高速公路浅覆土特长箱涵顶进关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前浅覆土特长箱涵在高速公路中应用越来越多,而有关其顶进就位施工技术鲜有报道。结合广东梅河高速公路浅覆土特长箱涵顶进工程实例,通过室内模型试验、数值模拟、理论计算及现场监测等方法,对高速公路浅覆土特长箱涵顶进施工中的减阻技术、涵土体受力与变形特性、顶进力及路基路面沉降控制标准等进行了系统、深入研究,取得了以下主要成果:
     1.对采用不同减阻材料的箱涵与土体及滑板间的摩阻系数进行了模拟试验分析,结果表明,涵周土体中含水量每增加2%,摩阻系数减小19.13%;浆土比值为1:4时,箱涵外壁与土体间摩阻系数值最小,与其对应的注浆量为涵周土体最佳注浆量;相同试验条件下,与其它减阻材料相比,石蜡机油混合物的减阻效果更为明显,建议:浅覆土特长箱涵顶进施工中采用石蜡+机油混合物减阻材料。
     2.利用数值模拟方法,对浅覆土特长箱涵结构和覆土的受力与变形特性进行了模拟分析,结果表明,箱涵结构与覆土沿顶进和垂直顶板方向的应力和应变受顶进长度、覆土厚度及采取减阻措施影响较大,顶进长度每增加20m,箱涵结构应力和应变分别增大61.1~87.5%和68.3~77.8%,减阻比不减阻减小14.8~18.8%和9.5~15.7%,覆土应力和位移分别增大4.7~8.0%和12.3~24.7%,减阻比不减阻减小0.9~9.3%和4.1~16.5%;覆土厚度每增加2m,箱涵结构各特征位置应力和应变分别增大12.1~47.2%和1.3~38.5%,减阻比不减阻减小1.9~6.2%和1.0~2.0%,涵顶覆土应力和位移分别增大37.1~43.8%和43~73%,减阻比不减阻减小1.3~6.1%和2~39.2%。
     3.建立了浅覆土特长箱涵顶进纠偏计算模型,提出了不同截面尺寸箱涵顶进中水平和竖向最大允许偏移度控制标准,并针对不同顶进偏斜问题提出了纠偏措施;提出了路基路面沉降和顶进力及其合理作用点位置计算方法。
     4.现场监测结果表明,随着箱涵顶进端距洞口距离增大,涵端所受顶进力整体呈不断增大变化趋势,且当顶进距离小于36m时,顶进力随顶进距离增加呈线性变化;浅覆土特长箱涵顶进施工的最佳顶进速度为0.3~0.4cm/min,顶进速度过大或过小均不利于施工;膨润土泥浆配合比和注浆压力的稳定性对涵周阻力减小量影响较大。
     5.基于前述研究结果,提出了浅覆土特长箱涵的涵节、工作坑、后背墙等关键环节的设计与施工技术,其对类似工程具有重要指导作用。
The application of shallow buried super-long box culverts now gradually gains itspopularity in highway projects, whose jacking and construction technology is rarely studiedand reported. A systematic and in-depth research on drag reduction technique, stress anddeformation characteristics of culverts and the surrounding soil, jacking force and roadbedsettlement control standard in jacking construction of shallow buried super-long box culvertsare carried out with the engineering practice of Guangdong Mei-he highway Project. By usingthe methods of laboratory model test, numerical simulation, theoretical calculation and fieldmonitoring, etc., main achievements are carried out:
     1. Laboratory model tests were conducted to analyze the fraction coefficient among thebox culvert wall, surrounding soil and the skateboard when using different drag reductionmaterials. The result shows that: a. the fraction coefficient reduces19.13%with every2%augment of water content in the surrounding soil; b. the fraction coefficient approaches itsminimum when the grouting-soil ratio is1:4. And the corresponded grout amount is favorable;c. compared with other drag reduction materials, the wax-oil mixture is with betterperformance, under the same test conditions. Hence, wax-oil mixture is recommended as thedrag reduction materials when doing the jacking construction of shallow buried super-longbox culverts.
