real time RT-PCR and western blot to detect the mRNA andprotein expression of retinoic acid receptors in order to elucidate the possibility thatvitamin A deficency might disturb the regularly expression of RARs and thusdown-regulated the important target genes, Hox genes' expression.
     5. To seek the association between the changes of DNA methylation pattern ofHox genes and the teratogenicity of vitamin A deficiency, we use the bisulfitesequence PCR to detect the DNA methylation of regulatory region of Hoxa5.
     Results:
     1. After 10 weeks, female rats of CVAD group exhibited an array of vitamin Adeficient symptoms, as were appetite loss, weight loss, loss of whiskers, patches offur, ocular porphyrin deposits and depression in response to external stimuli, whilerats of normal group and group MVAD exhibited normal appearance. Serum retinol concentration of pregnant rats of group CVAD and MVAD group was less than 0.7μmol/, indicating that both vitamin A-deficient and marginal vitamin A-deficient ratmodels were successfully developed.
     2. At 10 weeks, an obvious reduce of gross weight of placenta, average placentaweight, body weight, body length gain, food utilization rate and conception rate wasobserved in CVAD female rat (P<0.01, P<0.05). There was no significantdifference in other growth and development index. No significant difference wasobserved in MVAD group compared to normal group. Compared to normal group,abortion rate of pregnant rat, incidence rate of dead or absorption of E12.5d andE19.5d embryos in CVAD group was significantly higher; while survival rate wassignificantly lower (P<0.01). There was no difference in supplement groupcompared to normal group. At E12.5d, the embryos in VAD group weremaldeveloped than normal group. At E19.5d, the embryos in CVAD group were allabsorbed. There was significant difference in the developmental index including bodyweight, body length and tail length, incidence rate of dead embryos and abnormalembryos in MVAD group compared to normal group and supplement group (P<0.01, P<0.05), and obvious malformation of external appearance, internal organsand skeleton of the fetuses were observed, such as encephaledema, exophthalmos,microphthalmos, subcutaneous hemorrhage, internal organs hemorrhage, bonedeformity (dysostosis, short rib, et al), scoliolosis. There was no significant differencein the abnormity rate of MVAD group compared to normal group. The embryos innormal group and supplement group appeared normal.
     3. The results of real tiome RT-PCR demonstrated that Hox genes near 3' endmRNA expression level of E12.5 embryos was down-regulated by complete vitaminA deficiency and marginal vitamin A deficiency (P<0.01, P<0.05), while the Hoxgenes near 5' end exhibited no response to vitamin A deficiency.
     4. The results of real tiome RT-PCR and western blot demonstrated thatcomplete vitamin A deficiency could suppressed the mRNA and protein expression ofRARs (P<0.01, P<0.05) while the expression of RARβand RARγwere down-regulated by marginal vitamin A deficiency (P<0.01, P<0.05) while RARα'sexpression had no difference relative to vitamin A normal and supplement groups.
     5. The distrubition and level of DNA methylation in near 500bp nucleotide basesin regulatory region of Hoxa5 of complete vitamin A deficiency and marginal vitaminA deficiency were significantly different from the vitamin A normal and supplementgroups. The DNA methylation site in 34 methylated sites of vitamin A deficnecygroups were focused on 9~(th)-10~(th)、12~(th)-16~(th)、20~(th)-21~(st) regions.
     Conclusions
     Complete vitamin A deficiency induces growth retardation, lower reproductivecapacity and teratogenicity of embryonic development. Marginal vitamin Adeficiency also induces embryonic congential malformation. Supplement withvitamin A at early stage of pregnancy could reverse these changes. Thedown-regulation of embryonic Hox genea near 3' end mRNA expression is animportant molecular mechanism of abnormal embryonic development by vitamin Adeficiency. The interruption of mRNA and protein expreesion of RARs and DNAmethylation pattern of Hox genes at regulatory region might be further explanation ofthe down-regulation of Hox genes.
