IL-27对CIITA和MHC II类分子的调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白介素27(IL-27)是一个IL-12相关的多功能的细胞因子,它在免疫和炎症发生的过程中表现出似乎相互矛盾的作用。IL-27包含p28和EBB两个亚基,作用于WSX-1亚基(也叫作TCCR)和gp130亚基构成的异二聚体受体(IL-27R)传递信号。很多类型细胞如T细胞、自然杀伤细胞、B细胞、单核细胞、肥大细胞和中性粒细胞都表达IL-27R。IL-27R与配体的结合诱导了胞内的信号途径,包括Janus kinases(JAK)和STAT转录因子。起初IL-27被认为通过诱导Ⅰ型辅助性T细胞(TH1 cells)的分化而促进炎症的发生。很多研究表明,在TH1分化的早期,IL-27诱导转录因子T-bet的表达,T-bet可上调初始CD4+T细胞IL-12受体的β2亚单位(IL-12Rβ2)的表达,使其获得对IL-12的反应性;也有研究表明,IL-27可以不依赖于T-bet而促进TH1分化。然而,在许多感染和自身免疫疾病动物模型中,缺乏IL-27受体的小鼠在TH1和TH2型反应中都发展成为过度的病理性炎症反应,这表明IL-27有抗炎作用。就IL-27的抗炎机制而言,IL-27可通过抑制活化的CD4+T细胞IL-2的产生而抑制其增殖。IL-27还能在很多动物模型中如实验性自身免疫性脑脊髓炎(EAE,多发性硬化的动物模型),抑制产IL-17的辅助性T细胞(TH17细胞)介导的炎性反应。最近的研究还发现了IL-27的另一个新功能,即IL-27能诱导产生IL-10的调节性T细胞的产生,IL-10参与IL-27对IL-17的抑制作用,但不为IL-27抑制Th1细胞IL-2的产生所必需。在继发性转移而形成的EAE模型中,IL-10介导了IL-27对脑膜自身反应性T细胞的抑制作用。IL-27的抗炎和促炎作用有待于进一步研究。
     MHCⅡ类分子和它们的辅助分子,如恒定链(Ii)和非经典的MHCⅡ类分子(DM和DO)在胸腺分化(thymic education)的过程中限制机体对自身和外源性抗原的免疫反应有重要作用,他们的表达也对外周T细胞激活至关重要。MHCⅡ的表达被很多细胞因子包括干扰素-γ(IFN-γ)调控,IFN-γ能通过上调免疫细胞MHCⅡ的表达而增强免疫反应。MHCⅡ基因的转录主要由一个关键的的调节子,Ⅱ类转录活化子(classⅡtransactivator,CIITA)控制,CIITA的基因至少包含3种不同的启动子(CIITApⅠ、CIITApⅢ和CIITApⅣ),这些启动子表现出组织细胞特异性的激活及对细胞因子的不同反应性。
     我们的研究主要集中在探讨IL-27促炎的机制。首先我们观察了IL-27对内皮细胞的免疫调控作用。IL-27刺激人脐静脉内皮细胞(HUVECs)可快速诱导干扰素调节因子1(IFN regulatory factor-1,IRF-1)的表达,并显著升高CIITA亚型Ⅳ的表达。与CIITAⅣ的表达相一致,MHCⅡ基因的表答也升高。IL-27也能增强MHCⅠ类分子的表达。另外,在IL-27的作用下,β2-m和TAP-1 mRNA的表达水平也升高。基因芯片分析表明IL-27可以显著上调内皮细胞很多和免疫调节相关的基因,包括趋化因子CXCL9、CXCL10、CX3CL1的表达。这些结果首次表明IL-27能在内皮细胞上调MHCⅡ类和Ⅰ类分子的表达,提示IL-27对血管内皮的免疫功能有重要的调控作用。
     我们进一步观察IL-27对THP-1单核细胞系的作用。THP-1细胞是研究单核细胞的很好的模型。与在内皮细胞相似,IL-27可上调THP-1细胞CIITAⅢ和CIITAⅣ的mRNA表达水平,导致细胞表面MHCⅡ类分子的表达增加,以及HLA-DM和DO的表达水平升高。另外,IL-27可上调beta-2m、TAP-1和MHCⅠ类分子的表达。进一步的研究表明,IL-27可增强THP-1细胞表面共刺激分子CD80和CD86及粘附分子CD54的表达。这些结果表明IL-27可促进单核巨噬细胞的抗原提呈功能。
     为了进一步分析IL-27通过何种信号机制参与调节CIITA和MHCⅡ的表达,我们用ERK抑制剂U0126、p38MAPK抑制剂SB203580和PI3K抑制剂LY294002来观察各条信号通路在IL-27诱导CIITA和MHCⅡ表达中的作用。我们的结果表明p38MAPK和PI3K信号通路都为IL-27作用下最优化的MHCⅡ的表达所必需,而ERK信号通路对IL-27诱导的MHCⅡ表达有抑制作用。另外,PI3K信号通路也为IL-27诱导最优化的MHCⅠ表达所必需。这些结果表明PI3K信号通路参与正调控IL-27介导的效应,而ERK信号通路对IL-27诱导的MHCⅡ类分子的表达有抑制作用。进一步的研究表明,TLR2激动剂Pam3CSK4和TLR4激动剂LPS介导的TLR信号能部分阻断IL-27诱导得THP-1细胞MHCⅡ的表达。LPS的抑制效应部分通过ERK和p38MAPK信号途径介导。
     研究表明IL-27对很多实体瘤有很强的抗肿瘤效应。IL-27的抗肿瘤机制主要包括诱导CD4+T细胞、CD8+T细胞和NK细胞的活化。IL-27还能通过诱导IP-10和MIG的表达而抑制肿瘤的血管新生。我们的另外一项研究是构建IL-27的表达载体而评估其对小鼠白血病模型的抗肿瘤效应。我们用重叠延伸PCR来扩增信号肽和单链IL-27融合基因,然后把这些基因插入许多真核表达载体中,包括pIRES2-EGFP、pcDNA3.1(-)、p3XFLAG-CMV-9和PCAGEN。用免疫沉淀和western blot检测IL-27表达载体转染的293T细胞上清中IL-27的分泌和表达。我们用液压基因转移法(hydrodynamic gene transfer,HGT)将IL-27表达载体导入小鼠体内后,在小鼠血清中也能检测到IL-27的表达。我们用能否诱导HUVECsCIITAmRNA的表达来鉴定IL-27的生物学活性。
     总之,我们的研究首次表明IL-27能够诱导单核细胞和内皮细胞CIITA和MHCⅡ的表达。IL-27还能上调MHCⅠ类分子、共刺激分子和粘附分子的表达。另外,IL-27能激活一个重要的转录因子IRF-1。ERK、p38MAPK和PI3K信号通路可被IL-27直接激活并在调节IL-27效应的过程中有关键作用。这些结果表明IL-27有调节抗原提呈的新功能,并揭示了一种IL-27促进T细胞的激活和获得性免疫发生的新机制。
Interleukin-27(IL-27) is IL-12-related pleiotropic cytokine that has seemingly paradoxical functions in inflammation.IL-27 contains two subunits,p28 and EBI3 and signals through a heterodimeric receptor(IL-27R) consisting of the WSX-1 subunit(also called TCCR) and the gp130 subunit.Several cell types,including T cells,natural killer cells,B cells,monocytes,mast cells and neutrophils,express IL-27R.Ligation of IL-27R induces intracellular signaling involving Janus kinases and STAT transcription factors.Originally,IL-27 was thought to promote inflammation by inducing T helper type 1(TH1) differentiation early during immune responses.Several studies have shown that during the early stage of TH1 differentiation,IL-27 induces expression of the transcription factor T-bet,which triggers upregulation of theβ2-subunit of the interleukin 12 receptor(IL-12Rβ2) on naive T cells,thus conferring responsiveness to IL-12.An IL-27-induced T-bet-independent pathway of TH1 differentiation has also been reported.However,in infectious and autoimmune animal models,mice deficient in IL-27R develop excessive,pathological inflammation during both TH1 and TH2 responses.Regarding the anti-inflammatory effects of IL-27,it has been shown that IL-27 inhibits the proliferation of activated CD4+T cells by suppressing IL-2 production.Furthermore, IL-27 suppresses the proinflammatory immune responses of IL-17-producing T helper cells(TH-17 cells) in several animal models,including experimental autoimmune encephalomyelitis(EAE),an autoimmune inflammatory demyelinating disease of the central nervous system and a model of human multiple sclerosis.Recent works also identified a novel role of IL-27 in the induction of CD4+ and CD8+ effector T cells positive for IL-10,and demonstrated IL-10 was involved in the IL-27-mediated suppression of IL-17 but was dispensable for the IL-27-induced suppression of IL-2. IL-10 mediated the suppressive effect of IL-27 on encephalitogenic T cells in adoptively transferred EAE.The mechanisms that orchestrate the pro-inflammatory and anti-inflammatory effects of IL-27 are incompletely understood.
     Major histocompatibility complex classⅡ(MHCⅡ) proteins and their accessory molecules,such as the invariant chain(Ii) and the nonclassical MHCⅡproteins(DM and DO),are crucial for restricting immune reactivity to self versus foreign antigens during thymic education,and their expression level is also crucial for determining T-cell activation in the periphery.MHCⅡexpression is regulated by multiple cytokines,including interferon-gamma(IFN-γ),which can enhance the immune response by upregulating MHCⅡexpression in immune cells.MHCⅡgene transcription is regulated centrally by the master regulator of its activation,the classⅡtransactivator(CⅡTA).The gene encoding CⅡTA uses at least three distinct promoters (CⅡTApI,CⅡTApⅢand CⅡTApⅣ),and display tissue-restricted expression and differential responses to cytokines.