     2. Numerical simulation was conducted to give a finite element analysis of stress anddeformation characteristics of culvert structures and the overlying soil when doing the jackingconstruction of shallow buried super-long box culverts. The result shows that the stresses andstrains in and perpendicular to the jacking direction are more sensitive to the jacking length,thickness of the overlaying soil and the anti-fraction measures: a. every20m the jackinglength is operated, that the maximum stress and strain of the box culvert increases61.1~87.5%and68.3~77.8%respectively,14.8~18.8%and9.5~15.7%of those can be reducedrespectively when taking anti-fraction measures, and that the maximum stress and strain ofthe overlaying soil increases4.7~8.0%and12.3~24.7%respectively,0.9~9.3%and4.1~16.5%of those can be reduced respectively when taking anti-fraction measures; b. every2mthe thickness of overlaying soil is increased, that the maximum stress and strain of the box culvert increases12.1~47.2%and1.3~38.5%respectively,1.9~6.2%and1.0~2.0%ofthose can be reduced respectively when taking anti-fraction measures, and that the maximumstress and strain of the overlaying soil increases37.1~43.8%and43~73%respectively,1.3~6.1%and2~39.2%of those can be reduced respectively when taking anti-fractionmeasures.
     3. A computational model is established to give a corrective calculation of shallow buriedsuper-long box culverts. Corrective control standards of the horizontal and vertical deviationon different size of the box culvert are proposed with the corrective measures aiming atdifferent deviation problems. And also, the computing method including the settlement of thesubgrade, the jacking force and its rational action point are worked out.
     4. The result of site monitoring shows that: as the distance from the end point of the boxculvert is less than36m and increases, the jacking force applied on the end of the box raiseslinearly. The favorable jacking speed of the shallow buried super-long box culverts is0.3~0.4cm/min when completing the construction procedure. Neither higher nor lower speedis more favorable to the construction. The drag reduction is relatively sensitive to consistencyof the grouting-soil ratio and the grouting pressure.
     5. Based on this research, the design and construction technology on the key procedureof the shallow buried super-long box culverts including pipe section, working pit, back wall,etc., are brought out, which can also be the important guide when doing the similarengineering project.