引文
1.周子薪.维生素A缺乏的流行病学调查.国外医学社会医学分册.2001,18:74-77.
    2. Macayran JF, Doroshow RW, Phillips J, et al. PAGOD syndrome: eighth case and comparison to animal models of congenital vitamin A deficiency. Am J Med Genet. 2002,108:229-234.
    3. WHO/UNICEF/USAID/Helen Keller International/IVACG. Control of vitamin A deficiency and xerophthahnia: report of a joint WHO/UN|CEF/USAID/Helen Keller International/IVACG meeting. WHO Technical Report Series 672: World Health Organization 1982, Geneva, Switzerland
    4.全国提高儿童生命质量学术会议.亚临床状态维生素A缺乏的防治方案(试行).中华儿科杂志.1995,33:201-202.
    5. Keith P, West J R. Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr. 2002,132(S): 2857-2866.
    6. Sommer A, Davidson F R. Assessment and control of vitamin A deficiency: the Annecy accords. J Nutr. 2002,132:2845-2849.
    7.李立明,饶克勤,孔灵芝等.中国居民2002年营养与健康状况调查.中华流行病学杂志.2005,26:478-484.
    8.任霞.维生素A与初生缺陷的研究进展.中国生育健康杂志.2004,15:372-375.
    9. Hale F. The relation of vitamin A to anophthahnos in pigs. Am J Ophthalmol. 1935,18:1087-1093.
    10. Hale F. Relation of maternal vitamin A deficiency to microphthahnia n pigs. Texas State J Med. 1937,33:228-232.
    11. Mason KE. Foetal death, prolonged gestation, and difficult parturition in the rat as a result of vitamin A deficiency. Am J Anat. 1935,57:303-349.
    12. Thompson JN, Howell JM, Pitt GAJ, et al. The biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br J Nutr. 1969,23:471-490.
    13. Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency: Effects of restoration of vitamin A at various times during gestation. Am J Anat. 1953,92:189-217.
    14. Kochhar DM, Christian MS. Tretinoin: a review of the nonclinical developmental toxicology experience. J Am Acad Dermato. 1997,136 (S): 47-59.
    15. Kochhar DM, Jiang H, Penner JD, et al. The use of a retinoid receptor antagonist in a new model to study vitamin A-dependent developmental events, hit J DevBiol. 1998,42:601-608. IB. Moore T. Vitamin A. New York: Elsevier, 1957, 897-821.
    17. Morriss GM, Steele CE. Comparison of the effects of retinal and retinoic acid on postimplantation rat embryos in vitro. Teratology. 1972,15: 109-119.
    18. Nau H, Chahoud I, Dencker L, et al. Teratogenicity of vitamin A and retinoids. In:Vitamin A in Health and Disease, edited by R. Blomhoff. New York: Dekker,1994.615-664.
    19. Rosa FW. Retinoid embryopathy in humans. In: Retinoids in Clinical Practice.The Risk Benefits Ratio, edited by G. Koren. New York: Dekker, 1993.77-109.
    20. Shenefelt RE. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment.Teratology. 1972. 5:103-118.
    21. Zile MH. Avian embryo as a model for retinoid function in early development. In:Retinoids. Berlin: Springer-Verlag, 1999. 443-464.
    22. White JC, Shankar VN, Highland M, et al. Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding phaemacological level of all-trans-retinoic acid. Proc Natl Acad Sci USA.1998,65:13459-13464.
    23. White JC, Highland M, Kaiser M, et al. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol. 2000,220:263-284.
    24. White JC, Margaret H, Clagett-Dame M. Abnormal development of the sinuatrial venous valve and posterior hindbrain may contribute to late fetal resorption of vitamin A-deficient rat embryos. Teratology. 2000,62:374-384.
    25. Chambon P. The molecular and genetic dissection of the retinoid signaling pathway. Recent Prog Horm Res. 1995,50: 317-332.
    26. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995,83: 835-839.