     Our study focused on the the mechanisms by which IL-27 mediated its pro-inflammatory effects.Firstly we explored the immunoregulatory effects of IL-27 on endothelial cells(EC).We reveal a role for IL-27 in the induction of MHC expression in primary human umbilical vein endothelial cells(HUVECs).Stimulation of HUVECs by IL-27 rapidly induces IFN regulatory factor-1(IRF-1),and dramatically increases the expression of CⅡTA isoformⅣ.Expression of CⅡTAⅣcorrelates with increased MHC classⅡgene expression.IL-27 also enhances expression of MHC classⅠmolecules.Furthermore,expression ofβ2-m and TAP-1 transcripts increases in response to IL-27.Microarray analysis demonstrates that IL-27 significantly up-regulates a panel of genes that correlate with immune regulation,including the chemokines CXCL9,CXCL10 and CX3CL1 in HUVECs. This first demonstration that both MHCⅡandⅠexpression are increased in EC after IL-27 stimulation suggests that IL-27 may be important in conferring immune function on vascular endothelium.
     We further examined the effects of IL-27 on THP-1 monocytic cells,a well characterized model of monocytes.Similarly,we revealed that IL-27 increased both CⅡTAⅢand CⅡTAⅣmRNA levels,leading to an enhanced suface expression of classⅡmolecules and elevated mRNA levels of HLA-DM and DO.In addition,IL-27 up-regulates beta-2m,TAP-1 and classⅠMHC expression.Furthermore IL-27 enhances co-stimulatory molecules CD80 and CD86 and adhesion molecule CD54 expression in THP-1 cells.These observations indicate a crucial role of IL-27 in regulating the antigen presentation function of monocytes/macrophages.
     To delineate the signaling mechanisms by which IL-27 regulate the expression of CⅡTA and classⅡMHC in THP-1 cells,we use ERK inhibitor U0126,p38MAPK inhibitor SB203580 and PI3K inhibitor LY294002 to examine the roles of various signaling pathway in IL-27 induced CⅡTA and classⅡMHC expression.Our results demonstrate that both p38MAPK and PI3K signalings are essential for optimal expression of classⅡMHC in THP-1 cells in response to IL-27,whereas ERK activation plays an inhibitory role in IL-27 induced classⅡMHC expression.PI3K is also required for maximal expression of classⅠMHC expression in THP-1 cells. These data suggest that PI3K signal playways are critically involved in IL-27-mediated effects,yet ERK act as negative regulator of classⅡexpression. Further work using TLR2 agonist Pam3CSK4 and TLR4 agonist LPS shows that these TLR signalings partially prevent IL-27 induced CⅡTA and MHC expression in THP-1 cells.The inhibitory effect of LPS on IL-27 effects is partially mediated through ERK and p38MAPK signaling.
     IL-27 has been reported to have potent anti-tumor activity against a varity of solid tumors through mechamis involving the induction of CD4+ and CD8+ T cells,and NK cells.IL-27 can also inhibit tumor angiogenesis through induction of chemokines IP-10 and MIG.Another work we have done is construction of IL-27 expression vectors to assess the anti-leukemic activity of IL-27 against murine leukemia models. We used overlap PCR to amplify the signal peptide and the single chain IL-27 gene, and inserted the gene into a variety of eukaryiotic expression vectors including pIRES2-EGFP,pcDNA3.1,p3×FLAG-CMV-9 and PCAGEN.Immunoprecipitation and western blot have been performed to confirm the expression and secrection of IL-27 from the supernatant of 293T cells transfected with IL-27 expressing vectors. Expression of IL-27 was also detected in the serum of mice treated with IL-27 expressing vectors by hydrodynamic gene transfer(HGT).The bioactivity of IL-27 was confirmed by the induction of CⅡTA expression in HUVECs.
     In conclusion,our work for the first time demonstrates that IL-27 increases CⅡTA and classⅡMHC expression in both monocytes and endothelial cells.IL-27 also up-regulates the expression classⅠMHC,co-stimulatory molecules and adhesion molecules.In addition,IL-27 could activate the critcal transcription factor IRF-1. ERK,p38MAPK and PI3K signaling pathways can be directly activated by IL-27,and they play cucial roles in modulating IL-27 mediated effects.Our results demonstrate novel roles of IL-27 in the regulation of antigen presentation and uncover a new mechanism by which IL-27 promote the activation of T cells and the generation of effective adaptive immune responses.
引文
[1]Chiyo M,Shimozato O,Yu Let al.Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals.Int J Cancer 2005;115:437-442.
    [2]Hisada M,Kamiya S,Fujita K et al.Potent antitumor activity of interleukin-27.Cancer Res 2004;64:1152-1156.
    [3]Salcedo R,Stauffer JK,Lincoln E et al.IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors:role for CD8+ T cells.J Immunol 2004;173:7170-7182.
    [4]Shimizu S,Sugiyama N,Masutani K et al.Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor(WSX-1).J Immunol 2005;175:7185-7192.
    [5] Oniki S, Nagai H, Horikawa T et al. Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res 2006;66:6395-6404.
    [6] Morishima N, Owaki T, Asakawa M, et al. Augmentation of effector CD8+ T cell generation with enhanced granzyme B expression by IL-27. J Immunol 2005;175:1686—1693.