引文
[1] NGCW,LEE GTK. A three dimensional parametric study of the use of soil nail for stabilizing tunnelfaces[J]. Computers and Geotectonics.2002(29):673-697
    [2] Goto, Yoshiaki, Yamashita, et al. Load distribution by joint in pipe beam roof [J]. Doboku GakkaiRombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers.1984(344):243-252
    [3]饶为国.管棚-大断面箱涵暗顶技术在下穿公路中应用及分析[J].土木工程学报,2008,41(2):106-111
    [4]金子益雄,柴田一之,加藤建治.高速自動車道直下大断面施工一大成田工事[J].土木施工,2003,1(4):2-10
    [5]宣剑锋.管幕支护条件下大口径箱涵顶进施工中关键技术研究[D].同济大学,2006
    [6]魏纲,徐日庆,邵剑明,等.顶管施工中注浆减摩作用机理的研究[J].岩土力学,2004,25(6):930-934
    [7]肖世国,夏才初,李向阳,等.管幕内顶进箱涵时外表面摩阻系数的试验研究[J].岩石力学与工程学报,2005,24(15):2743-2750
    [8]冯忠居,任文峰,谢富贵,等.公路路基特长箱涵顶进模拟试验[J].交通运输工程学报,2007,7(4):74-78
    [9]井浩.大断面箱涵泥浆套形成机理及作用效果研究[D].西安理工大学,2008
    [10]由广明,曾聪.顶管和微型隧道施工中顶进力的分析计算[J].非开挖技术,2004,21(2-3):90-95
    [11]华国强,沈桂平.软土地层管幕内箱涵推进阻力的计算分析[J].中国市政工程,2007,5:64-66
    [12] Marston. A, Andserson, A.O. The theory of loads on pipe in ditches and tests of cement and clay draintile and sewer pipe [R]. Iowa Engineering Experiment Station Bulletin, Iowa State College, Ames,Iowa,1913
    [13] Marston A. The theory of external loads on closed conduits in the light of the latest experiments [J].Iwoa Engineering experiment station, Bulletin96,1930,9:138-170
    [14] Spangler, M. G. A theory on loads on negative projecting conduits [C]. Proc. Highway Research Board,1950,30:153-161
    [15] Spangler, M. G. Undergrand Conduits an appraisal modern researcher [R]. Transportation of theAmerican Society of Civil Engineers,1984
    [16]克列恩.地下管计算[M].陈万佳译.北京:中国铁道出版社,1987
    [17]克列恩.散粒体结构力学[M].陈万佳译.北京:中国铁道出版社,1983
    [18]曾国熙.土坝下涵管竖向土压力的计算[J].浙江大学学报,1960,79-97
    [19]冯忠居,顾安全.大型沟埋式管道侧向土压力的研究[J].西安公路学院学报,1995,15(1):27-30
    [20]唐红梅,陈洪凯,张锡祥,等.用弹性地基梁法进行沟埋式箱涵的结构计算[J].地下空间,2001,21(5):526-531
    [21]周一勤,吴连勋.地基不均匀沉降对箱涵内力影响的探讨[J].中南公路工程,2002,27(3):1-3
    [22]肖世国,朱合华,夏才初,等.管幕内顶进箱涵顶部管幕承载作用的分析[J].岩石力学与工程学报,2005,24(18):3356-3359
    [23]朱玉虎,阚斌,张一工.土基钢筋混凝土箱涵横向受力计算[J].安徽建筑工业学院学报(自然科学版),2006,14(1):24-27
    [24]孙钧,虞兴福,孙旻,等.超大型“管幕-箱涵”顶进施工土体变形的分析与预测[J].岩土力学,2006,27(7):1022-1027
    [25]肖世国,夏才初,朱合华,等.管幕内箱涵顶进中顶部管幕竖向变相预测[J].岩石力学与工程学报,2006,25(9):1888-1892
    [26]黄乐亭,王金庄.地表动态沉陷变形的3个阶段与变速度的研究[J].煤炭学报,2006,31(4):420-424
    [27]万敏,白云,陈文财.管幕箱涵顶进施工中迎面土压力研究[J].土木工程学报,2007,40(6):59-63