    27. Giguere V. Retinoic acid receptors and cellular retinoid binding proteins:complex interplay in retinoid signaling. Endocr Rev. 1994,15:61-79.
    28. Dolle P, Ruberte E, Leroy P, et al. Retinoic acid receptorsand cellular retinoid binding proteins. I. A systematic study of their differentialpattem of transcription during mouse organogenesis. Development. 1990,110:1133-1151.
    29. Ruberte E, Dolle P, Chambon P, et al. Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcriptionduring early morphogenesis in mouse embryos. Development. 1991,111:45-60.
    30. Ruberte E, Friederich V, Chambon P, et al. Retinoic acid receptors andcellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development. 1993,118:267-282.
    31. Langston AW, Gudas LJ. Identification of a retinoic acid responsive enhancer 3'of the murine homeobox gene Hox-1.6. Mech Dev. 1992,38:217-227.
    32. Popped H, Featherstone MS. Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol Cell Biol. 1993,13:257-265.
    33. Marshall H, Studer M, Popperl H, et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature.1994,370:567-571.
    34. Doerksen LF, Bhattacharya A, Kannan P, et al. Functional interaction between a RARE and an AP-2 binding site in the regulation of the human HOX A4 gene promoter. Nucleic Acids Res. 1996,24:2849-2856.
    35. Morrison A, Moroni MC, Ariza-McNaughton L,et al. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development. 1996,122:1895-907.
    36. Langston AW, Thompson JR, Gudas LJ. Retinoic acid-responsive enhancerslocated 3' of the Hox A and Hox B homeobox gene clusters. J Biol Chem.1997,272:2167-3175.
    37. Huang D, Chen SW, Gudas LJ. Analysis of two distinct retinoic acid response elements in the homeobox gene Hoxbl in transgenic mice. Dev Dyn. 2002,223:353-70.
    38. Lewis E B. A gene complex controlling segmentation in Drosophila. Nature. 1978,276: 565-570.
    39. Carrasco AE, McGinnis W, Gehring WJ, et al. Cloning of a X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell. 1984,37:409-414.
    40. Gollger JA, Gudas LJ. Mouse F9 teratocarcinoma stem cells expressing the stably transfected homeobox gene Hox 16 exhibit an altered morphology. Genes Exp 1992,2:147-160.
    41. Gudas LJ. Retinoic acid and teratocarcinoma. Semin Dev Biol. 1991,2:171-179.
    42. Simerone A, Acampora D, Nigro V, et al. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells.MechDev. 1991,33:215-227.
    43. Ford HL. Homeobox genes: a link between development, cell cycle, and cancer?. Cell Biol Int. 1998,22:397-400.
    44. Maroulakou IG, Spyropoulos DD. The study of HOX gene function in hematopoietic, breast and lung carcinogenesis. Anticancer Res. 2003,23:2101-2110.
    45. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992,68:283-302.
    46. Scott M. Vertebrate homeobox gene nomenclature. Cell. 1992,71:551-553.
    47. Godsave S, Dekker EJ, Holling T, et al. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol. 1994,166:465-476.
    48. Kramlauf R. Hox genes in vertebrate development. Cell. 1994,78:191-201.
    49. Mcginnis W, Kramlauf R. Homeobox genes and axial patterning. Cell. 1992,68:283-302.
    50. Roelen B, Wim F, Sylvie D, et al. Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev. 2002,119: 81-90.
    51. Cantile M, Pettinato G, Procino A, et al. In vivo expression of the whole Hox gene network in human breast cancer, Eur J Cancer. 2003,39:257-264.
    52.曹更生,柳爱莲,李宁.隐藏在基因组中的遗传信息.遗传.2004,26:714-720.
    53.郑志红,孙开来.DNA甲基化与基因表达调控.国外医学遗传学分册.2002,25:4-7.
    54.薛京伦,汪旭,吴超群等.表观遗传学-原理、技术与实践.上海,上海科学技术出版社,2006.