    [7] Shimizu M, Shimamura M, Owaki T et al. Antiangiogenic and antitumor activities of IL-27. J Immunol 2006;176:7317-7324
    [8] Hosken NA, Levin S, Bontadelli K et al (2006) IL-27 promotes TH1 development and inflammation partly by affecting regulatory T cells. European cytokine network. Cytokines 2006
    [9] Gruber TA, Skelton DC, Kohn DB. Recombinant murine interleukin-12 elicits potent antileukemic immune responses in a murine model of Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Gene Ther. 2005;12:818-24.
    [10] Zhang B, Wu KF, Lin YM et al. Gene transfer of pro-IL-18 and IL-1beta converting enzyme cDNA induces potent antitumor effects in L1210 cells. Leukemia. 2004; 18:817-25.
    [11] Piccaluga PP, Martinelli G, Isidori A et al. Long-term molecular complete remission with IFN-alpha in Ph+ adult acute lymphoid leukemia patients. Leukemia. 2008 Feb 14
    [12] Pflanz S, Timans JC, Cheung J et al.. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity. 2002 Jun;16(6): 779-90.
    [13] Huston JS, Levinson D, Mudgett-Hunter M et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85:5879-83.
    [14] Belladonna ML, Renauld JC, Bianchi R et al.. IL-23 and IL-12 have overlapping, but distinct,effects on murine dendritic cells. J Immunol. 2002; 168:5448-54.
    [15] Jiang J, Yamato E, Miyazaki J. Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun. 2001 ;289:1088-92.
    [16] Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic gene delivery.Gene Ther. 2007; 14:99-107.
    [17] Nothwehr SF, Hoeltzli SD, Allen KL, et al. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro.J Biol Chem. 1990;265:21797-803.
    [18] Nothwehr SF, Gordon JI. Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase. J Biol Chem.1990;265:17202-8.
    [19] Trinh R, Gurbaxani B, Morrison SL, Seyfzadeh M. Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol Immunol.2004;40:717-22.
    [20] Buchan JR, Aucott LS, Stansfield I. tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res. 2006;34:1015-27.
    [21] Irwin B, Heck JD, Hatfield GW. Codon pair utilization biases influence translational elongation step times. J Biol Chem. 1995;270:22801-6.
    [1]Glimcher LH,Kara CJ.Sequences and factors:a guide to MHC class-Ⅱ transcription.Annu Rev Immunol 1992;10:13.
    [2]Ting JP,Baldwin AS.Regulation of MHC gene expression.Curr Opin Imrnunol 1993;5:8.
    [3]Mach B,Steimle V,Martinez-Soria E,Reith W.Regulation of MHC class Ⅱ genes:lessons from a disease.Annu Rev Immunol 1996;14:301.
    [4]Reith W,Steimle V,Mach B.Molecular defects in the bare lymphocyte syndrome and regulation of MHC class Ⅱ genes.Immunol Today 1995;16:539.
    [5]Muhlethaler-Mottet A,Otten LA,Steimle V,Mach B.Expression of MHC class Ⅱ molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA.EMBO J 1997;16:2851.
    [6]LeibundGut-Landmann S,Waldburger JM,Krawczyk M,Otten LA,Suter T,Fontana A,et al.Mini-review:Specificity and expression of CIITA,the master regulator of MHC class Ⅱ genes.Eur J Immunol 2004;34:1513.
    [7]van den Elsen PJ,Holling TM,Kuipers HF,van der Stoep N.Transcriptional regulation of antigen presentation.Curr Opin Immunol 2004;16:67.
    [8]OKeefe GM,Nguyen VT,Ping Tang LL,Benveniste EN.IFN-gamma regulation of class Ⅱtransactivator promoter Ⅳ in macrophages and microglia:involvement of the suppressors of cytokine signaling-1 protein.J Immunol 2001;166:2260.
    [9]Dong Y,Rohn WM,Benveniste EN.IFN-gamma regulation of the type Ⅳ class Ⅱtransactivator promoter in astrocytes.J Immunol 1999;162:4731.
    [10]Germain RN.MHC-dependent antigen processing and peptide presentation:providing ligands for T lymphocyte activation.Cell 1994;76:287.
    [11]Goes N,Sims T,Urmson J,Vincent D,Ramassar V,Halloran PF.Disturbed MHC regulation in the IFN-gamma knockout mouse. Evidence for three states of MHC expression with distinct roles for IFN-gamma. J Immunol 1995;155:4559.
    [12] Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, et al. IL-27, a heterodimeric cytokine composed of EB13 and p28 protein, induces proliferation of naive CD4+ T cells.Immunity 2002; 16:779.
    [13] Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007;25:221.
    [14] Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M, et al. Antiangiogenic and antitumor activities of IL-27. J Immunol 2006; 176:7317.
    [15] Palmisano GL, Pistillo MP, Capanni P, Pera C, Nicolo G, Salvi S, et al. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62:133.
    [16] Hornell TM, Beresford GW, Bushey A, Boss JM, Mellins ED. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol 2003;171:2374.
    [17] Steimle V, Otten LA, Zufferey M, Mach B, Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome).Cell 1993;75:135.
    [18] Chin KC, Mao C, Skinner C, Riley JL, Wright KL, Moreno CS, et al. Molecular analysis of G1B and G3A IFNγ mutants reveals that defects in CIITA or RFX result in defective class II MHC and Ii gene induction. Immunity 1994; 1: 687.
    [19] Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 1994;265:106.
    [20] Chang CH, Flavell RA, Class II transactivator regulates the expression of multiple genes involved in antigen presentation. J Exp Med 1995;181:765.
    [21] Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994; 12:259.
    [22] Karlsson L. DM and DO shape the repertoire of peptide-MHC-class-II complexes. Curr Opin Immunol 2005;17:65-70.
    