    [28]蒋坤,夏才初,占伟明,等.长管棚下箱涵顶进施工中管棚力学作用及其实例分析[J].土木工程学报,2010,43(2):105-109
    [29]王飞球,楼晓明,黄江枫.箱涵顶进对基围护结构内力变形的影响分析[J].地下空间与工程学报,2012,8(3):596-601
    [30]夏才初,龚建伍,陈佑新,等.滑行道下长大箱涵顶进施工数值模拟分析[J].土木工程学报,1998,26(1):78-81
    [31]王丽群.钢筋混凝土箱涵内力有限元分析[J].交通科技,2007,(2):38-40
    [32]赵晓玲.黄土逆作箱涵的受力性能分析与优化设计[D].西安理工大学,2007
    [33]黄根生,张健,张晓炜.超大型箱涵顶进引起的地层位移规律研究[J].岩土力学,2009,30(2):387-392
    [34]罗仁安,姜洋标,万敏,等.管幕箱涵顶进施工中地表变形监测及有限元模拟[J].上海大学学报(自然科学版),2009,15(5):534-540
    [35]李名淦,周江天,岑冈.下穿机场跑道管幕法箱涵顶进的变形规律研究[J].特种结构,2006,23(2):78-94
    [36]陈佑新,张晓峰,王少钦.箱涵顶进仿真分析及监测[J].石家庄铁道学院学报,2007,20(2):77-81
    [37]康佐,谢永利,冯忠居,等.应用离心模型试验分析涵洞病害机理[J].岩土工程学报,2006,28(6):784-788
    [38]申文明.埋地管涵-土相互作用及管涵结构横纵向受力特性研究[D].浙江大学,2011
    [39]乌延玲,冯忠居,王彦志,等.钢波纹管涵洞受力与变形特性现场试验分析[J].西安建筑科技大学学报,2011,43(4):513-516
    [40]赵洪岩,张勇,陈峰军,等.箱涵顶进置换管幕工法土体变形分布式光纤监测研究[J].长江科学院院报,2004,21(6):81-83
    [41]冯忠居,乌延玲,贾彦武,等.钢波纹管涵洞受力与变形特性模拟试验研究[J].岩土工程学报,2013,35(1):187-192
    [42]冯忠居,乌延玲,等.公路涵洞新技术-钢波纹管涵洞工程特性及应用[M].北京:中国建筑工业出版社,2013
    [43]白国栋.既有线下针交项进桥的项力计算及有关问题[J].铁道工程学报,1994,2:66-69
    [44]安关峰,殷坤龙,唐辉明.顶管顶力计算公式辨析[J].岩土力学,2002,23(3):358-367
    [45]中平伸冶,玉井贺行,本田健一,等.顶进管接头动态、极限顶进力解析[J].非开挖技术,2003,20(4-5):109-113
    [46]马保松,王晓形,刘学增,等.软土地层管幕内箱涵顶进推力控制[J].岩土工程界,2005,9(2):53-56
    [47]顾翠莲,夏才初,李向阳,等.软土地层管幕-箱涵推进工法阻力计算研究[J].地下空间与工程学报,2007,3(1):128-131
    [48]李东波,赵冬,张艳强.手掘式顶管中箱梁顶进力计算研究[J].西安建筑科技大学学报(自然科学版),2012,44(1):60-64
    [49]肖世国,夏才初,李向阳,等.管幕内顶进箱涵的前端网格长度合理设计[J].岩土工程学报,2005,27(11):1307-1309
    [50]刘海涛.箱涵结构智能优化方法研究[D].天津大学,2005
    [51]毕见山.大型箱涵施工技术研究[D].上海交通大学,2012
    [52]禹国辉,朱尔玉,李学民.斜交框架箱涵结构在钝角处的受力和配筋特点[J].北京交通大学学报,2013,37(1):124-133
    [53]谢富贵,何涛,孙蕊.特长箱涵顶进过程中的三维受力特性研究[J].公路交通科技,2013,2(总第98期):118-121
    [54]周顺华,廖全燕,刘建龙,等.矩形顶管隧道顶进过程的地层损失[J].岩石力学与工程学报,2001,20(3):342-345
    [55]王春生,任文峰,冯忠居,等.梅河高速公路特长箱涵顶进施工监控技术研究[J].桥梁机械与施工技术,2006,6:42-43
    [56]王世付.浅埋地道桥顶进施工技术及顶面沉降分析[D].西南交通大学,2008
    [57]李秋香.由拳路下穿沪昆铁路箱涵顶进施工监测及变形控制分析[D].南昌大学,2011
    [58]井浩,佘芳涛,邵生俊.箱涵顶进施工安全监测与控制技术研究[J].地下空间与工程学报,2007,3(8):1404-1407
    [59]王雪,李九红,王德法.箱涵顶进工程施工对地表变形的影响因素及控制[J].水力工程,2007,59(3):59-61
    [60]李志伟.浅埋大断面公路箱涵顶推施工技术[J].施工技术,2008,37(7):23-26
    [61]李文江,朱永全,贾晓云,等.南水北调工程下穿高速公路暗涵施工控制技术[J].石家庄铁道大学学报(自然科学版),2010,23(2):98-103
    [62]丁创业,陈尚文.预制钢筋混凝土箱涵液压装置顶进技术[J].武汉大学学报(工学版),2011,44(增刊):277-280
    [63]吴欣之,胡玉银,景路,等.箱涵顶进双重置换工法及其在某工程中的应用[J].地下空间与工程学报,2011,7(5):951-956
    [64]肖勤学.碎散体高填方涵洞压力计算理论[J].地下空间,1996,16(3):143-148
    [65]张宏.应用弹塑性力学[M].西安:西北工业大学出版社,2011
    [66]王国辉,马莉.建筑物沉降的灰色预测[J].铁路航测,1994.