    55. Barbara A. Vitamin A deficiency disorders: international efforts to control a preventable "Pox" functions and actions of retinoids and carotenoids: Building on the Vision of James Allen Olson 231s-236s
    56. Melissa Miller, Jean Humphrey et al. Why do children become vitamin A deficient? Proceedings of the XX international vitamin A consultative groups meeting.2867s-2879s
    57. Kelleher SL, L(o|¨)nnerdal B. Low vitamin a intake affects milk iron level and iron transporters in rat mammary gland and liver. J Nutr. 2005;135:27-32.
    58. Margaret Clagett-Dame, Hector F. Deluca. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr. 2002,22:347-381.
    59. Editorial, Vitamin A and the developing embryo. Postgrad Med J. 2001,77: 489-491.
    60. Sommer A, West KP. Vitamin A deficiency: health, survival, and vision. New York Oxford University Press. 1996, 11.
    61. Gavalas A, Ruhrberg C, Livet J, et al. Neuronal defects in the hindbrain of Hoxal, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Devel. 2003,130:5663-5679.
    62. Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993,75:1317-31.
    63. Rijli FM, Mark M, Lakkaraju S,et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993,75:1333-1349.
    64. Patel CV, Gorski DH, LePage DF, et al. Molecular cloning of a homeobox transcription factor from adult aortic smooth muscle. J Biol Chem. 1992,267:26085-26090.
    65. Tan DP, Ferrante J, Nazarali A,et al. MurineHox-1.11 homeobox gene structure and expression. Proc Natl Acad Sci U S A. 1992,89:6280-6284.
    66. Fromental-Ramain C, Warot X, Lakkaraju S, et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development. 1996,122:461-72.
    67. Kondo T, Duboule D. Breaking colinearity in the mouse HoxD complex. Cell. 1999;97:407-417.
    68. Kondo T, Dolle P, Zakany J, et al. Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development. 1996; 122(9):2651-9.
    69. Kondo T, Zakany J, Innis JW, et al. Of fingers, toes and penises. Nature. 1997,390:29.
    70. 谢妮.同源盒基因与神经系统发育异常.中国医师杂志.2004,6:858-859.
    71. Kaiser ME, Merrill RA, Stein AC, et al. Vitamin Adeficiency in the late gastrula stage rat embryo results in a one to two vertebral anteriorization that extends throughout the axial skeleton. Dev Biol. 2003,257:14-29.
    72. Jian Cui, Jean-Jacques, Michaille, et.al. Retinoid receptors and vitamin A deficiency: differential patterns of transcription during early avian development and the rapid induction of RARs by retinoic acid . Dev. Bio. 2003,260: 496-511.
    73. Motone Kuriyama, Akikazu Udagawa, Shinya Yoshimoto, et al. DNA Methylation Changes During Cleft Palate Formation Induced by Retinoic Acid in Mice. Cleft Palate-Craniofacial Journal. 2008, 45:545-551.
    74. Hershko AY, Kafri T, Fainsod A, et al. Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene. 2003,302:65-72.
    75. Sachan M, Raman R. Developmental methylation of the regulatory region of HoxB5 gene in mouse correlates with its tissue-specific expression. Gene. 2006,380:151-158.
    1. Hofmann C, Eichele G. Biology, chemistry, and medicine. In: The Retinoids, edited by M. B. Sporn, A. B. Roberts, and D. S. Goodman. New York: Raven, 1994, p. 387-441.
    2. Brockes JP. Retinoids, homeobox genes, and limb morphogenesis.Neuron 1989,2: 1285-1294.
    3. Wellik DM, Deluca HF. Retinol in addition to retinoic acid is required for successful gestation in vitamin A-deficient rats. BiolReprod. 1995,53: 1392-1397.
    4. Nau H, Chahoud I, Dencker L, et al. Teratogenicity of vitamin A and retinoids. In: Vitamin A in Health and Disease, edited by R. Blomhoff. New York: Dekker, 1998:615-563.