    [23] Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression.Immunol Rev 2005;207:242.
    
    [24] Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ. Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 1997;6:601.
    [25] Martin BK, Chin KC, Olsen JC, Skinner CA, Dey A, Ozato K, et al. Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 1997;6:591.
    [26] Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J rmmunol 2004;173:3871.
    
    [27] Salcedo R, Stauffer JK, Lincoln E, Back TC, Hixon JA, Hahn C, et al. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors:role for CD8+ T cells. J Immunol 2004; 173:7170.
    [28] Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 1990;344:742.
    [29] Lehner PJ, Cresswell P. Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 1996;8:59.
    
    [30] Hobart M, Ramassar V, Goes N, Urmson J, Halloran PF. IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo. J Immunol 1997; 158:4260.
    
    [31] Morris AC, Beresford GW, Mooney MR, Boss JM. Kinetics of a gamma interferon response:expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol 2002;22:4781.
    
    [32] Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell 2002;109:S21.
    [33] Taxman DJ, Cressman DE, Ting JP. Identification of class II transcriptional activator-induced genes by representational difference analysis: discoordinate regulation of the DNα/DOβ heterodimer. J Immunol 2000; 165:1410.
    
    [34] Nagarajan UM, Lochamy J, Chen X, Beresford GW, Nilsen R, Jensen PE, et al. Class II transactivator is required for maximal expression of HLA-DOB in B cells. J Immunol 2002;168:1780.
    [35] Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol.2005;5:793.
    [36] Kretsovali A, Agalioti T, Spilianakis C, Tzortzakaki E, Merika M, Papamatheakis J.Involvement of CREB binding protein in expression of major histocompatibility complex class II genes via interaction with the class II transactivator. Mol Cell Biol. 1998;18:6777-83.
    [37] Fontes JD, Kanazawa S, Jean D, Peterlin BM. Interactions between the class II transactivator and CREB binding protein increase transcription of major histocompatibility complex class II genes. Mol Cell Biol. 1999; 19:941-7.
    [38] Piskurich JF, Wang Y, Linhoff MW, White LC, Ting JP. Identification of distinct regions of 5' flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene. J Immunol 1998;160:233.
    [39] Piskurich JF, Linhoff MW, Wang Y, Ting JP. Two distinct gamma interferon-inducible promoters of the major histocompatibility complex class II transactivator gene are differentially regulated by STAT1, interferon regulatory factor 1, and transforming growth factor beta. Mol Cell Biol 1999; 19:431.
    [40] Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B. 1998. Activation of the MHC class II transactivator CIITA by interferon-γ requires cooperative interaction between Statl and USF-1. Immunity 8:157.
    
    [41] Ting JP, Baldwin AS. Regulation of MHC gene expression. Curr Opin Immunol 1993;5:8.
    [42] Le Bouteiller P, HLA class I chromosomal region, genes, and products: facts and questions.Crit Rev Immunol 1994;14:89.
    [43] Kreisel D, Krupnick AS, Gelman AE, Engels FH, Popma SH, Krasinskas AM, et al.Non-hematopoietic allograft cells directly activate CD8+ T cells and trigger acute rejection:an alternative mechanism of allorecognition. Nat Med 2002;8:233.
    [44] Limmer A, OhI J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B,Knolle PA. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 2000;6:1348.
    [45] Kreisel D, Krasinskas AM, Krupnick AS, Gelman AE, Balsara KR, Popma SH, et al. Vascular endothelium does not activate CD4+ direct allorecognition in graft rejection. J Immunol 2004;173:3027.
    [46] Lodge PA, Haisch CE. T cell subset responses to allogeneic endothelium: proliferation of CD8+ but not CD4+ lymphocytes. Transplantation 1993;56:656.
    [47] Grazia TJ, Pietra BA, Johnson ZA, Kelly BP, Plenter RJ, Gill RG. A two-step model of acute CD4 T cell-mediated cardiac allograft rejection. J Immunol 2004; 172:7451.
    [48] Krupnick AS, Gelman AE, Barchet W, Richardson S, Kreisel FH, Turka LA, et al. Murine vascular endothelium activates and induces thegeneration of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 2005;175:6265.
    
    [49] Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 2002; 168:3195.
    
    [50] Whiting D, Hsieh G, Yun JJ, Banerji A, Yao W, Fishbein MC, et al. Chemokine monokine induced by IFN-gamma/CXC chemokine ligand 9 stimulates T lymphocyte proliferation and effector cytokine production. J Immunol 2004; 172:7417.
    
    [51] Fraticelli P, Sironi M, Bianchi G, D'Ambrosio D, Albanesi C, Stoppacciaro A, et al.Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 200-1; 107:1173.
    [52] Indraccolo S, Pfeffer U, Minuzzo S, Esposito G, Roni V, Mandruzzato S, et al. Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol. 2007; 178:1122.
    [53] Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, et al. NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha and LPS. J Leukoc Biol 2000;67:577.
    
    [54] Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997;91: 521.
    
    [55] Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion and activation under physiologic flow. J Exp Med 1998;188:1413.
    