    [67]公路桥涵地基与基础设计规范(JTJ024-85)[S].北京:人民交通出版社
    [68]公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D60-2004)[S].北京:人民交通出版社
    [69]张业轩,陈孝琴,叶少有.箱式通道沉降缝的设置问题[J].合肥工业大学学报(自然科学版),2001,24(增刊):714-718
    [70]冯忠居.大型沟埋式蛋型管道土压力的非线性有限元分析[J].西安公路交通大学学报,1996,16(4):23-27
    [71]冯忠居,黄安录.高等级公路中地下结构物上土压力的有限元分析[J].西安公路交通大学学报,1998,18(4):218-237
    [72]冯忠居.大型沟埋式蛋型管道土压力的研究[D].西安公路学院,1994
    [73]顾安全.上埋式管道及洞室垂直土压力的研究[J].岩土工程学报,1981,1(1):930-934
    [74]林选青.高填土下结构物的竖向土压力及结构设计计算方法[J].土木工程学报,1989,22(4):27-37
    [75]折学森.沟谷地形中埋设管道的土压力研究[J].西安公路学院学报,1989,7(4):33-39
    [76]段旻罡.钢筋混凝土箱涵非线性有限元分析技术研究[D].天津大学,2004
    [77] KIM, K, YOO, C. H. Design loading on deeply buried box culverts [J]. Journal of Geotechnical andGeoenvironmental Engineering,2005,131(1):20-27
    [78]陈保国,骆瑞萍,孙金山.上埋式盖板涵受力特性及影响因素研究[J].岩土力学,2011,32(1):199-206
    [79] Lee K M, Rowe R K. Analysis of three-dimensional ground movements: the Thunder Bay tunnel [J].Canadian Geotechnical Journal,1992,28:25-41
    [80] Sebastiano Pelizza, Daniele. Soil and Rock Reinforcements in Tunnelling [J]. Tunnelling andUnderground Space Technology,1993,8(3):357-372
    [81] Societa Italiana Gallerie. Tunnelling in Italy:1990[J]. Tunnelling and Underground Space Technology,1991,6(3):299-316
    [82] P Lunardi. Cellular Arch Technigue for Large–Span Station Cavern [J]. Tunnels&Tunnelling,1991(11):23-26
    [83] Solidman E, Duddeck H. Two and three dimensional analysis of closely double-tube tunnel [J].Tunneling and Underground Space Technology,1993,8(1):13-18
    [84] Anagnostou, Gand Kovari, K. Face stability in slurry and EPB shield tunneling [J]. Tunnels andTunnelling,1996,28(12):27-29
    [85] Milligan G W E, Norris P. Pipe-soil interaction during pipe jacking. Proceedings of the Institution ofCivil Engineers [J]. Geotechnical Engineering,1999,137(1):27-44
    [86] ShirlawJ.N.Tham-Lee5.K., WongF.K., Ang-WongL.P., ChenD.C., et al. Planning monitoring requiredto eonfirm them ovemen tandrotation of tunnel sand traek work due to exeavation and tunneling [C].Proceeding of the International Confereneeon Tunnel and Underground Struetures, SingaPore,2000:489-494
    [87] Kotake, N Yamamoto, Y.&Oka K. Design for umbrella method based on numerical and fieldmeasurements [J]. Tunnelling and Ground Conditions,2001,15(3):501-508
    [88] Lunari P and Cassani G Construetion of anunder pass at the Ravonerailway yardin the city of thedesign and construetion [C]. Progressin tunneling after2000. Procedings of the AITFS-ITA2001,World Tunnel Congress, Milan, Itaiy,2001:319-328
    [89] Liang R, Zeng S. Numerical study of soil arching mechanism in drilled shafts for slope stabilization [J].Soils and Foundation,2002,42(2):83-92