    5. Zile MH. Vitamin A and embryonic development: an overview. J Nutr. 1998,128 (S): 455S-458S,.
    6. Dickman ED, Thaller C, Smith Sm. Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development.1997,124:3111-3121.
    7. DeLuca LM, Kosa K, Andreola F. The role of vitamin A in differentiation and skin carcinogenesis. J Nutr Biochem.1997,8:426-437.
    8. DeLuca LM. Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J. 1991,5: 2924-2933.
    9. Giguere V, Ong ES, Segui P, et al. Identification of a receptor for the morphogen retinoic acid. Nature. 1987,330:624-629.
    10. Petkovich M, Brand NJ, Krust A, et al. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987,330:444-450.
    11. Levin AA, Sturzenbecker LJ, KazmerS, et al. 9-cis Retinoic acid stereoisomer binds and activates the nuclear receptor RXRa. Nature. 1992,355:359-361.
    12. Hale F. Relation of maternal vitamin A deficiency to microphthalmia n pigs. Texas. State J Med. 1937,33:228-232.
    13. Mason KE. Foetal death, prolonged gestation, and difficult parturition in the rat as a result of vitamin A deficiency. Am J Anat. 1935,57:303-349.
    14. Thompson JN, Howell JM, Pitt GAJ, et al. The biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo.BrJ Nutr 1969.23:471-490.
    15. Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat. 1953.92:189-217.
    16. Zile MH. Function of Vitamin A in vertebrate embryonic development. J Nutr. 2001,131:705-708.
    17. Cohilan SQ. Excessive intakes of vitamin A as a cause of congential anomalies in the rat. Science 1953,117:535-536.
    18. Kochhar DM, Christian MS. Tretinoin: a review of the nonclinical developmental toxicology experience. J Am Acad Dermato.1997,136S): S47-S59.
    19. Kochhar DM, Jiang H, Penner JD, et al. The use of a retinoid receptor antagonist in a new model to study vitamin A-dependent developmental events. Int J Dev Biol.1998,42: 601-608.
    20. Moore T. Vitamin A. New York: Elsevier, 1957, p. 897-821.
    21. Morriss GM, Steele CE. Comparison of the effects of retinal and retinoic acid on postimplantation rat embryos in vitro. Teratology. 1972,15:109-119.
    22. Nau H, Chahoud I, Dencker L, et al. Teratogenicity of vitamin A and retinoids. In: Vitamin A in Health and Disease, edited by R. Blomhoff. New York: Dekker,1994, p.615-664.
    23. Rosa FW. Retinoid embryopathy in humans. In: Retinoids in Clinical Practice.The Risk Benefits Ratio, edited by G. Koren. New York: Dekker, 1993, 77-109.
    24. Shenefelt RE. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment.Teratology. 1972,5:103-118.
    25. Zile MH. Avian embryo as a model for retinoid function in early development. In:Retinoids. Berlin: Springer-Verlag, 1999, p. 443-464.
    26. Wellik DM, DeLuca HF. Metabolites of all-trans-retinol in day 10 conceptuses of vitamin A-deficient rats. Arch Biochem Biophys. 1996,330:355-362.
    27. Blomhoff R, Green MH, Norum KR. Vitamin A: Physiological and biochemical processing. Annu Rev Nutr. 1992,12:37-57.
    28. Palczewski K, Saari JC. Activation and inactivation steps in the visual transduction pathway. Curr. Opin. Neurobiol. 1997,7:500-504.
    29. Blaner WS, Olson JA. Retinol and retinoic acid metabolism. In the retinoids, Biology. Chemistry, and Medicine, ed.MB Sporn, AB Roberts, DS Goodman,5:230-255. New York: Raven. 2nd ed.
    30. Arens JF, van Dorp DA. Activity of 'vitamin A-acid' in the rat. Nature.1946,158:622-623.
    31. Boncinelli E, Simeone A, Acampora D, et al. HOX gene activation by retinoic acid. Trends Genet. 1991,7:329-334.
    32. Balkan W, Colbert M, Bock C, et al. Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc Natl Acad Sci USA. 1992,89:3347-3351.