    [56] Cheng YS, Colonno RJ, Yin FH. Interferon induction of fibroblast proteins with guanylate binding activity. J Biol Chem. 1983;258:7746.
    [57] Anderson SL, Carton JM, Lou J, Xing L, Rubin BY. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology 1999;256:8.
    
    [58] Guenzi E, Topolt K, Cornali E, Lubeseder-Martellato C, Jorg A, Matzen K, et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. EMBO J. 2001;20:5568.
    
    [59] Guenzi E, Topolt K, Lubeseder-Martellato C, Jorg A, Naschberger E, Benelli R, et al. The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J. 2003;22:3772.
    [1]B.Laupeze,O.Fardel,M.Onno,N.Bertho,B.Drenou,R.Fauchet,L.Amiot,Differential expression of major histocompatibility complex class Ia,Ib,and Ⅱ molecules on monocytes-derived dendritic and macrophagic cells,Hum.Immunol.60(1999) 591-597.
    [2]P.Cresswell,Assembly,transport,and function of MHC class Ⅱ molecules.Annu.Rev.Immunol,12(1994) 259-293.
    [3]L.Karlsson,DM and DO shape the repertoire of peptide-MHC-class-Ⅱ complexes,Curr.Opin.Immunol.17(2005) 65-70.
    [4]R.Busch,C.H.Rinderknecht,S.Rob,A.W.Lee,J.J.Harding,T.Burster,T.M.Homell,E.D.Mellins,Achieving stability through editing and chaperoning:regulation of MHC class Ⅱpeptide binding and expression,Immunol.Rev.207(2005) 242-260.
    [5]M.J.Bevan,Cross-priming.Priming of T cells by exogenous antigen cross-presented on MHC class Ⅰ molecules,Nat Immunol.7(2006) 363-365.
    [6]L.Shen,K.L.Rock,Priming of T cells by exogenous antigen cross-presented on MHC class Ⅰmolecules.Curr.Opin.Immunol.18(2006) 85-91.
    [7]K.L.Rock,L.Shen,Cross-presentation:underlying mechanisms and role in immune surveillance.Immunol.Rev.207(2005) 166-183.
    [8]A.Muhlethaler-Mottet,L.A.Otten,V.Steimle,B.Mach,Expression of MHC class Ⅱmolecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA,EMBO J.16(1997) 2851-2860.
    [9]Homell TM,Beresford GW,Bushey A,Boss JM,Mellins ED.Regulation of the class Ⅱ MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor.J Immunol 2003;171:2374.
    [10] S. Pflanz, J.C. Timans, J. Cheung, R. Rosales, H. Kanzler, J. Gilbert, L. Hibbert, T.Churakova, M. Travis, E. Vaisberg, W.M. Blumenschein, J.D. Mattson, J.L. Wagner, W. To, S.Zurawski, T.K. McClanahan, DM Gorman, J.F. Bazan, R. de Waal Malefyt, D. Rennick,R.A. Kastelein, IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells, Immunity. 16 (2002) 779-790.
    [11] R.A. Kastelein, C.A. Hunter, D.J. Cua, Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation, Annu. Rev. Immunol. 25 (2007) 221-242.
    [12] J.P. Ting, J. Trowsdale, Genetic control of MHC class II expression, Cell. 109 (2002)S21-S33.
    
    [13] M. Zijlstra, M. Bix, N.E. Simister, J.M. Loring, D.H. Raulet, R. Jaenisch, Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells, Nature. 344 (1990) 742-746.
    [14] P.J. Lehner, P. Cresswell, Processing and delivery of peptides presented by MHC class I molecules, Curr. Opin. Immunol. 8 (1996) 59-67.
    
    [15] M. Hobart, V. Ramassar, N. Goes, J. Urmson, P.F. Halloran, IFN regulatory factor-1 plays a central role in the regulation of the expression of class I and II MHC genes in vivo, J.Immunol. 158(1997)4260-4269.
    [16] B. Mach, V. Steimle, E. Martinez-Soria, W.R. Reith, Regulation of MHC class II genes:lessons from a disease, Annu. Rev. Immunol. 14 (1996) 301-331.
    [17] W. Reith, V. Steimle, B. Mach, Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes, Immunol. Today. 16 (1995) 539-546.
    
    [18] A.C. Morris, G.W. Beresford, M.R. Mooney, J.M. Boss, Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation, Mol.Cell. Biol. 22 (2002) 4781 -4791.
    
    [19] J.F. Piskurich, M.W. Linhoff, Y. Wang, J.P. Ting, Two distinct gamma interferon-inducible promoters of the major histocompatibility complex class II transactivator gene are differentially regulated by STAT1, interferon regulatory factor 1, and transforming growth factor beta, Mol. Cell. Biol. 19 (1999)431-440.
    
    [20] A. Muhlethaler-Mottet, W. Di Berardino, L.A. Often, B. Mach, Activation of the MHC class II transactivator CIITA by interferon-gamma requires cooperative interaction between Stat1 and USF-1, Immunity. 8 (1998) 157-166.
    [21] S. Pflanz, L. Hibbert, J. J. Mattson, R. Rosales, E. Vaisberg, J.F. Bazan, J.H. Phillips, T.K. McClanahan, R. de Waal Malefyt, R.A. Kastelein, WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27, J. Immunol. 172 (2004) 2225-2231.
    [22] S.J. Gobin, A. Peijnenburg, V. Keijsers, P.J. van den Elsen, Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA, Immunity. 6 (1997) 601-611.
    
    [23] B.K. Martin, K.C. Chin, J.C. Olsen, C.A. Skinner, A. Dey, K. Ozato, J.P. Ting, Induction of MHC class I expression by the MHC class II transactivator CIITA, Immunity. 6 (1997)591-600.
    
    [24] Y. Yao, Q. Xu, M.J. Kwon, R. Matta, Y. Liu, S.C. Hong, C.H. Chang, ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages, J. Immunol. 177(2006) 70-76.
    
    [25] Y. Wang, H.M. Curry, B.S. Zwilling, W.P. Lafuse, Mycobacteria inhibition of IFN-gamma induced HLA-DR gene expression by up-regulating histone deacetylation at the promoter region in human THP-1 monocytic cells, J. Immunol. 174 (2005) 5687-5694.
    [26] X. Zhu, Z. Wen, L.Z. Xu, J.E. Darnell, Statl serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol. Cell. Biol. 17 (1997)6618-23.
    