    [90] Youssef M. A., Whittle AJ. Mechanisms of load transfer and arching for braced excavation in clay [J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(3):187-197
    [91] Karinski Y. S., Dancygier A. N., Leviathan I. An analytical model to evaluate the static soil pressure ona buried structure [J]. Engineering Structure,2003,25:91-101
    [92] Paik K. H, Salgado R. Estimation of active earth pressure against rigid retaining walls consideringarching effects [J]. Geotechniques,2003,53(7):643-653
    [93] Shimada, Hideki, Khazaei, Saeid, Matsui, Kikuo. Small diameter tunnel excavation method usingslurry pipe-jacking [J]. Geotechnical and Geological Engineering,2004,22(2):161-186
    [94]黄文熙.土的工程性质[M].北京:水利水电出版社,1983
    [95]铁道部第四勘察设计院桥隧处.桥涵顶进设计与施工[M].北京:中国铁道出版社,1983
    [96]孙钧,汪炳锏.地下结构有限元法解析[M].上海:同济大学出版社,1988
    [97]毛瑞祥,程翔云.公路桥涵设计手册[M].北京:人民交通出版社,1993
    [98]李廉锟.结构力学[M].北京:高等教育出版社,1996
    [99]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [100]余彬泉,陈传灿.顶涵施工技术[M].上海:人民交通出版社,1997
    [101]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001
    [102]林敏.铁路顶管施工中路基路面沉降的研究[M].北京:北方交通大学,2001
    [103]郑颖人,沈珠江,龚晓南.广义塑性力学—岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [104]冯卫星,王克丽.地道桥的设计与施工[M].河北:河北科学技术出版社,2002
    [105]中华人民共和国交通部标准.公路桥涵设计通用规范[S].北京:人民交通出版社,1989
    [106]中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2002
    [107]中交公路规划设计院.公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [108]铁道第三勘察设计院.铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005
    [109]虞兴福.城市浅埋隧道工程地表变形及其智能预测研究[D].上海:同济大学土木工程学院,2005
    [110] Zhou J.Q. Numerical Analysis and Laboratory Test of Concrete Jacking Pipes [D]. Oxford, England:the University of Oxford,1998
    [111]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4):289-296
    [112]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4):289-296
    [113]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析[J].岩石力学与工程学报,1999,18(5):12-15
    [114]安关峰,殷坤龙,唐辉明.顶管顶力计算公式辨析[J].岩土力学,2002,23(3):358-361
    [115]房营光,莫海鸿,张传英.顶管施工扰动区土体变形的理论与实测分析[J].岩石力学与工程学报,2003,22(4):601-605
    [116]黄宏伟,胡昕.顶管施工力学效应的数值模拟分析[J].岩石力学与工程学报,2003,22(3):400-406
    [117]张恽.大型桥涵施工顶进研究[J].市政技术,2003(2):65-74
    [118]冯海宁,龚晓南,徐日庆.顶管施工影响的有限元计算分析[J].岩石力学与工程学报,2004,23(7):1158-1162
    [119]夀克坚,张芳维,刘耀军等.管推工程之物理模型试验与数值分析[J].岩石力学与工程学报,2004,23(增2):4993-4998
    [120]魏纲,徐日庆,等.顶管施工中注浆减摩作用机理的研究[J].岩土力学,2004,25(2):930-934
    [121]夀克坚,张芳维,刘耀军等.管推工程之物理模型试验与数值分析[J].岩石力学与工程学报,2004,23(增2):4993-4998
    [122]高德龙.“浅埋暗挖”技术在北京地铁建设中的应用[J].施工技术,2000(2):54-56
    [123]高怀志,李养平.浅埋暗挖法在天津地铁1号线工程中的应用[J].隧道建设,2005,,2(4):10-14
    [124]张孟玫,施法中,石维新.箱涵在多种工作及运营情况下结构设计自动化研究[J].岩土工程学报,2005,27(11):1307-1309
    [125]高秀梅.大断面箱涵顶进技术在下穿铁路工程中的应用[J].铁道勘察,2009,1:82-84
    [126]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑业工出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700