    33. Rossant J, Zirngibl R, Cado D, et al. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 1991,5:1333-1344.
    34. Mccaffery P, Drager UC. Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA. 1994,91:7194-7197.
    35. Moss JB, Xavier-neto J, Shapiro MD, et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol. 1998,199:55-71.
    36. Niederreither K, Mccaffery P, Drager UC, et al. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev. 1997,62: 67-78.
    37. Zhao D, Mccaffery P, Ivins KJ, et al. Molecular identification of a major retinoicacid- synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur J Biochem. 1996,240:15-22.
    38. Drager UC, Mccaffery P. Retinoic acid and development of the retina. Prog Retinal Eye Res. 1997,16:323-346.
    39. Mccaffery P, Drager UC. Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA. 1994,91:7194-7197.
    40. Moss JB, Xavier-neto J, Shapiro MD, et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol.1998,199:55-71.
    41. Mccaffery P, Wagner E, O'neil J, et al. Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression.Mech Dev. 1999,85:203-213.
    42. Tickle C, Alberts B, Wolper L, et al. Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature. 1982,296:564-566.
    43. Chen H, Namkung MJ, Juchau MR. Biotransformation of all-trans-retinol and all-trans-retinal to all-trans-retinoic acid in rat conceptal homogenates. Biochem Pharmacol. 1995,50:1257-1264.
    44. Duester G. A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step.Alcohol Clin Exp Res. 1991,15:568-572.
    45. Pullarkat RK. Hypothesis: prenatal ethanol-induced birth defects and retinoic acid. Alcohol Clin Exp Res. 1991,15:565-567.
    46. Zachman RD, Grummer MA. Inhibition of retinoic acid synthesis and its implications in fetal alcohol syndrome (FAS). Alcohol Clin Exp Res.1992,16:141-141.
    47. Niederreither K, Subbarayan V, Dolle P, et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet.1999,21:444-448.
    48. Hale F. The relation of vitamin A to anophthalmos in pigs. Am J Ophthalmol.1935,18:1087-1093.
    49. Evans HM. The effect of inadequate vitamin A on the sexual physiology of the female. J. Biol.Chem. 1928,77:651-654.
    50. Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J. Anat. 1953,92:189-217.
    51. Wilson JG, Warkany J. Malformations in the genitor-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 1948,83:357-407.
    52. Wilson JG, Warkany J. Aortic-arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J. Anat. 1949, 85:113-155.
    53. Maclean G, Abu-Abed S, Dolle P,et al. Cloning of a novel retinoic acid metabolizing cytochrome P450, Cyp26Bl and Comparative expression analysis with Cyp26A1 during early murine development. Mech. Dev. 2001,107:195-201.
    54. White JC, Shankar VN, Highland M, et al. Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc Natl Acad Sci USA. 1998,95:13459-13464
    55. White JC, Highland M, Kaiser M, et al. Vitamin A deficiency results the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol. 2000,220:263-284.
    56. White JC, Highland M, Clagett-Dame M. Abnormal development of the sinuatrialvenous valve and posterior hindbrain may contribute to late fetal resoiption of vitamin A-deficient rat embryos. Teratology. 2000,62:374-84.
    57. Heine UI, Roberts AB, Mounoz EF, et al. Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch (Cell Pathol). 1985,50:135-152.
    58. Maden M. Vitamin A and the developing embryo. Postgrad Med. J. 2001,77:489-491.
    59. Zile MH. Function of vitamin A in vertebrate embryonic development. J nutr. 2001,131:705-708.
    60. Dersch H, Zile MH. Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol.1993,160:424-433.
    61. Dong D, Zile MH. Endogenous retinoids in the early avian embryo. Biochem Biophys Res Commun. 1995,217:1026-1031.
    62. Chen YP, Dong D, Kostetskii I, et al. Hensen's node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of sonic hedgehog (shh). Dev Biol. 1996,173:256-264.