    [27] A. Takaoka, N. Tanaka, Y. Mitani, T. Miyazaki, H. Fujii, M. Sato, P. Kovarik, T. Decker, J.Schlessinger, T. Taniguchi, Protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Statl in IFN-gamma, but not IFN-alpha, signaling. EMBO J. 18(1999)2480-8.
    
    [28] H. Nguyen, C.V. Ramana, J. Bayes, G.R. Stark. Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression. J. Biol. Chem. 276 (2001) 33361-8.
    
    [29] P. Kovarik, D. Stoiber, P.A. Eyers, R. Menghini, A. Neininger, M. Gaestel, P. Cohen, T.Decker. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc. Natl. Acad. Sci.U S A. 96(1999) 13956-61.
    
    [30] T. Owaki, M. Asakawa, F. Fukai, J. Mizuguchi, T. Yoshimoto, IL-27 induces Thl differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule- 1/LFA-1/ERK 1/2-dependent pathways.J.Immunol.177(2006) 7579-87.
    [31]J.Hu,S.K.Roy,RS.Shapiro,S.R.Rodig,S.P.Reddy,L.C.Platanias,R.D.Schreiber,D.V.Kalvakolanu.ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma.J.Biol.Chem.276(2001) 287-97.
    [1]Boulay JL,O'Shea JJ,Paul WE.Molecular phylogeny within type Ⅰ cytokines and their cognate receptors.Immunity 2003;19:159-163.
    [2]Pflanz S,Timans JC,Cheung J,Rosales R,Kanzler H,Gilbert J,Hibbert L,Churakova T,Travis M,Vaisberg E,Blumenschein WM,Mattson JD,Wagner JL,To W,Zurawski S,McClanahan TK,Gorman DM,Bazan JF,de Waal Malefyt R,Rennick D,Kastelein RA.IL-27,a heterodimeric cytokine composed of EBI3 and p28 protein,induces proliferation of naive CD4+ T cells.Immunity 2002;16:779-790.
    [3]Gately MK,Desai BB,Wolitzky AG,Quinn PM,Dwyer CM,Podlaski FJ,Familletti PC,Sinigaglia F,Chizonnite R,Gubler U,et al.Regulation of human lymphocyte proliferation by a heterodimeric cytokine,IL-12(cytotoxic lymphocyte maturation factor).J Immunol 1991;147:874-882.
    [4]Oppmann B,Lesley R,Blom B,Timans JC,Nu Y,Hunte B,Vega F,Yu N,Wang J,Singh K,Zonin F,Vaisberg E,Churakova T,Liu NI,Gorman D,Wagner J,Zurawski S,Liu Y,Abrams JS,Moore KW,Rennick D,de Waal-Malefyt R,Hannum C,Bazan JF,Kastelein R.A Novel p19 protein engages IL-12 p40 to form a cytokine,IL-23,with biological activities similar as well as distinct from IL- 12.Immunity 2000;13:715-725.
    [5]Devergne O,Hummel M,Koeppen H,Le Beau MM,Nathanson EC,Kieff E,Birkenbach M.A novel interleukin-12 p40-related protein induced by latent Ebstein-Barr virus infection in B lymphocyte.J virol 1996;70:1143-1153.
    [6]Bazan JF.Haemopoietic receptors and helical cytokines.Immunol Today 1990;11:350-354.
    [7] Wirtz S, Becker C, Fantini MC, Nieuwenhuis EE, Tubbe I, Galle PR, Schild HJ, Birkenbach M, Blumberg RS, Neurath MF. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation.
    [8] Liu J, Guan X, Ma X. Regulation of IL-27 p28 gene expression in macrophages through MyD88- and interferon-gamma-mediated pathways. J Exp Med. 2007;204:141-52.
    [9] Molle C, Nguyen M, Flamand V, Renneson J, Trottein F, De Wit D, Willems F, Goldman M,Goriely S. IL-27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J Immunol. 2007;178:7607-15.
    
    [10] Sprecher CA, Grant FJ, Baumgartner JW, Presnell SR, Schrader SK, Yamagiwa T, Whitmore TE, O'Hara PJ, Foster DF. Cloning and characterization of a novel class I cytokine receptor. Biochem Biophys Res Commun 1998;246:82-90.
    
    [11] Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, Gurney A, Grewal IS, de Sauvage FJ.Development of Th1-type immune responses requires the type Icytokine receptor TCCR. Nature 2000;407:916 -920.
    
    [12] Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R, Kastelein RA. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 2004; 172:2225-2231.
    [13] Taga T, Kishimoto T. Gpl30 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997;15:797-819.
    
    [14] Villarino AV, Larkin J 3rd, Saris CJ, Caton AJ, Lucas S, Wong T, de Sauvage FJ, Hunter CA. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J Immunol 2005;174:7684-7691.
    
    [15] Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A, Yoshida H. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 2003; 170:4886-4890.
    
    [16] Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 2004;173:3871-3877.
    [17] Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA. IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res 2003;23:513-522.
    
    [18] Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2003;100:15047-15052.
    
    [19] Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, Yoshida H, Kastelein RA, Saris C,Hunter CA. The IL-27R (wsx-1) is required to suppress T cell hyperactivity during infection.Immunity 2003; 19:645-655.
    [20] Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998;16:293-322.
    
    [21] Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol 2001; 13:211-217.
    [22] Cook JR, Jung V, Schwartz B, Wang P, Pestka S. Structural analysis of the human interferon gamma receptor: a small segment of the intracellular domain is specifically required for class I major histocompatibility complex antigen induction and antiviral activity. Proc Natl Acad Sci U S A 1992;89:11317-11321.
    [23] Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998;334:297-314.
    [24] Yoshida H, Hamano S, Senaldi G, Covey T, Faggioni R, Mu S, Xia M, Wakeham AC,Nishina H, Potter J, Saris CJ, Mak TW. WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 2001 ;15:569-578.
    [25] Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655-669.
    
    [26] Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL,Cereb N, Yao TP, Yang SY, Reiner SL. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 2001 ;292:1907-1910.
    
    [27] Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. (1997) Transcription factor GATA-3 is differentially expressed in murine Thl and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997;272:597-603.
    
    [28] Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587-596.
    
    [29] Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, Murphy KM.Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998;9:745-755.
    
    [30] Owaki T, Asakawa M, Morishima N, Hata K, Fukai F, Matsui M, Mizuguchi J, Yoshimoto T. A Role for IL-27 in Early Regulation of Thl Differentiation. J Immunol 2005;175:2191-2200.
    