    63. Maden M, Gale E, Kostetskii I, et al. Vitamin Adeficient quail embryos have half a hindbrain and other neural defects. Curr Biol. 1996,6:417-426.
    64. Maden M, Gale E, Zile M. The role of vitamin A in the development of the central nervous system. J Nutr. 1998,128(S):471-475.
    65. Twal W, Roze L, Zile MH. Anti-retinoic acid monoclonal antibody localizes all-trans-retinoic acid in target cells and blocks normal development in early quail embryo. Dev Biol. 1995,168:225-234.
    66. Thompson JN, Howell JM, Pitt GAJ, et al. The biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo.BrJNutr. 1969,23:471-490.
    67. Thompson JN, Howell JM, Pitt GA.Vitamin A and reproduction in rats. Proc R. Soc. London. 1964,159:510-535.
    68. Fiorella PD, Napoli JL. Microsomal retinoic acid metabolism. Effects of cellular retinoic acid-binding protein (type Ⅰ) and C18-hydroxylation as an initial step. J.Biol. Chem. 1994,269:10538-10544.
    69. Gaub MP, Lutz Y, Ghyselinck NB, et al. Nuclear detection of cellular retinoic acid binding protein Ⅰand Ⅱ with new antibodies. Histochem Cytochem.1998,46:1103-1111.
    70. Grun F, Hirose Y, Kawauchi S, et al. Aldehyde dehydrogenase 6, a cytosolic retinaldehyde dehydrogenase prominently expressed in sensory neuroepithelia during development. J Biol Chem. 2000,275:41210-41218.
    71. Gustafson AL, Donovan M, Annerwall E, et al. Nuclear import of cellular retinoic acid-binding protein type I in mouse embryonic cells. Mech Dev.1996,58:27-38.
    72. Lampron C, Rochette-Egly C, Gorry P, et al. Mice deficient in cellular retinoic acid binding protein Ⅱ(CRABP Ⅱ) or in both CRABPⅠ and CRABPⅡ are essential normal. Dev. 1995,121:539-548.
    73. Chambon P. The molecular and genetic dissection of the retinoid signaling pathway. Recent Prog Horm Res. 1995,50:317-332.
    74. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995,83:835-839.
    75. Werner EA, Deluca HF. Metabolism of a physiological amount of all-trans-retinol in the vitamin A-deficient rat. Arch Biochem. Biophys.2001,393:262-270.
    76. Heyman RA, Mangelsdorf DJ, Dyck JA, et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992,68:397-406.
    77. Li E, Sucov HM, Lee KF, et al. Normal development and growth of mice carrying a targeted disruption of the al retinoic acid receptor gene. Proc. Natl.Acad. Sci. USA. 1993,90:1590-1594.
    78. Lufkin T, Lohnes D, Mark M, et al. High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice. Proc Natl Acad Sci USA.1993,90:7225-7229.
    79. Mendelsohn C, Mark M, Dolle P, et al. Retinoic acid receptor (32 (RAR(32) null mutant mice appear normal. Dev Boil. 1994,166:246-258.
    80. Lohnes D, Kastner P, Dierich A, et al. Function of retinoic acid receptor y in the mouse. Cell. 1993,73:643-658.
    81. Luo J, Pasceri P, Conlon RA, et al. Mice lacking all isoforms of retinoic acid receptor (3 develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech Dev. 1995,53:61-71.
    82. Lewis E B. A gene complex controlling segmentation in Drosophila. Nature. 1978,276:565-570.
    83. Carrasco AE, McGinnis W, Gehring WJ, et al. Cloning of a X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell. 1984,37:409-414.
    84. Gollger JA, Gudas LJ. Mouse F9 teratocarcinoma stem cells expressing the stably transfected homeobox gene Hox 16 exhibit an altered morphology. Genes Exp. 1992,2:147-160.
    85. Gudas LJ. Retinoic acid and teratocarcinoma. Semin Dev Biol. 1991,2:171-179.
    86. Simerone A, Acampora D, Nigro V, et al. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Dev. 1991,33:215-227.
    87. Ford HL. Homeobox genes: a link between development, cell cycle, and cancer?. Cell Biol Int. 1998,22:397-400.
    88. Maroulakou IG, Spyropoulos DD. The study of HOX gene function in hematopoietic, breast and lung carcinogenesis. Anticancer Res.2003,23:2101-2110.
    89. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell.1992,68:283-302.
    90. Scott M. Vertebrate homeobox gene nomenclature. Cell. 1992,71:551-553.
    91. Godsave S, Dekker EJ, Holling T, et al. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev Biol. 1994,166:465-476.
    92. Kramlauf R. Hox genes in vertebrate development. Cell. 1994,78:191-201.
    93. Mcginnis W, Kramlauf R. Homeobox genes and axial patterning. Cell.1992,68:283-302.
    94. Dursto AJ, Van Der Wees J, Pijnappel WWM, et al. Retinoid signalling and axial patterning during early vertebrate embryogenesis. Cell Mol Life Sci.1997,53:339-349.
    95. Marshall H, Studer M, Popperl H, et al. A conserved retinoic acid response element required for early expression of the homeobox gene hoxb-1. Nature.1994,370:567-571.
    96. Ogura T, Evans RM. Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation. Proc Natl Acad Sci USA. 1995,92:392-396.
    97. Studer M, Popperl H, Marshall H, et al. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science. 1994,265:1728-1732.
    98. Moroni MC, Vigano MA, Mavilio F. Regulation of the human HOXD4 gene by retinoids. Mech Dev. 1993,44:139-154.
    99. Popperl H, Featherstone MS. Identification of a retinoic response element upstream of the murine Hox 42 gene. Mol Cell Biol. 1993,13:257-265.
    100. Studer M, Gavalas A, Marshall H, et al. Genetic interactions between Hoxal and Hoxbl reveal new roles in regulation of early hindbrain patterning. Development.1998,125:1025-1036.
    l01. Frohman MA, Boyle M, Martin GR. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development.1990,110:589-607.
    102. Murphy P, Davidson DR, Hill RE. Segment-specific expressionof a homoeobox-containing gene in the mouse hindbrain. Nature. 1989,341:156-159.
    103. Murphy P, Hill RE. Expression of the mouse labial-like homeobox-containing genes, Hox 29 and Hox 16, during segmentation of the hindbrain. Development.1991,111:61-74.
    104.Conlon RA, Rossant J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development. 1992,116: 357-368.
    105.Studer M, Popperl H, Marshall H, et al. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science.1994,265:1728-1732.
    106.Huang D, Chen SW, Langsto AW, et al. A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut. Development. 1998, 125:3235-3246.
    107.Langsto AW, Gudas LJ. Identification of a retinoic acid responsive enhancer 39 of the murine homeobox gene Hox-16. Mech Dev. 1992, 38: 217-227.
    108.Sommer A, Tarwotjo I, Djunaedi E, et al. Impact of vitamin A supplementation on childhood mortality:a randomized controlled community trial. Lancet. 1986, 1:1169-1173.
    109.Langston AW, Thompson JR, Gudas LJ. Retinoic acidresponsive enhancers located 39 of the Hox A and Hox B homeobox gene clusters: functional analysis.J Biol Chem. 1997, 272: 2167-2175.
    110.Maden M, Gale E, Kostetskii I, et al. Vitamin Adeficient quail embryos have half a hindbrain and other neural defects. Curr Biol. 1996, 6: 417-426.
    111.Maden M, Gale E, Zile M. The role of vitamin A in the development of the central nervous system. J Nutr. 1998, 128(S): 471-475.
    112.Maden M, Graham A, Gale E, et al. Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development. 1997, 124:2799-2805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700