    [31] Lighvani AA, Frucht DM, Jankovic D, Yamane H, Aliberti J, Hissong BD, Nguyen BV,Gadina M, Sher A, Paul WE, O'Shea JJ. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 2001 ;98:15137-15142.
    [32] Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, Murphy TL, Murphy KM.T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 2002;3:549-557.
    
    [33] Owaki T, Asakawa M, Fukai F, Mizuguchi J, Yoshimoto T. IL-27 induces Thl differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-l/LFA-l/ERKl/2-dependent pathways. J Immunol. 2006;177:7579-87.
    [34] Salomon B, Bluestone JA. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J Immunol 1998; 161:5138-5142.
    
    [35] Luksch CR, Winqvist O, Ozaki ME, Karlsson L, Jackson MR, Peterson PA, Webb SR.Intercellular adhesion molecule-1 inhibits interleukin 4 production by naive T cells. Proc Natl Acad Sci U S A 1999;96:3023-3028.
    
    [36] Chirathaworn C, Kohlmeier JE, Tibbetts SA, Rumsey LM, Chan MA, Benedict SH.Stimulation through intercellular adhesion molecule-1 provides a second signal for T cell activation. J Immunol 2002; 168:5530-5537.
    
    [37] Jankovic D, Kullberg MC, Hieny S, Caspar P, Collazo CM, Sher A In the absence of IL-12,CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting. Immunity 2002; 16:429-439
    
    [38] Kano S, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T.The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and T(H)1 versus T(H)-17 differentiation of CD4(+) T cells. Nat Immunol. 2008;9:34-41.
    
    [39] Hamano S, Himeno K, Miyazaki Y, Ishii K, Yamanaka A, Takeda A, Zhang M, Hisaeda H,Mak TW, Yoshimura A, Yoshida H. Wsx-1 is required for resistance to Trypanosoma cruzi infection by regulateon of proinflammatory cytokine production. Immunity 2003; 19:657-667.
    
    [40] Artis D, Johnson LM, Joyce K, Saris C, Villarino A, Hunter CA, Scott P. Cutting edge: early IL-4 production governs the requirement for IL-27-WSX-1 signaling in the development of protective Th1 cytokine responses following Leishmania major infection. J Immunol 2004; 172:4672-4675.
    
    [41] O'Shea JJ, Paul WE. Regulation of T(H)1 differentiation-controlling the controllers. Nat Immunol 2002;3:506-508.
    
    [42] Micallef MJ, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M, Tanimoto T, Torigoe K,Fujii M, Ikeda M, Fukuda S, Kurimoto M. Interferon-gamma-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-gamma production. Eur J Immunol 1996;26:1647-51.
    
    [43] Lauwerys BR, Renauld JC, Houssiau FA. Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 1999;11: 822-302.
    [44] Robinson D, Shibuya K, Mui A, Zonin F, Murphy E, Sana T, Hartley SB, Menon S,Kastelein R, Bazan F, O'Garra A. IGIF does not drive Thl development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB. Immunity 1997;7:571-581.
    
    [45] Huber M, Steinwald V, Guralnik A, Brustle A, Kleemann P, Rosenplanter C, Decker T,Lohoff M. IL-27 inhibits the development of regulatory T cells via STAT3. Int Immunol. 2007 Dec 21 [Epub ahead of print]
    
    [46] Neufert C, Becker C, Wirtz S, Fantini MC, Weigmann B, Galle PR, Neurath MF. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol. 2007 Jul;37(7):1809-16.
    
    [47] Yamanaka A, Hamano S, Miyazaki Y, Ishii K, Takeda A, Mak TW, Himeno K, Yoshimura A,Yoshida H. Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J Immunol 2004; 172:3590-3596.
    
    [48] Holscher C, Holscher A, Ruckerl D, Yoshimoto T, Yoshida H, Mak T, Saris C, Ehlers S. The IL-27 Receptor Chain WSX-1 Differentially Regulates Antibacterial Immunity and Survival during Experimental Tuberculosis. J Immunol 2005;174:3534-3544.
    
    [49] Artis D, Villarino A, Silverman M, He W, Thornton EM, Mu S, Summer S, Covey TM,Huang E, Yoshida H, Koretzky G, Goldschmidt M, Wu GD, de Sauvage F, Miller HR, Saris CJ, Scott P, Hunter CA. The IL-27 receptor (wsx-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol 2004; 173:5626-5634
    
    [50] Miyazaki Y, Inoue H, Matsumura M, Matsumoto K, Nakano T, Tsuda M, Hamano S, Yoshimura A, Yoshida H. Exacerbation of Experimental Allergic Asthma by Augmented Th2 Responses in WSX-1-Deficient Mice. J Immunol 2005;175:2401-2407.
    [51] Takeda A, Hamano S, Shiraishi H, Yoshimura T, Ogata H, Ishii K, Ishibashi T, Yoshimura A,Yoshida H. WSX-1 over-expression in CD4(+) T cells leads to hyperproliferation and cytokine hyperproduction in response to TCR stimulation. Int Immunol 2005; 17:889-897
    [52] Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, de Sauvage FJ, Hunter CA. IL-27 limits IL-2 production during Th1 differentiation. J Immunol. 2006; 176:237-47.
    
    [53] Owaki T, Asakawa M, Kamiya S, Takeda K, Fukai F, Mizuguchi J, Yoshimoto T. IL-27 suppresses CD28-mediated [correction of medicated] IL-2 production through suppressor of cytokine signaling 3. J Immunol. 2006;176:2773-80.
    
    [54] Ohtani T, Ishihara K, Atsumi T, Nishida K, Kaneko Y, Miyata T, Itoh S, Narimatsu M,Maeda H, Fukada T, Itoh M, Okano H, Hibi M, Hirano T. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3- and SHP2-mediated signals in immune responses. J Exp Med 2001; 194:189-203.
    
    [55] Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, Heath JK, Ernst M. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 2002;8:1089-1097.
    
    [56] Cousens LP, Orange JS, Su HC, Biron CA. Interferon-alpha/beta inhibition of interleukin 12 and interferon-gamma production in vitro and endogenously during viral infection. Proc Natl Acad Sci U S A 1997;94:634-639.
    
    [57] Dalton DK, Haynes L, Chu CQ, Swain SL, Wittmer S. Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J Exp Med 2000;192:l 17-122.
    
    [58] Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA.Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 2000; 1:70-76.
    
    [59] Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 2000; 192:123-128.
    
    [60] Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T, Seki E, Sato S, Takeuchi O,Takeda K, Akira S, Yamanishi K, Kawase I, Nakanishi K, Kishimoto T. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17:677-687.
    
    [61] Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, Kay TW, Nicola NA, Hertzog PJ, Metcalf D, Hilton DJ. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 1999;98:597-608.
    
    [62] Neyer LE, Grunig G, Fort M, Remington JS, Rennick D, Hunter CA. Role of interIeukin-10 in regulation of T-cell-dependent and T-cell- independent mechanisms of resistance to Toxoplasma gondii. Infect Immuni 1997;65:1675-1682
    
    [63] Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ,O'Shea JJ, Hunter CA. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol. 2007;8:1363-71.
    
    [64] Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, Saris CJ, Gran B, Ciric B, Rostami A. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol. 2007;8:1372-9.
    [65] Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M,Weiner HL. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol. 2007;8:1380-9.
    
    [66] Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N.Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol. 2006;7:929-36.
    
    [67] Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D, Saris CJ, O'Shea JJ, Hennighausen L, Ernst M, Hunter CA.Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol.2006;7:937-45.
    [68] Scott P, Natovitz P, Coffman RL, Pearce E, Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 1988;1168:1675-1684.
    [69] Lieberman LA, Hunter CA. The role of cytokines and their signaling pathways in the regulation of immunity to Toxoplasma gondii. Int Rev Immunol 2002;21:373-403.
    [70] Reed SG. In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections. J Immunol 1998; 140:4342-4347.
    [71] Silva JS, Morrissey PJ, Grabstein KH, Mohler KM, Anderson D, Reed SG. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med 1992;175:169-174.
    [72] Bancroft AJ, Else KJ, Sypek JP, Grencis RK. Interleukin-12 promotes a chronic intestinal nematode infection. Eur J Immunol 1997;27:866-870.
    [73] Pearl JE, Khader SA, Solache A, Gilmartin L, Ghilardi N, deSauvage F, Cooper AM. IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J Immunol 2004; 173:7490-7496.
    [74] Goldberg R, Wildbaum G, Zohar Y, Maor G, Karin N. Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J Immunol 2004;173:1173-1178.
    [75] Goldberg R, Zohar Y, Wildbaum G, Geron Y, Maor G, Karin N. Suppression of ongoing experimental autoimmune encephalomyeliltis by neutralizing the function of the p28 subunit of IL-27. J Immunol 2003; 19:641 -644.
    [76] Li J, Gran B, Zhang GX, Rostami A, Kamoun M. IL-27 subunits and its receptor (WSX-1) mRNAs are markedly up-regulated in inflammatory cells in the CNS during experimental autoimmune encephalomyelitis. J Neurol Sci 2005;232:3-9.
    [77] Shimizu S, Sugiyama N, Masutani K, Sadanaga A, Miyazaki Y, Inoue Y, Akahoshi M,Katafuchi R, Hirakata H, Harada M, Hamano S, Nakashima H, Yoshida H. Membranous Glomerulonephritis Development with Th2-Type Immune Deviations in MRL/lpr Mice Deficient for IL-27 Receptor (WSX-1). J Immunol 2005; 175:7185-7192.
    [78] Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki T, Koyanagi Y, Mizuguchi J,Yoshimoto T. Potent antitumor activity of interleukin-27. Cancer Res 2004;64:1152-1156.
    [79] Salcedo R, Stauffer JK, Lincoln E, Back TC, Hixon JA, Hahn C, Shafer-Weaver K,Malyguine A, Kastelein R, Wigginton JM. IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J Immunol 2004;173:7170-7182.
    [80] Morishima N, Owaki T, Asakawa M, Kamiya S, Mizuguchi J, Yoshimoto T. Augmentation of Effector CD8+ T Cell Generation with Enhanced Granzyme B Expression by IL-27. J Immunol 2005; 175:1686-1693.
    [81] Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M, Iwakura Y, Takeda Y,Luster AD, Mizuguchi J, Yoshimoto T. Antiangiogenic and antitumor activities of IL-27. J Immunol. 2006;176:7317-24.
    [82] Christ AD, Stevens AC, Koeppen H, Walsh S, Omata F, Devergne O, Birkenbach M,Blumberg RS. An interleukin 12-related cytokine is up-regulated in ulcerative colitis but not in Crohn's disease. Gastroenterology 1998; 115:307-313.
    [83] Niedobitek G, Pazolt D, Teichmann M, Devergne O. Frequent expression of the Epstein-Barr virus (EBV)-induced gene, EBI3, an IL-12 p40-related cytokine, in Hodgkin and Reed-Sternberg cells. J Pathol 2002; 198:310-316.
    [84] Larousserie F, Pflanz S, Coulomb-L'Hermine A, Brousse N, Kastelein R, Devergne O.Expression of IL-27 in human Th1-associated granulomatous diseases. Eur J Immunol 2004;34:1371-1380
    [85] Honda K, Nakamura K, Matsui N, Takahashi M, Kitamura Y, Mizutani T, Harada N, Nawata H, Hamano S, Yoshida H. T Helper 1-Inducing Property of IL-27/WSX-1 Signaling Is Required for the Induction of Experimental Colitis. Inflamm Bowel Dis 2005;11:1044-1052.
    [86] Larousserie F, Bardel E, Pflanz S, Arnulf B, Lome-Maldonado C, Hermine O, Bregeaud L,Perennec M, Brousse N, Kastelein R, Devergne O. Analysis of Interleukin-27 (EBI3/p28) Expression in Epstein-Barr Virus- and Human T-Cell Leukemia Virus Type 1-Associated Lymphomas. American Journal of Pathology 2005;166:1217-1228.
    [87] Muller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG,Barbieri G, Witthuhn BA, Schindler C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 1993;366:129-135.
    [88] Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992;70:313-322.
    [89] Watling D, Guschin D, Muller M, Silvennoinen O, Witthuhn BA, Quelle FW, Rogers NC,Schindler C, Stark GR, Ihle JN, et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 1993;366:166-170.
    [90] Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG,Wilks AF, Yasukawa K, Taga T, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 1994;263:89-92.
    [91] Stahl N, Boulton TG, Farruggella T, Ip NY, Davis S, Witthuhn BA, Quelle FW, Silvennoinen O, Barbieri G, Pellegrini S, et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994;263:92-95.
    [92] Nieuwenhuis EE, Neurath MF, Corazza N, Iijima H, Trgovcich J, Wirtz S, Glickman J,Bailey D, Yoshida M, Galle PR, Kronenberg M, Birkenbach M, Blumberg RS. et al.Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene 3-dificient mice. Proc Natl Acad Sci U S A 2002;99:16951-16956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700